

JAVASCRIPT
	

A	Beginner’s	Guide	to	Learning	the	Basics	of	JavaScript
Programming

	

By	James	Patrick

Introduction
	

I	 want	 to	 thank	 you	 and	 congratulate	 you	 for	 downloading	 the	 book, “Javascript
Programming !”

	

This	 book	 contains	 proven	 steps	 and	 strategies	 that	 even	 beginners	 can	 use	 in	 order	 to
code	 from	 scratch.	 Even	 better,	 intermediate	 systems	 and	 tutorials	 are	 included	 so	 that
those	who	are	already	familiar	with	Javascript	can	amp	up	their	game	and	use	JavaScript
in	conjunction	with	more	advanced	tools	and	systems.

	

This	book	includes	a	short	introduction	to	the	programming	language	so	that	you’ll	know
exactly	what	 to	expect.	You	will	 then	be	guided	 through	 the	basics,	 including	variables,
identifiers	and	statements.	You	will	also	get	oriented	regarding	javascript	syntax.	Several
guides	and	samples	are	also	included	so	that	you’ll	see	exactly	how	certain	keywords	and
data	will	appear	on	webpages.

	

Don’t	worry	because	 to	 learn	Javascript,	 there	 is	no	need	for	you	 to	pay	for	other	 third-
party	 software	 and	 tools.	All	 you	 need	 is	Notepad,	 or	 TextEdit	 if	 you	 are	 using	 a	Mac
computer.	When	you	move	on	to	the	intermediate	stages	though,	it	would	be	better	for	you
to	use	a	source	code	editor	that	offer	HTML	and	CSS	support,	such	as	Notepad	++.

	

Thanks	again	for	downloading	this	book.	I	hope	you	enjoy	it!

Table	of	Contents
	

Introduction

Table	of	Contents

Chapter	1:	JavaScript		101

Frequently	Asked	Questions

Setting	Expectations	and	Prerequisites

Supplementary	Education

Recommendations	after	Reading	This	Book

The	Goals	of	This	Book

Tools	You	Need

What’s	the	Console	for	Anyway?

What’s	Next?

Chapter	2:	Variables,	Identifiers,	and	Statements

Writing	Code

Variables

Identifiers

Case	Sensitivity

Statements

Recap	and	Additional	Information

Chapter	3:	JavaScript	Basic	Syntax

Case	Sensitivity

Keywords

Comments

Function	of	Comments	in	Scripting	or	Programming

Two	types	of	comments

Chapter	4:	Operators

Common	Types	of	Operators

Arithmetic

Assignment

String	Concatenation	Operators

Logical	and	Comparison	Operators

Chapter	5:	Data	Type

Dynamic	Data	Typing

Number

Strings

Adding	Quotation	Marks	on	Strings

Smart	Quotes	or	Curly	Quotes

Primitive	Values

undefined	and	null

Arrays

Array	Index

Array	Values	Data	Types

Chapter	6:	Inserting	JavaScript	Code

Where	to	Place	JavaScript

Within	the	Page

Within	Your	Server	as	a	Separate	File

Within	Content	Delivery	Networks	(CDNs)	as	a	Separate	File

Sample	Web	Page	File

Code	Sample:	1	(HTML	TEMPLATE)

Sample	JavaScript	Usage

Code	Sample:	2	(WINDOWS.ALERT)

Chapter	7:	Code	Blocks,	Functions,	and	Scope

Functions

Scope

Global	and	Local	Variables

Arguments	and	Parameters

Function	return

Recap

Chapter	8:	Conditionals

Conditional	Statement	If

If	Else	Statement

Else	If	Statement

Switch	Conditional	Statement

Case	Keyword

Break	Keyword

Default	Keyword

Chapter	9:	Loops

For	Loop

Eternal	Loops

While	Loop

Do	While	Loop

Chapter	10:	Events

Syntax	and	Case

Event	Exclusivity

Curious	Cat

Multiple	Events

Chapter	11:	HTML	DOM

The	Document	Object

Document	Object’s	Properties	and	Methods

Navigating	Through	the	Document	Object	Model

Parent	and	Child	Concept

Chapter	12:	HTML	and	CSS	Editing	Using	JavaScript	and	DOM

The	getElementById	method	and	innerHTML	Property

innerHTML	versus	innerText	versus	textContent

JavaScript	and	CSS

Chapter	13:	JavaScript	Object	Oriented	Programming

Programming	Paradigms

Structured	and	Unstructured	Programming

Procedural	Programming

Object	Oriented	Programming

Chapter	14:	Objects

Assigning	Objects	to	Variables	—	By	Value	and	By	Reference

Object	Creation	Using	Object	Literal

Chapter	15:	Classes,	Properties,	and	Methods

Constructor	Function	and	new	Keyword

Object	Creation	Using	Constructor	Function

Chapter	16:	Properties	and	Methods

this	Keyword

Methods

The	Concept	of	Get	and	Set/Let

Providing	Arguments	and	Parameters	to	Your	Constructor

Chapter	17:	Common	Methods

String	Methods	or	Commands

search()	method

Array	Methods	and	Properties

Length

Dot	Accessor	Operator

Push

Chapter	18:	JavaScript	Math

Chapter	19:	Advanced	Data	Types	–	Data	Conversion	and	Constructor

Data	Types

Chapter	20:	Dates	and	Time

Chapter	21:	Regular	Expressions	in	JavaScript

Chapter	22:	Errors	and	Debugging

Try,	Catch,	and	Finally

Console.log

Chapter	23:	AJAX

Chapter	24:	JSON

Chapter	25:	jQuery

Chapter	26:	JavaScript	in	Bootstrap

Conclusion

	

Chapter	1:	JavaScript		101
	

JavaScript	 is	 a	 client-side	 scripting	 language.	 It	 is	 used	 to	 improve	website	 or	webpage
functionality.	Also,	 it	 is	 used	 in	 conjunction	with	HTML	 and	CSS	 to	 create	 responsive
websites.

	

JavaScript	 is	 one	 of	 many	 client	 side-scripting	 languages	 (e.g.,	 VBScript,	 PerlScript,
Jscript,	ActionScript)	 that	 exist	 in	 the	web.	However,	 it	 is	 the	most	 popular	 and	widely
used.	Due	to	its	wide	usage,	it	has	spawned	multiple	frameworks.	Frameworks	are	there	to
make	 coding	 easier.	 They	 also	 improve	 and	 enhance	 the	 functionality	 of	 languages.
JavaScript	frameworks	will	be	discussed	in	the	later	parts	of	this	book.

	

On	the	other	hand,	this	scripting	language	is	behind	many	website	features	and	additional
functions	on	the	web.	It	is	safe	to	say	that	compared	to	other	languages,	JavaScript	is	the
most	used	in	the	world.	With	almost	every	website	employing	this	programming	language
in	every	page	it	has,	without	a	doubt,	its	absence	will	make	the	Internet	boring.

	

Aside	from	that,	JavaScript	is	cross	platform	and	it	is	a	useful	tool	in	creating	impromptu
programs	 and	macros.	Due	 to	 the	mass	 availability	 of	 browsers	 in	 every	 computer	 and
smart	 devices,	 you	 can	 easily	 create	 a	 decent	 program	 with	 the	 use	 of	 a	 text-editing
program	and	a	web	browser.

	

Frequently	Asked	Questions
	

Before	 you	 go	 ahead	 on	 learning	 JavaScript,	 take	 some	 time	 to	 read	 this	 small	 FAQ
section.	 The	 information	 listed	 here	 may	 clear	 up	 some	 misunderstanding	 and
misconceptions	about	this	scripting	language.

Is	It	Compatible	to	All	Web	Browsers?
	

Despite	being	standardized,	be	wary	that	browsers	may	behave	or	perform	differently	 in
some	 codes	 or	 cases.	 In	 addition,	 JavaScript	 also	 has	 a	 server	 side-scripting	 version.	 It
provides	more	power	to	its	client	side	scripting.	However,	do	note	that	this	book	will	only
tackle	the	client-side	scripting	version.

	

Nevertheless,	 most	 browsers	 support	 JavaScript,	 and	 the	 ones	 you	 use	 will	 certainly
understand	scripts	written	in	JavaScript.	By	the	way,	this	book	prefers	the	use	of	Google
Chrome.	 You	 can	 get	 Google	 Chrome	 from	 Google.com.	 However,	 the	 usage	 of	 other
browsers	is	not	discouraged	so	long	as	they	have	a	web	developer	console,	which	will	be
discussed	later.

	

Is	It	Related	to	the	Java	Programming	Language?
	

It	 is	not	directly	related	to	Java.	Although,	the	way	you	code	JavaScript	resembles	Java.
There	are	also	some	familiar	terms	and	keywords	that	are	present	in	JavaScript	and	Java.
Nevertheless,	both	are	different	from	each	other.

	

As	 a	 fun	 tidbit,	 JavaScript	 is	 derived	 and	 standardized	with	 ECMAScript	 by	Netscape.
JavaScript	has	undergone	multiple	name	changes	before.	Primarily,	ECMAScript	was	not
used	 because	 it	 sounded	 like	 a	 skin	 disease,	 according	 to	 ECMAScript’s	 developer,
Brendan	Eich.

	

Also,	 do	 not	 confuse	 JavaScript	 with	 JScript.	 JScript	 is	 Microsoft’s	 “version”	 of	 the
ECMAScript.	However,	JavaScript	and	JScript	are	relatively	the	same.	It	was	just	used	to
prevent	 a	 trademark	 issue	 between	Microsoft	 and	 Sun	Microsystems,	 the	 company	 that
developed	Java.

Is	It	Difficult	to	Learn	and	Understand?
	

Not	 really.	Nevertheless,	 the	 difficulty	 of	 learning	 and	 understanding	 JavaScript	 hugely
depends	on	your	goal	and	reasons.	Why	are	you	trying	to	learn	JavaScript	anyway?

	

If	you	are	reading	this	book	to	learn	how	to	create	web	forms	and	minor	scripts,	then	you
will	 not	 need	 to	 read	 everything.	Alternatively,	 if	 you	 are	 trying	 to	 learn	 how	 to	 create
dynamic	pages,	then	you	will	need	to	understand	everything	in	here,	but	you	will	not	have
a	hard	time	processing	the	lessons	included	in	this	book.

	

However,	 if	you	are	attempting	 to	build	web	applications	and	add	custom	and	advanced
functionalities	on	your	page,	then	this	book	will	only	serve	as	a	precursor	to	the	things	you
need	 to	 learn.	Not	 to	mention	 that,	 if	 you	 are	 not	 familiar	with	 programming,	 you	will
need	to	require	yourself	to	master	this	book.

	

Do	I	Need	Programming	Experience?
	

For	those	who	have	no	idea	with	programming,	this	book	will	help	you	get	your	bearings.
Instead	 of	 the	 usual	 dive	 to	 inserting	 JavaScript	 in	 HTML	 code,	 you	 will	 be	 first
introduced	to	using	a	development	console,	which	will	be	discussed	later.

	

How	Do	Browsers	Process	JavaScript?
	

A	few	of	you	might	not	be	familiar	with	the	processes	behind	the	scenes	when	a	browser
loads	a	page.	If	you	are	one	of	them,	then	give	yourself	some	time	to	process	this	section.

Client	and	Server	Concept
	

Simply	put,	when	you	access	a	webpage	on	the	Internet,	two	entities	play	major	roles	in
order	to	deliver	you	the	content	that	you	need.	First	is	the	client.	Second	is	the	server.	Of
course,	 the	 connection	between	 the	 two	 is	 essential,	 but	 it	will	 be	 discussed	 thoroughly
here.

	

The	 client	 is	 your	machine/computer/device	 that	 you	 use	 to	 access	 the	web.	Of	 course,
you,	as	the	user,	and	the	browser	is	part	of	the	“client”.

	

The	server,	on	the	other	hand,	is	the	computer	that	stores	and	provides	clients	the	content
that	 they	need.	The	connection	between	 the	client	 and	 server	 is	provided	by	an	 Internet
connection,	usually.

	

The	 location	 and	 the	 server	 itself	 changes	 depending	 on	 the	 content	 you	 demand.	 The
server	 can	 be	 on	 the	 web,	 within	 your	 local	 area	 connection,	 and	 can	 even	 be	 your
computer.

	

If	you	are	just	going	to	access	a	regular	webpage,	these	things	will	happen:

	

1.	 Your	browser	will	send	a	request	to	the	server	for	the	content

	

2.	 The	server	will	process	the	request	and	find	the	content	needed

	

3.	 The	server	will	sent	the	content	back	to	the	client

	

4.	 The	client	will	process	the	content	and	render	it	to	your	screen

	

	

Out	of	the	four	(broad)	processes,	this	section	will	focus	on	the	fourth	one.

	

Setting	Expectations	and	Prerequisites
	

Learning	 JavaScript	 requires	 basic	 knowledge	 of	 HTML	 and	 CSS.	 Knowledge	 in
programming	 is	 not	 required	 since	 basic	 programming	 and	 programming	 JavaScript
scripts	will	be	included	in	this	book.	Aside	from	that,	you	must	be	at	 least	familiar	with
how	the	web	works.

	

Supplementary	Education
	

Of	 course,	 this	 book	 is	 not	 the	 only	 helpful	 resource	 you	 can	 use	 to	 learn	 JavaScript.
Multiple	websites	 and	 organizations	 provide	 insightful	 and	 direct	 information	 regarding
this	subject.

	

One	of	the	best	resources	is	the	Mozilla	Development	Network.	Aside	from	learning	the
basics	in	there,	 there	are	references	that	can	be	useful	 to	you	once	you	are	finished	with
this	book.	However,	of	course,	most	of	the	subjects	there	lean	towards	the	development	of
JavaScript	using	Mozilla	related	applications	such	as	Firefox	and	Thunderbird.

	

Recommendations	after	Reading	This	Book
	

If	you	wish	 to	become	a	certified	web	guru,	 then	 learning	JavaScript	 is	only	one	of	 the
first	steps	you	need	to	take.	After	 this,	 it	 is	recommendable	that	you	go	ahead	and	learn
about	server-side	scripting	and	database	management	on	the	web.

	

If	you	want	to	go	further,	you	will	need	to	learn	other	web	scripts	such	as	Ruby,	Python,
and	Perl.	On	 the	other	hand,	 learning	about	 server	 stacks	and	networking	would	greatly
help	you	a	lot	if	you	want	to	turn	web	development	into	a	fruitful	career.

The	Goals	of	This	Book
	

Once	 you	 finished	 reading	 this	 book,	 you	 will	 become	 familiar	 with	 basic	 usage	 of
JavaScript.	 You	 will	 be	 able	 to	 create	 functions	 that	 will	 allow	 you	 to	 personalize,
customize,	and	improve	a	website.

	

Also,	you	will	have	a	better	understanding	of	how	the	web	works.	You	will	now	have	fair
ideas	on	how	Internet	applications	and	feature	rich	websites	work	—	to	the	point	that	you
can	easily	come	up	of	basic	frameworks	on	how	you	can	imitate	them.

	

Tools	You	Need
	

At	 the	 earlier	 parts	 of	 this	 book,	 all	 you	 need	 is	 a	 simple	 text-editing	 program	 like
Notepad.	If	you	are	a	diligent,	patient,	and	hardworking	person,	it	is	advisable	that	you	go
through	executing	the	coding	samples	in	this	book	using	a	simple	text	editor.

	

In	 case	 you	 know	 that	 you	 are	 impatient	 and	 time	matters	 too	much	 for	 you,	 then	 it	 is
suggested	that	you	use	a	source	code	editor	 like	Notepad++.	Notepad++	is	a	free	source
code	editing	tool	that	you	can	download	from	the	web.

	

The	next	thing	that	you	will	need	is	web	browser	and	its	development	console.	The	most
recommended	browser	you	should	use	is	Google	Chrome.	You	will	also	use	this	mostly	at
the	earlier	parts	of	 the	book.	Depending	on	your	preferences,	you	might	go	 through	 the
lessons	with	using	the	browser	alone.

	

In	Google	Chrome,	you	can	access	the	development	console	by	pressing	the	F12	key	on
your	keyboard	or	you	can	press	Ctrl	+	Shift	+	J.	If	you	are	using	a	Mac	computer,	you	can
access	it	by	pressing	Command	+	Option	+	J.

On	the	other	hand,	you	can	just	access	 it	 through	Chrome’s	menu,	click	on	More	Tools,
and	 then	click	on	Console	or	JavaScript	Console.	 If	you	cannot	 find	 those,	you	can	 just
access	the	console	through	the	Developer’s	Tools	by	pressing	Ctrl	+	Shift	+	I.

	

Other	browsers	that	use	Chromium,	which	Google	Chrome	uses,	like	Opera,	also	have	this
function.	Mozilla	Firefox	also	has	a	Developer’s	Console.

	

What’s	the	Console	for	Anyway?
	

The	console	is	a	great	tool	that	can	allow	you	to	test	codes	and	familiarize	yourself	with
JavaScript.	Unlike	with	creating	an	HTML	page	from	scratch,	saving	it	on	a	file,	and	then
testing	it	on	the	browser,	you	can	just	type	the	code	on	the	console,	press	Enter,	and	it	will
be	integrated	or	injected	to	the	file	immediately.

	

Some	web	developers	call	this	method	Live	Scripting	or	interactive	coding.	Lately,	it	has
become	 apparent	 that	 interactive	 coding	 is	 a	 faster	 and	more	 efficient	 way	 of	 teaching
programming	to	newbies.

	

Aside	from	avoiding	the	hassle	of	coding,	saving,	compiling,	and	testing,	people	can	just
type	 the	 line	of	 code	 they	want	 and	 it	will	processed	 right	 away.	Also,	most	 interactive
console	or	programs	provide	additional	feedback,	which	provides	assistance	to	developers
and	learners.

	

What’s	Next?
	

Well,	 open	 your	 Google	 Chrome’s	 console,	 and	 play	 with	 it.	 For	 starters,	 use	 it	 as	 a
calculator.	For	example,	type:

	

43	+	14
32	*	51
12	/	3
12419	–	4512

	

Of	 course,	 you	 do	 not	 need	 to	 use	 the	 numbers	 indicated	 exactly.	 Try	 to	 type	 any
expression,	 formula,	or	equation	 that	you	can	 think	of.	Whenever	you	 type	an	equation,
press	the	Enter	key.	The	console	will	provide	you	with	a	result.	For	example:

	

>	1	+	1

<	2

>	_

	

Note:	 In	 the	 example	 codes	 for	 the	 developer’s	 console,	 the	 underscore	 is	 just	 there	 to
represent	the	cursor	in	the	console.	Also,	the	greater	than	sign	signifies	user	input	while
the	less	than	sign	signifies	feedback	from	the	console	and/or	output.

	

You	might	have	typed	the	=	sign	or	wonder	why	you	do	not	need	to	add	it	on	the	equation.
There	is	a	reason	for	that.	The	equal	(=)	sign	or	symbol	plays	a	different	role	in	JavaScript
or	in	almost	every	programming	language.

	

Now	that	you	get	the	hang	of	fiddling	with	the	developer	console,	the	lessons	on	how	to
program	or	create	scripts	in	JavaScript	will	begin.

	

Note:

If	ever	you	encounter	an	unfamiliar	term	that	was	mentioned	in	a	section	of	this	book,	try
to	analyze	its	meaning	through	its	context.	Move	forward;	it	will	be	surely	discussed.

Chapter	2:	Variables,	Identifiers,	and	Statements
	

Programming	and	scripting	are	technically	alike.	Usually,	the	term	programming	is	used	in
creating	programs	that	are	compiled	into	an	executable	binary	file,	which	is	unreadable	to
humans.	In	layman’s	term,	the	lines	of	code	you	will	write	will	be	converted	to	machine
language	that	your	computer	can	easily	understand.

	

On	the	other	hand,	the	term	scripting	is	used	in	creating	programs	that	are	translated	into
machine	code	when	needed.	Unlike	programs,	scripts	are	uncompiled	code;	meaning,	you
can	easily	edit	or	read	them	whenever	you	like,	even	if	it	is	being	executed.

	

In	JavaScript,	will	be	scripting.	When	you	write	your	code	and	it	is	executed,	it	will	be	left
as	is.	The	browser	reading	your	code	will	be	the	one	who	will	handle	the	translation	for
the	 computer.	 Basically,	 you	 will	 just	 write	 the	 script,	 and	 then	 just	 let	 it	 run	 on	 the
browser	as	soon	as	you	are	finished.

	

Writing	Code
	

Writing	a	script	is	not	that	different	from	writing	a	script	for	a	play.	When	writing	a	script
for	a	play,	you	will	put	instructions	for	your	actors	in	paper.	In	writing	a	script	for	a	web,
you	will	write	 instructions	 for	 all	 objects	 and	 elements	 involve	 in	 the	web	page.	Those
objects	are	your	browser,	the	page	itself,	and	HTML	elements,	among	others.

	

And	of	 course,	 the	biggest	 thing	 that	 separates	writing	 a	 script	 for	 a	play	 and	writing	 a
script	for	a	website	is	the	language.	Most	probably,	the	language	you	will	use	for	the	play
is	 English,	 a	 language	 that	 you	 are	 already	 familiar	 with.	 For	 the	 web,	 you	 will	 use
JavaScript,	a	new	language	you	have	no	idea	on	how	to	speak	or	write	with.

	

When	 learning	a	 language,	you	often	 start	with	 the	basic	parts	of	 sentences.	 In	English,
that	would	be	the	noun,	pronoun,	verb,	adjective,	etc..	In	JavaScript,	you	will	start	learning
the	 basic	 parts	 of	 programming	 and	 the	 language	 itself	 including	 variables,	 assignment
operators,	expressions,	and	keywords.

	

So,	do	not	fret.	It	will	not	be	as	hard	as	you	think.	Take	a	deep	breath	and	proceed	to	the
next	topic.

	

Variables
	

In	the	previous	chapter,	the	equal	sign	was	mentioned	and	used.	It	seems	that	you	are	just
playing	 some	Math	on	 the	console,	 right?	Now,	 the	next	 lesson	will	be	about	variables.
With	 a	 decent	 introduction	 to	 scripting	 and	 coding,	 you	will	 surely	 have	 an	 easier	 time
understanding	variables.

	

Variables	are	storage	entities	within	a	program.	They	store	 information	that	will	be	used
later	on	the	program.	It	makes	tracking	of	useful	and	crucial	values	in	a	script	easier.	Also,
it	makes	 it	 easier	 to	 use	 a	 value	 repeatedly,	without	 remembering	 and	 typing	 the	 value
exactly	every	time	you	need	it.

	

In	 the	English	 language,	variables	are	 like	pronouns.	For	example,	your	noun	is	“John”.
To	make	 it	 easier	 to	 refer	 to	 him,	 you	 can	 just	 use	 the	 pronoun	he,	 him,	 or	 his	 in	 your
sentences.	 That	 is	 just	 how	 simple	 variable	 works.	 Of	 course,	 other	 uses	 can	 be
incorporated	with	variables.

	

On	 the	 other	 hand,	 you	 must	 be	 already	 familiar	 with	 term	 variable.	 After	 all,	 your
Mathematics	 teacher	should	have	mentioned	 it	a	 lot	when	you	were	 in	high	school;	you
would	have	encountered	it	in	college	as	well.

The	 concept	 of	 variables	 in	 Math	 is	 similar	 with	 JavaScript	 variables	 or	 variables	 in
programming	—	with	a	 few	notable	differences.	First,	variables	 in	programming	do	not
only	hold	numbers.	It	can	also	hold	or	store	text,	arrays,	and	objects	(more	to	that	later).

	

You	can	create	variables	in	JavaScript	by	using	the	var	keyword	or	command.	Type	these
lines	in	your	console	for	example:

	

>	var	x;

	

Once	you	press	enter,	the	console	will	reply	with	this:

<	undefined

>	_

	

At	this	point,	variable	x	already	exists.	However,	it	is	undefined.	Google	Chrome	or	your
browser	does	not	know	yet	what	 it	 is	 supposed	 to	be.	Will	 it	be	a	number?	Will	 it	be	a
text?	To	define	it	further	and	store	a	value	in	it,	you	must	use	the	assignment	operator	(=).

	

The	assignment	operator	works	like	this:

>	x	=	2

<	2

>	_

	

Once	 you	 press	 enter,	 the	 console	will	 confirm	 that	 the	 number	 2	 has	 been	 assigned	 to
variable	x.	To	double	check	if	it	did,	type	this:

>	x

<	2

>	_

	

Note:	To	check	 the	value	of	variables	 in	 the	developer	console,	you	can	 just	 type	 in	 the
variable’s	name,	and	the	console	will	reply	with	the	variable’s	current	value.	Writing	that
on	a	script	you	will	insert	in	your	page	will	do	nothing;	take	note	of	that.

	

When	you	call	on	variable	x,	the	console	will	respond	with	its	value.	What	would	happen
if	you	call	on	another	variable?

	

>	y

� � 	Uncaught	ReferenceError:	y	is	not	defined	(…)

>	_

	

Note:	 The	 x	 in	 the	 second	 line	 represents	 a	 red	 x	 icon	 that	 signifies	 an	 error.	 It	 is	 not
related	to	variable	x.

	

Since	 y	was	 not	 declared	 in	 the	 first	 place,	 the	 console	 returned	 a	 reference	 error.	 The
identifier,	text,	or	string	y	must	be	declared	first	with	the	var	keyword	in	order	to	become
recognized	and	“reference-able”	by	the	console.

	

What	will	happen	if	you	try	to	assign	a	value	to	an	undeclared	variable	or	identifier?	Try
this	out:

	

>	z	=	3

	

What	happened?	Yes,	 the	console	accepted	 the	assignment	even	 if	 the	var	keyword	was

not	used.

	

<	3

>	_

	

As	convenient	as	it	may	seem,	you	should	not	create	and	assign	variables	like	this.	This
would	open	a	can	of	worms	once	your	code	becomes	bigger.	Primarily,	the	main	problem
is	that	the	scope	of	the	variables	declared	this	way	would	become	messed	up	(more	about
scopes	later).

	

Also,	with	 the	previous	revisions	of	ECMAScript	 (ECMAScript	5	&	6),	“use	strict”	has
become	 available.	 This	 mode	 will	 enforce	 you	 to	 always	 declare	 variables	 to	 prevent
errors.

	

As	for	now,	stick	with	the	usage	of	var.	It	is	the	proper	way	—unless	you	know	the	effects
of	not	using	var	and	you	intend	it	to	work	that	way.

	

Anyway,	 by	 declaring	 variable	 x,	 your	 web	 page	 and	 JavaScript	 codes	 can	 use	 it.	 Of
course,	declaring	a	variable	is	not	enough	to	make	it	useful.	You	must	assign	a	value	to	it
as	mentioned	 a	 while	 ago.	 Since	 it	 is	 typical	 for	 new	 (or	 even	 seasoned)	 developer	 to
forget	 to	use	var,	 try	to	include	it	 together	when	you	assign	a	value	to	a	variable	for	the
first	time.	For	example:

	

>	var	x	=	2

<	2

>	_

Identifiers
	

You	have	seen	this	term	a	while	ago.	An	identifier	is	a	combination	of	letters,	numbers,	or
underscores	 that	 provides	 ‘names’	 to	 variables,	 functions,	 methods,	 properties,	 objects,
etcetera.	To	put	it	simply,	identifiers	are	names	and	they	make	the	management	of	all	the
elements	in	a	program	easier	for	programmers	and	developers.

	

To	be	technical,	when	you	input	this,	var	x,	you	are	actually	creating	a	storage	allocation
in	 your	 computer’s	memory.	That	 storage	 allocation	 is	 called	 a	 variable.	Then	 you	will
name	with	the	identifier	x	for	you	to	easily	remember	that	variable.

	

Without	identifiers,	you	will	need	to	get	the	address	of	that	storage	allocation	or	variable
in	your	computer’s	memory.	And	remembering	memory	addresses	 is	not	 something	you
would	 want	 to	 do	 because	 they	 are	 confusing	 bunch	 composed	 of	 seemingly	 random
letters	and	numbers.

	

For	 example,	 instead	 of	 remembering	 an	 address	 like	 #25	 Hudson	 Street,	 Vaughan,
Ontario,	Canada,	it	will	be	much	easier	for	you	to	remember	the	exact	location	by	giving
that	place	a	name.	If	that	is	your	friend	George’s	house	address,	then	it	will	be	easier	for
you	to	recall	the	location	as	George’s	house.	The	same	goes	with	identifiers	and	variables
(and	other	program	elements).

	

Case	Sensitivity
	

JavaScript	 is	 a	 case-sensitive	programming	 language	 (you	will	 see	 this	 line	a	 few	 times
after	 this).	What	does	 it	mean?	It	means	 that	a	difference	 in	 letter	casing	can	result	 into
errors.	 Also,	 it	 means	 that	 different	 letter	 cased	 identifiers	 will	 be	 treated	 as	 different
entities	in	the	program.

	

For	example,	variable	x	will	be	treated	as	a	different	entity	from	variable	X.	Due	to	that,
make	sure	that	you	always	mind	how	your	spell	and	type	your	identifiers.	Error	caused	by
wrong	letter	cases	can	be	a	pain	to	find	and	fix,	especially	if	you	have	hundreds	lines	of
code.

	

Statements
	

At	this	point,	you	have	already	created	valid	statements.	What	are	statements?	Statements
are	 lines	of	 codes	 that	 perform	a	 specific	 task	or	 tasks	 that	 do	not	 contain	 any	error	on
them.	However,	in	some	cases,	erroneous	lines	of	codes	are	still	referred	to	as	statements
in	some	cases.

	

In	 English,	 it	 can	 be	 considered	 that	 statements	 are	 synonymous	 with	 sentences.
Statements	in	programming	are	just	like	sentences	in	English.	To	create	a	proper	script	for
a	play	or	story,	you	must	know	how	to	write	comprehensible	and	proper	sentences.	The
same	goes	with	scripting.

	

How	can	you	know	if	your	statement	is	valid?	First,	if	it	follows	the	right	syntax	rules,	it
will	be	considered	as	a	proper	or	valid	statement,	which	will	be	executed	by	the	browser
or	computer	without	any	error.	Syntax	rules	are	just	like	the	English	grammar	rules.	More
about	JavaScript	syntax	rules	will	be	discussed	later.

	

One	of	the	statements	that	you	have	typed	on	the	console	is	var	x.	A	simple	declaration	of
a	variable	is	already	a	logical	and	correct	statement.	It	performs	its	specific	goal,	which	is
to	establish	variable	x.

	

However,	 do	 not	 that	 some	 lines	 that	 you	 create	 in	 the	 developer	 console	 are	 not	 valid
statements	 in	 JavaScript.	Even	 if	 the	 console	 does	 not	 return	 any	 error	when	 you	 input
those	lines,	some	of	them	will	not	work	in	actual	code	in	web	pages.

For	example,	you	have	played	with	some	mathematical	equations	before	 in	 the	console,
right?	Those	equations	are	not	valid	statements.	They	are	only	available	in	the	console	as	a
learning	tool	—	as	mentioned	a	while	ago.

	

Recap	and	Additional	Information
	

Generally,	you	will	be	scripting	with	JavaScript.	Your	script	can	also	be	called	source	code
—	although,	source	code	is	usually	referred	to	the	content	of	your	HTML	document.

	

Your	 script	 will	 be	 composed	 by	 computer/browser	 instructions	 called	 statements.	 To
make	sure	that	your	browser	will	do	what	you	want,	you	must	make	sure	that	you	create
valid	statements.

	

On	 the	 other	 hand,	 variable	 is	 one	 of	many	 parts	 of	 a	 statement.	Variables	 can	 contain
almost	any	value	that	you	and	your	browser	can	provide	by	using	assignment	operators.

	

To	manage	and	remember	your	variables	easily,	you	assign	them	identifiers,	which	is	just
a	technical	term	for	your	variable’s	name.	Identifiers	can	also	name	functions,	which	will
be	discussed	later.

	

And	most	importantly,	identifiers	are	case	sensitive.	For	example,	the	identifier	GOOD	is
considered	a	different	identifier	with	the	identifier	good.

Chapter	3:	JavaScript	Basic	Syntax
	

JavaScript	 is	 a	 programming	 language.	And	 just	 like	 languages,	 JavaScript	 has	 its	 own
grammar	 rules	 named	 syntax.	 Going	 with	 this	 analogy,	 statements	 are	 JavaScript
sentences.	And	order	for	it	to	be	understandable,	it	must	follow	the	language’s	syntax	or
grammar.

	

One	of	the	syntax	rules	in	JavaScript	is	that	every	statement	must	end	with	a	semicolon	(;)
or	a	statement	separator	(some	call	JavaScript’s	semicolon	as	a	statement	terminator,	but	it
has	a	slight	difference	from	separators).

	

The	semicolon’s	job	is	much	like	a	period	or	semicolon’s	function	in	the	English	language.
It	 separates	 statements.	 It	 allows	 the	browser	 to	distinguish	where	a	 statement	 ends	and
where	another	statement	starts.	For	example:

	

>	var	x;

<	undefined

>	var	y;

<	undefined

>	_

	

The	 semicolon	 separates	 statements,	 right?	 So,	 if	 that	 is	 the	 case,	 can	 you	 put	 two
statements	in	one	line?	Try	it:

	

>	var	x;	var	y;

<	undefined

>	x;

<	undefined

>	y;

<	undefined

>	_

	

It	worked.	What	will	happen	if	you	removed	the	semicolon?

	

>	var	x	var	y

� � 	Uncaught	SyntaxError:	unexpected	token	var	(…)													

	

As	you	can	see,	you	received	an	error.	After	all,	the	console	was	expecting	a	semicolon,	a
line	break,	or	other	things,	but	not	a	keyword.

	

Wait.	That	is	confusing,	right?	How	come	the	earlier	examples	did	not	require	you	to	use
semicolons,	yet	they	worked	anyway?	Here	is	the	answer:

	

Unlike	most	programming	languages,	JavaScript	is	not	strict	when	it	comes	to	statement
separators.	Just	adding	a	linebreak	alone	is	enough	for	the	parser	to	understand	that	your
statement	is	finished,	and	you	are	ready	to	add	another	statement	after	it.

	

Also,	when	you	run	a	JavaScript	code	without	semicolons,	the	browser	will	automatically
generate	them	for	you.	Despite	being	okay	with	the	absence	of	semicolons,	they	are	still
needed	to	produce	readable	and	clean	code.

	

Even	 if	 your	 code	 will	 run	 without	 semicolons,	 it	 is	 advisable	 that	 you	 use	 them.	 It
enforces	clean	and	readable	codes.	Also,	omitting	these	statement	separators	may	lead	to
unexpected	issues.

	

In	the	future	releases	of	JavaScript/ECMAScript,	it	is	possible	that	JavaScript	will	become
strict	with	separators.

	

Case	Sensitivity
	

Another	thing	that	you	must	remember	is	that	JavaScript	is	a	case	sensitive	programming
language.	Aside	from	being	case	sensitive	when	it	comes	to	identifiers,	JavaScript	is	also
case	sensitive	to	other	parts	of	your	script	as	well,	especially	in	keywords.	For	example,
the	keyword	var	is	different	from	VAR.

	

>	var	x;

<	undefined

>	VAR	x;

� � 	Uncaught	SyntaxError:	unexpected	identifier	(…)													

	

In	here,	since	VAR	is	not	the	var	keyword,	the	browser	thought	that	VAR	was	an	identifier
for	a	variable	or	function.	And	unfortunately,	unlike	the	keyword	var,	the	identifier	VAR
does	not	exist	since	you	did	not	declare	or	assign	any	value	to	it.	Due	to	that,	the	console
did	not	expect	the	identifier	VAR	in	the	code.

	

Keywords
	

The	 term	 keyword	 has	 been	 mentioned	 time	 and	 time	 again	 in	 the	 previous	 section.
Keywords	are	reserved	words	or	 identifier	 in	a	program.	They	can	be	either	pre-existing
variables,	methods,	functions,	or	objects	in	the	program.

	

The	keyword	var	is	a	perfect	example.	The	keyword	var	is	a	built-in	function	or	command
in	 JavaScript	 to	 allow	 you	 to	 declare	 and	 create	 variables.	 Just	 like	 any	 keywords	 or
reserve	words,	you	cannot	use	them	as	identifiers.	For	example:

	

>	var	var;

� � 	Uncaught	SyntaxError:	unexpected	token	var	(…)													

>	_

	

When	using	the	keyword	var,	the	parser	will	expect	that	the	next	word	or	entity	after	the
keyword	will	be	an	identifier.	Since	var	is	a	keyword	and	not	an	available	identifier,	 the
console	returned	an	error.

	

Of	course,	the	same	thing	will	happen	if	you	do	this:

	

>	var	=	2;

� � 	Uncaught	SyntaxError:	unexpected	token	=	(…)													

	

Just	like	before,	the	console	did	not	expect	the	assignment	operator	to	be	there.	Hence	the
syntax	error	appeared.

Comments
	

Before	 you	 proceed	 on	 placing	 your	 script	 on	 your	 webpage,	 you	 must	 know	 about
JavaScript	 comments	 or	 commenting.	 You	 might	 be	 already	 familiar	 with	 comments,
thanks	to	your	HTML	background.

	

JavaScript	 comments	 work	 like	 the	 usual	 HTML	 comments.	 However,	 there	 are	 some
differences.

	

The	main	difference	is	that	the	syntax	in	creating	comments	in	JavaScript	starts	with	two
forward	slashes	(//)	or	a	forward	slash	and	an	asterisk	(/*)	and	ends	with	an	asterisk	and	a
forward	slash	(*/).

	

For	those	who	are	unfamiliar	with	comments,	comments	are	lines	of	codes	that	are	ignored
by	 the	 parser	 or	 the	 browser.	Any	 lines	 of	 codes	 or	 comments	 that	 are	 included	 in	 the
comment	will	not	be	processed	and	the	error	on	those	lines	will	not	be	brought	up.

	

For	example:

>	//	Test

<	undefined

>	_

	

In	the	browser’s	developer	console,	you	might	notice	that	it	replies	an	undefined.	Do	not
worry;	it	is	still	unprocessed.	Here	is	another	example:

	

	

>	//	var	testVariable	=	2;

<	undefined

>	testVariable

� � 	Uncaught	ReferenceError:	testVariable	is	not	defined	(…)

	

Despite	responding	to	the	comment	line,	the	code	inside	the	comment	was	not	processed.
Hence,	the	browser	returned	an	error	when	the	code	tried	to	call	or	reference	testVariable.
On	the	other	hand,	even	if	you	fill	the	comment	with	erroneous	code	or	anything,	no	error
will	be	returned.

	

Function	of	Comments	in	Scripting	or	Programming
	

Comments	serve	an	essential	 function	 in	script	or	program	development.	Primarily,	 they
are	 used	 for	 documentation.	 In	 case	 you	 are	 going	 to	 share	 your	 script	 to	 other	 people,
providing	 them	with	 inline	 documentation	 of	 what	 your	 script	 does,	 description	 of	 the
author,	and	licensing	information	will	be	beneficial	to	you	and	them.

	

Here	is	an	example	comment	block	in	a	popular	JavaScript	library,	jQuery:

/*!

*	jQuery	JavaScript	Library	v1.11.3

*	http://jquery.com/

*

*	Includes	Sizzle.js

*	http://sizzlejs.com/

*

*	Copyright	2005,	2014	jQuery	Foundation,	Inc.	and	other	contributors

*	Released	under	the	MIT	license

*	http://jquery.org/license

*

*	Date:	2015-04-28T16:19Z

*/

	

Aside	 from	 providing	 documentation	 and	 meta	 information,	 comments	 can	 be	 used	 to
disable	 statements	 temporarily.	 Instead	 of	 deleting	 a	 statement,	 you	 can	 just	 place	 two
forward	slashes	to	disable	it.

	

It	is	advantageous	because	it	allows	you	to	“undo”	changes	that	you	make	in	the	future	in
your	code.	Also,	 it	can	be	useful	 in	debugging	and	finding	erroneous	statements	 in	your
script.

	

In	addition,	comments	can	be	used	as	bookmarks	within	your	code.	With	the	help	of	the
search	function,	you	can	just	move	around	your	code	and	find	the	sections	that	you	want
to	view.	For	example:

	

<script>

…	multiple	lines	of	code	…

//	codeForTextCheck

…	insert	code	here	…

</script>

	

By	using	the	search	function	in	your	editor,	you	can	instantly	go	to	the	codeForTextCheck
section.	This	is	beneficial	for	people	who	have	thousand	lines	of	codes	in	their	scripts.

Comments	 can	 be	 also	 used	 to	 noting	 information	 and	 putting	 reminders.	 If	 multiple
people	are	editing	the	script,	you	will	have	an	easier	time	if	you	use	comments	to	give	out
reminders	with	the	code	you	create.

	

Two	types	of	comments
	

There	are	 two	 types	of	comments	 in	JavaScript.	The	 first	 type	 is	 single	 line;	 the	second
type	is	multi-line.

	

Single	line	comments	use	the	two	forward	slashes.	They	can	be	placed	almost	anywhere	in
your	 script.	 The	 browser	 will	 ignore	 any	 text	 after	 the	 two	 slashes	 and	 will	 resume
execution	on	the	next	line.

	

On	 the	 other	 hand,	 multi-line	 comments	 use	 forward	 slashes	 and	 asterisks.	 To	 start	 a
multi-line	comment,	put	a	forward	slash	and	an	asterisk	(/*).	All	 text	after	 the	slash	and
asterisk	will	be	regarded	as	comments	even	if	they	are	separated	with	a	line	break.	To	end
the	multi-line	comment,	an	asterisk	and	slash	must	be	placed	(*/).

	

	

Chapter	4:	Operators
	

When	you	hear	of	 the	word	operators,	 it	 is	highly	possible	 that	 the	 first	 things	you	will
think	of	are	the	mathematical	operators	addition	(+),	subtraction	(-),	multiplication	(*),	and
division	(/).	Programming	and	JavaScript	scripting	also	use	these	operators.

	

The	 biggest	 difference	 when	 it	 comes	 to	 programming	 operators	 and	 mathematical
operators	 is	 that	 the	 former	 has	 a	 lot	 of	 different	 types.	 Most	 of	 the	 operators	 in
Mathematics	are	in	programming.	Technically	speaking,	math	operators	are	only	a	subset
of	programming	operators.

	

So,	what	are	the	functions	of	operators	in	programming?	Primarily,	their	main	function	is
to	 manipulate	 data.	 In	 programs	 or	 scripts,	 processing	 data	 using	 these	 operators	 are
always	 present.	Operators	 are	 always	 in	 programs	whether	 they	were	 used	 explicitly	 or
implicitly.

	

Common	Types	of	Operators
	

Programming	languages	have	a	diverse	set	of	operators.

Arithmetic
	

The	usual	mathematical	operators	are	categorized	here.	And	they	are:

	

Addition + >	var	x	=	1	+	1

<	undefined

>	x

<	2

>	_

Subtraction - >	var	x	=	1	–	1

<	undefined

>	x

<	0

>	_

Multiplication * >	var	x	=	2	*	3

<	undefined

>	x

<	6

>	_

Division / >	var	x	=	8	/	2

<	undefined

>	x

<	4

>	_

Modulus % >	var	x	=	12	%	5

<	undefined

>	x

<	2

>	_

Increment ++ >	var	x	=	1

<	undefined

>	x

<	1

>	x++

<	2

>	_

Decrement — >	var	x	=	1

<	undefined

>	x

<	1

>	x—

<	0

>	_

	

You	can	do	other	mathematical	operations	 in	JavaScript.	However,	you	will	need	 to	use
the	Math	 object	 and	 its	methods,	 where	 the	 other	math	 operators	 are	 included	 and	 are
available	(sin,	round,	random,	pow,	etcetera).	You	will	learn	more	about	the	Math	object
later.

	

	

Assignment
	

Assignment	operators	are	there	for	you	to	assign	values	to	variables	and	other	elements	in
your	program.	The	most	used	assignment	operator	is	the	“=”	operator.	With	it	alone,	you
can	create	a	program.

	

However,	 there	 are	 other	 assignment	 operators	 that	 you	 can	 use	 to	 make	 your	 script
efficient	and	your	life	easier.

	

Add	and	Assign += >	var	x	=	1

<	undefined

>	x

<	1

>	x	+=	1

<	2

>	_

Subtract	and	Assign -= >	var	x	=	1

<	undefined

>	x

<	1

>	x	-=	1

<	0

>	_

Multiply	and	Assign *= >	var	x	=	2

<	undefined

>	x

<	2

>	x	*=	3

<	6

>	_

Divide	and	Assign /= >	var	x	=	8

<	undefined

>	x

<	8

>	x	/=	4

<	2

>	_

Modulus	and	Assign %= >	var	x	=	12

<	undefined

>	x

<	12

>	x	%=	1

<	2

>	_

Technically,	 they	are	combinations	of	arithmetic	and	the	assignment	operator.	When	you
use	them,	what	happen	is	that	the	variable	on	the	left	side	is	treated	to	be	present	on	the
right	side	of	the	operator.	For	example:

	

>	var	x	=	2

<	undefined

>	x

<	2

>	x	+=	3

<	5

>	_

	

In	the	example,	x+=	3	is	being	treated	like	x	=	x	+	3.	At	the	beginning,	you	will	not	be
using	 too	 much	 of	 these	 operators.	 However,	 in	 big	 projects,	 they	 can	 become	 handy.
These	operators	 can	 shorten	 the	 time	you	need	 to	 type,	 and	 improves	 the	 readability	 of
your	code.

	

On	a	different	note,	there	are	other	combinations	of	these	operators.	Technically,	almost	all
other	operators	can	be	shorthanded	this	way.

	

String	Concatenation	Operators
	

You	 can	 also	 use	 some	 operators	 in	 strings.	 There	 are	 two	 primary	 string	 operators	 in
JavaScript.	Concatenate	and	concatenate	and	assign.	Here	are	some	examples	on	how	to
use	them:

	

>	var	stringX	=	“This	is	a	string”;

<	undefined

>	var	stringY	=	“,	and	you	can	add	or	concatenate	them	using	the	+	operator.”

<	undefined

>	var	stringZ	=	stringX	+	stringY

<	undefined

>	stringZ

<	“This	is	a	string,	and	you	can	add	or	concatenate	them	using	the	+	operator.”

>	_

You	can	also	do	the	example	using	the	concatenate	and	assign.	For	example:

>	var	stringX	=	“This	is	a	string”;

<	undefined

>	var	stringY	=	“,	and	you	can	add	or	concatenate	them	using	the	+	operator.”

<	undefined

>	stringX	+=	stringY

<	“This	is	a	string,	and	you	can	add	or	concatenate	them	using	the	+	operator.”

>	_

	

Of	course,	the	usage	of	the	“+”	symbol	might	result	to	a	confusion	and	curiosity.	Can	you
add	numbers	and	strings?	Well,	in	a	way,	you	can.	However,	when	you	do,	the	result	will
be	a	string,	and	the	number	will	be	only	concatenated.	For	example:

	

>	var	stringExample	=	“This	is	a	string.”

<	undefined

>	var	x	=	2

<	undefined

>	var	y

<undefined

>	y	=	stringExample	+	x

<	“This	is	a	string.2”

>	_

	

Logical	and	Comparison	Operators
	

In	 later	 lessons,	 you	 will	 deal	 with	 conditional	 statements.	 And	 when	 conditional
statements	are	involved,	you	will	need	to	use	logical	and	comparison	operators.	If	you	had
a	logic	class,	then	you	will	be	familiar	with	them.

	

Logical	and	comparison	operators	deal	only	with	 two	possible	 results:	 true	and	false.	 In
different	 terms,	 using	 these	 two	 types	 of	 operators	 will	 let	 you	 perform	 Boolean
operations.	For	you	to	easily	understand	what	this	is	all	about,	in	case	you	are	confused,
then	proceed	on	checking	the	table	below.

	

Greater	Than > >	1	>	2

<	false

>	2	>	1

<	true

>	_

Less	Than < >	1	<	2

<	true

>	2	<	1

<	false

>	_

Equal	To == >	1	==	2

<	false

>	1	==	1

<	true

>	_

Not	Equal	To != >	1	!=	2

<	true

>	1	!=	1

<	false

>	_

Greater	Than	or	Equal	To >= >	1	>=	2

<	false

>	2	>=	1

<	true

>	2	>=	2

<	true

>	_

Less	Than	or	Equal	To <= >	1	<=	2

<	true

>	2	<=	1

<	false

>	2	<=	2

<	true

>	_

Equal	Value	and	Type === >	1	===	1

<	true

>	1	===	“1”

<	false

>	_

Not	Equal	Value	and	Type !== >	1	!==	1

<	false

>	1	!==	“1”

<	true

>	_

	

	

	

	

	

	

Chapter	5:	Data	Type
	

In	 programming,	 manipulation	 of	 data	 is	 imminent.	 What	 is	 data	 anyway?	 Data	 is
information.	It	can	be	in	form	of	numbers	or	text.	Aside	from	text	and	numbers,	JavaScript
can	also	process	other	forms	of	data	types	such	as	arrays	and	objects.

	

Why	is	there	a	classification	of	data?	It	is	to	make	the	language	and	functions	as	clear	and
clean	as	possible.	Also,	it	compartmentalizes	the	usage	of	operators.	For	example,	there	is
no	way	you	can	multiple	texts:

	

>	“addend1”	*	“addend2”

<	NaN

>	_

	

You	get	 a	NaN	 result.	NaN	stands	 for	Not	 a	Number.	 In	other	programming	 languages,
you	will	 receive	 an	 error	 instead.	On	 the	other	hand,	 doing	operations	on	different	 data
types	can	be	tricky.	For	example:

	

>	“big	number”	–	888

<	NaN

>	_

Here	is	another	example:

>	“one”	+	1

<	“one1”

>	_

Not	knowing	the	data	types	that	you	are	handling	can	make	your	program	perform	outside
your	 expectations.	 However,	 unlike	 other	 programming	 languages,	 JavaScript	 is	 more
forgiving.

	

Dynamic	Data	Typing
	

JavaScript	Is	a	Strong	Typing	Language.	It	is	also	considered	as	a	loosely	type	language.	It
is	also	referred	to	as	duck	typing	language.

	

It	seems	that	using	var	is	a	pain,	right?	To	be	honest,	the	usage	of	var	is	convenient.	Back
then,	 you	 must	 specify	 a	 variable’s	 data	 type.	 For	 example,	 when	 creating	 an	 integer
variable	in	C,	you	will	need	to	declare	it	as:

	

int	variableExample;

	

If	you	fail	 to	provide	 the	 right	 type	or	declare	 the	variable,	you	will	encounter	errors	 in
your	program.	For	example:													

	

#include	<stdio.h>

	

int	main(void)	{

														void	dd;

dd	=	“This	is	a	string”;

printf(dd);

return	0;

}

Error:	variable	or	field	‘dd’	declared	void

	

That	 is	 an	 example	 declaration	 of	 variable	 in	 C,	 an	 old	 and	 powerful	 programming
language.	Since	variable	dd	is	a	void	data	type,	you	cannot	assign	a	different	data	type	on
it.	If	you	do	that	in	JavaScript,	there	will	be	no	problem.	For	example:

	

>	var	x	=	null

<	undefined

>	x

<	null

>	x	=	“This	is	a	string.”

<	“This	is	a	string.”

>	x

<	“This	is	a	string.”

>	_

	

In	technical	terms,	all	variables	declared	in	JavaScript	can	be	considered	variants.	Variant
is	a	data	type	that	can	accept	different	data	types.	The	type	of	the	variable	will	depend	on
the	data	it	contains	regardless	of	declarations	or	first	assigned	values.

	

However,	the	term	variant	type	is	not	totally	applicable	to	JavaScript.	The	term	is	usually
used	on	languages	such	as	Visual	Basic	and	C++.To	be	precise,	it	is	much	better	to	call	it
dynamically	typed.

	

On	 the	other	hand,	do	note	 that	 this	 is	 just	 the	 tip	of	 the	 iceberg.	Technically	 speaking,
these	variables	behave	like	objects.	And	these	data	types	can	be	correctly	called	as	object
classes.	 More	 about	 this	 will	 be	 discussed	 on	 the	 chapter	 about	 object-oriented
programming.

	

Number
	

Numbers	 are	 one	of	 the	data	 types	 in	 JavaScript.	Unlike	other	 programming	 languages,
JavaScript	only	has	two	types	of	number	literals	—	Integers	and	float.	Integers	are	whole
numbers	that	do	not	have	decimal	values.	Float	 includes	rational	and	real	numbers,	with
decimal	values.

	

Strings
	

Strings,	in	easy	to	understand	term,	are	text	data.	In	a	program	or	script,	you	need	to	use
and	edit	multiple	texts.	In	technical	terms,	strings	are	values	enclosed	in	quotation	marks.
For	example,	“dog”	and	“cat”	are	strings.	Even	if	the	quotation	marks	do	not	contain	any
character,	it	will	still	be	considered	as	a	string.

	

You	can	assign	strings	to	variables.	For	example:

	

>	var	sampleString	=	“This	is	a	sample	string.”;

<	undefined

>	alert(sampleString);

>	_

	

The	 code	 will	 make	 a	 message	 box	 containing	 the	 string,	 “This	 is	 a	 sample	 string.”,
without	the	quotation	marks	appear	on	the	web	page.

Adding	Quotation	Marks	on	Strings
	

What	will	happen	if	you	decide	to	place	quotation	marks	on	your	string?	Try	this	example:

	

>	var	sampleString	=	“Quotation	marks	look	like	these	””.”

� � 	Uncaught	SyntaxError:	Unexpected	string	(…)

>	_

	

Unfortunately,	adding	quotation	marks	within	a	string	can	be	problematic	for	you	and	the
parser.	In	the	example,	the	parser	thought	that	the	string	assignment	has	already	ended	at
the	 second	 appearance	 of	 the	 quotation	 mark.	 Here	 is	 how	 the	 parser	 perceived	 the
example.

	

var	sampleString	=	“Quotation	marks	look	like	these	“

“.”

	

The	parser	was	expecting	a	statement	separator	(;)	since	it	thought	that	the	assignment	was
already	 finished.	And	since	 the	“previously	 thought	valid	 statement”	was	 followed	by	a
quoted	dot,	the	parser	returned	a	SyntaxError	due	to	the	unexpected	appearance	of	another
string	data.

	

There	are	multiple	ways	to	work	around	this	issue.	First	of	all,	aside	from	double	quotes
(“),	strings	can	be	contained	using	single	quotes	(‘).	For	example:

	

>	var	sampleString	=	‘This	will	still	work.’;

<	undefined

>	alert(sampleString);

>	_

	

How	will	 that	help	you?	Well,	 if	you	started	a	string	data	with	a	single	quote,	 the	string
must	end	with	a	single	quote,	too.	The	same	goes	with	double	quotes.	Because	of	that,	if
you	insert	double	quotes	inside	a	string	that	started	with	a	single	quote,	the	double	quotes
will	not	terminate	or	signal	the	end	of	the	string	data.	For	example:

	

>	 var	 anotherSampleString	 =	 ‘The	 double	 quotes	 ””	 will	 not	 make	 this	 line	 return	 an

error.’;

<	undefined

>	alert(anotherSampleString);

>	_

	

If	you	tried	that	example,	you	will	notice	that,	aside	from	not	returning	an	error,	the	popup
box	 displayed	 the	 double	 quotations.	 Alternatively,	 the	 single	 quotations	 were	 not
displayed	since	they	were	used	to	contain	the	string.

	

Smart	Quotes	or	Curly	Quotes
	

Please	 take	note	 that	 smart	quotes	or	curly	quotes	are	different	 from	 the	usual	 single	or
double	quotation	marks.	In	most	word	processing	programs	like	Microsoft	Word,	regular
single	or	double	quotes	are	converted	to	smart	quotes	or	curly	quotes	automatically	—	for
aesthetic	purposes.

	

For	example,	if	you	press	‘	in	your	keyboard,	Microsoft	word	will	change	that	to	‘(or	”	if
a’	is	present	before	the	cursor).	The	same	goes	with	“,	which	will	be	changed	to	“	(or	”	if	a
“	is	present	before	the	cursor).

Unfortunately,	 the	 character	 code	 for	 these	 smart	 quotes	 is	 different	 from	 the	 character
codes	of	the	regular	single	and	double	quotes.	Because	of	that,	compilers	and	parsers	will
return	an	error	if	you	use	those	quotes	in	place	of	the	regular	quotes.

	

For	example:

	

>	var	example	=	“This	is	a	fancy	text	with	fancy	quotes.”

� � 	Uncaught	SyntaxError:	Unexpected	token	ILLEGAL	(…)

>	_

	

To	 fix	 this,	you	can	 just	disable	 the	 feature	 in	your	word	processor	or	perform	an	undo
action	 to	 revert	 the	 smart	 quote	 to	 a	 regular	 quote	 if	 you	 are	 coding	 your	 scripts	 or
programs	using	word	processors	or	copying	code	from	document	files.	Another	method	is
to	use	your	word	or	text	processors	Search	and	Replace	function.

	

Primitive	Values
	

If	 a	 certain	 data	 or	 value	 is	 typed	 as	 is,	 it	 is	 usually	 referred	 to	 a	 primitive	 value.	 It	 is
important	to	know	this	concept,	especially	with	an	object	oriented	programming	language
like	JavaScript.

	

As	for	now,	just	remember	that	almost	everything	in	JavaScript	is	considered	as	objects.	A
few	of	 the	exceptions	are	primitive	values.	Unlike	objects,	primitive	values	do	not	have
inherent	properties	and	methods	(although	strings	do	have	some).

	

Aside	from	numbers,	other	primitive	values	are	data	types	of	their	own	exist.	And	they	are
true,	false,	undefined,	and	null.	They	also	are	keywords,	which	have	special	meanings.	At
this	point,	you	must	already	have	an	idea	on	what	true	and	false	stand	for.

undefined	and	null
	

As	 for	 undefined,	 it	 is	 a	 value	 given	 to	 a	 variable	 that	 has	 been	 declared,	 but	was	 not
assigned	 a	 value	 yet.	 On	 the	 other	 hand,	 null	 is	 a	 primitive	 value	 that	 symbolizes	 the
absence	of	value.	Also,	null	 is	provided	to	objects	that	are	not	existing	in	the	document.
Both	undefined	and	null	can	be	assigned	to	variables.

	

Arrays
	

Array	 is	 a	 concept	 that	 aspiring	 programmers	with	 loose	mathematical	 foundation	may
find	difficult	 to	understand.	In	a	few	simple	words,	an	array	is	a	collection	of	values.	In
JavaScript,	an	array	is	a	variable	that	can	contain	multiple	separate	values.	For	example:

	

var	exampleArray	=	[“Google”,	“Yahoo!”,	“Bing”];

	

You	can	access	these	values	from	the	array	using	indices.	For	example:

	

var	exampleArray	=	[“Google”,	“Yahoo!”,	“Bing”];

alert(exampleArray[0]);

alert(exampleArray[1]);

alert(exampleArray[2]);

	

Array	Index
	

By	the	way,	indices	are	automatically	generated	once	you	add	values	to	the	array	that	you
created.	By	default,	indices	always	start	with	0.	Also,	the	indices	are	assigned	according	to
the	order	that	they	were	assigned.	Google	received	an	index	of	0	because	it	was	the	first
value	assigned,	and	Yahoo!	was	assigned	an	 index	of	1	because	 it	was	 the	second	value
that	was	assigned.

	

However,	you	can	opt	to	assign	a	specific	index	of	your	own	in	an	element	that	you	will
insert	in	your	array.	For	example:

	

var	exampleArray;

exampleArray[0]	=	“Google”;

exampleArray[1]	=	“Yahoo!”;

exampleArray[2]	=	“Bing”;

	

By	the	way,	assigning	and	accessing	values	in	array	can	be	done	like	this.	The	syntax	for
this	is:	array[index].	On	the	other	hand,	unlike	other	programming	languages,	JavaScript
do	not	support	using	keys	or	named	indices.

	

Array	Values	Data	Types
	

Arrays	 are	 not	 restricted	 in	 containing	 strings	 alone.	 It	 can	 also	 contain	 objects	 and
numbers.	In	addition,	you	are	allowed	to	place	any	type	of	data	within	it.	For	example:

	

var	randomArray	=	[“This	is	a	string”,	1234,	document];

Chapter	6:	Inserting	JavaScript	Code
	

Up	to	this	point,	you	are	now	familiar	with	the	basics	of	JavaScript.	Now,	you	will	need	to
learn	how	to	integrate	your	script	in	your	web	page.	Also,	starting	at	this	chapter,	you	will
need	to	use	your	text	editor.

	

The	subsequent	chapters	will	be	 teaching	you	on	how	 to	 take	advantage	of	code	blocks
such	as	functions,	conditional	statements,	and	loop	blocks.	Of	course,	you	can	still	use	the
developer	console.

	

Anyway,	proceed	into	learning	on	how	to	integrate	your	future	scripts	in	your	web	pages.

	

Where	to	Place	JavaScript
	

Primarily,	JavaScript	scripts	are	placed	inside	web	pages’	HTML	codes.	It	is	common	that
scripts	are	inserted	inside	script	tags.	There	are	other	ways	to	insert	your	JavaScript	code
within	your	page,	of	course.

	

Within	the	Page
	

In	case	your	script	is	too	short,	you	can	just	insert	it	inside	the	script	tag	in	your	document.
Usually,	 the	 script	 tag	 is	placed	 inside	 the	head	 tag.	However,	 script	 tags	 can	be	placed
inside	your	html’s	body	or	even	at	the	end	of	the	document.

	

Note:	The	location	of	the	script	in	the	page	can	change	your	script’s	behaviour.

Within	Your	Server	as	a	Separate	File
	

If	your	script	is	too	long,	you	can	place	your	script	inside	a	.js	file	within	your	server.	If
you	save	it	in	a	separate	file,	you	will	not	need	to	put	script	tags	on	it,	by	the	way.

	

To	 integrate	 that	 script	 into	your	web	page,	you	can	simply	 link	 it	 in	your	 script	 tag	by
indicating	its	location	in	the	src	attribute.	For	example:

	

<!DOCTYPE	html>

<html>

<head>

<title>	A	Sample	Web	Page	</title>

<script	src	=	“js/sampleScript.js”	>	</script>

</head>

<body>

Insert	Page	Content	Here

</body>

</html>

	

Of	course,	just	like	with	the	previous	method,	you	are	free	to	place	the	script	in	any	part	of
your	HTML	document.

	

The	main	advantages	of	using	this	method	are	that	your	web	page	document	will	not	be
too	cluttered	with	scripts	and	you	can	easily	reuse	or	reintegrate	your	script	into	multiple
pages	without	doing	some	nitty-gritty	work	of	copy	pasting	your	code	in	each	web	page
that	needs	your	script.

Also,	 you	 can	 update	 the	 script	without	worrying	 that	 you	might	mess	 up	 your	HTML
codes	in	your	pages.	And	if	ever	you	become	accustomed	in	using	server-side	scripting	to
generate	 dynamic	 content,	 putting	 your	 script	 apart	 from	 your	 content	 will	 be	 a	 huge
convenience.

	

Within	Content	Delivery	Networks	(CDNs)	as	a	Separate	File

	

If	you	are	worried	about	your	website’s	performance	and	page	 load	 issues,	 then	placing
your	 JavaScript	 files	 in	 a	 Content	 Delivery	 Network	 (also	 called	 Content	 Distribution

Network)	can	help	you	reduce	latency	in	your	website,	especially	if	you	are	receiving	a	lot
of	traffic	in	the	web.

	

Content	 Delivery	 Networks	 are	 servers	 or	 computers	 with	 a	 sole	 purpose	 of	 providing
commonly	accessed	content	and	files	for	websites.	Usually,	they	are	sub-domain	sites	that
often	have	a	domain	prefix	of	cdn.

	

Aside	from	that,	most	JavaScript	 frameworks	are	best	used	with	CDNs.	Fortunately,	big
companies	like	Google	cooperate	with	some	of	the	most	popular	frameworks	in	JavaScript
(i.e.,	jQuery).

	

Sample	Web	Page	File
	

For	now,	 forget	about	practicing	JavaScript	 codes	within	your	page.	Start	with	a	 simple
web	page	file	just	like	the	one	below.

	

	

Code	Sample:	1	(HTML	TEMPLATE)
	

	
<!DOCTYPE	html>

<html>

<head>

<title>JavaScript	Practice	File</title>

</head>

<body>

	

<h1>JavaScript	Practice	File</h1>

<p>This	is	an	example	paragraph	in	your	web	page.</p>

	

</body>

</html>

	

Copy	this	code	in	your	notepad	and	save	it	as	an	.htm	file	in	your	computer.	You	do	not
need	 to	upload	 this	web	page	 copy	yet	on	 the	 Internet.	You	can	 just	 open	 it	 on	Google
Chrome	and	your	JavaScript	codes	will	work	—	just	like	with	regular	HTML	creation.

	

By	the	way,	for	easier	navigation	and	referencing,	all	example	codes	within	this	book	will
be	accessible	through	the	table	of	contents.

Sample	JavaScript	Usage
	

You’re	going	to	start	to	learn	some	practical	use	of	JavaScript.	And	for	starters,	you	will
learn	how	to	insert	popup	boxes	in	your	webpage.	Copy	this	example:

	

Code	Sample:	2	(WINDOWS.ALERT)
<!DOCTYPE	html>

<html>

<head>

<title>JavaScript	Practice	File</title>

<script>

														window.alert(“Hello	World!”);

</script>

</head>

<body>

	

<h1>JavaScript	Practice	File</h1>

<p>This	is	an	example	paragraph	in	your	web	page.</p>

	

</body>

</html>

	

When	you	save	this	file	and	open	it	on	your	browser,	it	will	load	the	page	and	a	popup	box
that	says,	“Hello	World!”	will	appear.	This	popup	box	is	usually	called	as	message	box,
popup	box,	or	alert	window	by	web	developers.	For	clarity	in	this	book,	it	will	be	called	as
alert	window.

	

Chapter	7:	Code	Blocks,	Functions,	and	Scope
	

If	 sentences	 are	 like	 statements,	 what	 are	 paragraphs	 like?	 Yes,	 in	 programming,	 you
might	also	have	to	create	some	sort	of	paragraph.	They	are	called	code	blocks.

	

Code	blocks	are	multiple	statements	that	are	grouped	together.	They	are	not	necessarily	a
term	 most	 developers	 use,	 but	 for	 easier	 understanding	 of	 the	 next	 topics,	 groups	 of
statements	will	be	called	code	blocks.	Also,	please	do	not	confuse	this	with	the	IDE	Code
Blocks.

	

In	most	cases,	you	will	need	to	separate	certain	statements	and	group	them	according	to
the	 goal	 that	 you	want	 to	 achieve.	 In	 programming,	 it	 is	 usually	 done	 by	 creating	 code
blocks,	and	making	them	functions.

	

Functions
	

Functions	are	grouped	lines	of	codes	that	do	not	immediately	run	when	the	browser	parses
them.	Unlike	 regular	 lines	 of	 codes	 and	 conditional	 statements,	 the	 statements	within	 a
function	are	executed	when	the	function	is	invoked.

	

They	are	especially	useful	in	decluttering	your	source	code	and	making	it	more	readable.
Also,	its	primary	use	is	to	organize	your	code	and	minimize	the	lines	of	codes	you	need	to
type,	especially	if	you	need	to	execute	the	code	block	multiple	times.	After	all,	functions
can	be	invoked	as	many	times	as	you	want.

	

Here	is	an	example	of	a	JavaScript	function:

	

>	function	exampleFunction()	{

alert(“This	is	a	function.”);

}

<	undefined

>	_

	

Note:	If	you	are	going	to	type	this	on	the	Developer	Console,	you	can	press	Shift	+	Enter
to	create	a	line	break	without	submitting	or	entering	the	code	in	the	console.

	

Even	if	you	put	this	block	of	code	in	the	topmost	level	of	JavaScript	script,	it	will	not	run.
The	browser	will	just	record	its	existence,	and	it	will	be	executed	when	an	invocation	of
this	function	occur.

	

Note:	Unlike	variables,	you	cannot	change	the	code	block	or	value	within	the	function	at
runtime	 through	 your	 code	 (although	 with	 the	 use	 of	 DOM,	 it	 can	 be	 overwritten).
However,	 it	 is	possible	to	change	a	function’s	statements	through	the	Developer	Console
—	variables	included.

	

To	invoke	a	function,	you	must	call	it	by	“mentioning	its	identifier.”	For	example:

	

>	exampleFunction();

<	undefined

>	_

	

Once	invoked,	all	 the	statements	within	the	function	will	be	executed	by	the	browser.	In
the	example’s	case,	the	alert	box	will	appear.

	

Also,	 do	 note	 that	 functions	 can	 also	 invoke	 other	 functions	 within	 their	 code	 blocks.
Another	 thing	worth	mentioning	 is	 that	 a	 function	 can	 invoke	 itself;	 however,	 you	will
encounter	 a	maximum	call	 stack	 size	 error.	That	 error	 occurs	 since	 the	 browser	will	 be
infinitely	looping	again	and	again	the	invocation	process,	in	simple	terms.	For	example:

	

>	function	supahLoop()	{

supahLoop();

}

<	undefined

>	supahLoop()

� � 	Uncaught	RangeError:	Maximum	call	stack	size	exceeded	(…)

>	_

	

Note:	 When	 invoking	 a	 function,	 make	 sure	 that	 you	 include	 the	 parentheses.	 Without
them,	some	browsers	may	not	invoke	the	function.	In	Developer’s	Console,	submitting	the
function’s	name	and	not	including	the	parentheses	will	only	result	to	the	console	showing
the	contents	of	the	function.

	

Scope
	

Scope	is	the	accessibility	of	your	variables.	Depending	on	the	location	where	you	declared
them	or	how	you	use	them,	their	scopes	changes.

	

For	example,	a	variable	that	was	declared	inside	a	function	will	not	be	available	to	codes
outside	functions.	Here	is	what	this	is	all	about:

	

>	function	exampleFunction()	{

var	x	=	2;

}

<	undefined

>	exampleFunction()

<	undefined

>	alert(x)

� � 	Uncaught	ReferenceError:	x	is	not	defined	(…)

>	_

	

In	this	case,	 it	seems	that	writing	a	function,	putting	a	variable	declaration	inside	it,	and
invoking	 the	 function	will	make	 the	 variable	within	 it	 available	 outside	 the	 code	block.
However,	due	to	scoping,	it	will	not	work.

	

Variables	 declared	 inside	 a	 function	 will	 only	 be	 available	 inside	 that	 function.	 For
example:

	

>	function	exampleFunction()	{

var	x	=	2;

alert(x);

}

<	undefined

>	_

	

When	you	write	the	previous	sequence	of	statements,	 the	alert	box	will	be	executed	and
the	value	of	variable	x	will	appear	on	it.

	

What	will	happen	if	the	variable	was	declared	outside	the	function?	Can	the	function	use
it?	Here	is	an	example:

	

>	var	x	=	23

<	undefined

>	x

<	‘23’

>	function	exampleFunction()	{

alert(x);

}

<	undefined

>	exampleFunction()

<	undefined

>	_

	

Global	and	Local	Variables
	

Primarily,	there	are	two	main	scopes	in	programming.	JavaScript	also	adheres	to	that.	The
first	one	is	global;	the	second	one	is	local.

	

A	variable	has	a	global	scope	if	it	declared	on	the	topmost	level	of	your	script;	meaning,	it
was	 not	 declared	 inside	 a	 function	 or	 code	 block.	 Global	 variables	 are	 accessible
everywhere	in	the	script.

	

A	variable	that	is	declared	inside	a	function	will	be	considered	a	local	variable.	That	local
variable	will	be	only	available	on	the	function	that	declared	it.

	

However,	 not	 all	 variables	 used	 inside	 functions	 are	 considered	 local	 variables.	 If	 the
variable	 was	 not	 declared,	 but	 was	 assigned	 a	 value,	 it	 will	 have	 a	 global	 scope.
Nevertheless,	 it	 is	best	not	 to	create	global	variables	 this	way	since	 it	can	be	confusing,
especially	if	you	are	writing	the	code	together	with	another	individual.

	

On	 the	 other	 hand,	 the	 lifespan	 of	 a	 global	 variable	 ends	 when	 the	 page	 closes.	 The
lifespan	of	a	local	variable	ends	when	the	function	that	declares	it	finishes	execution.

	

There	 is	 another	way	 to	 create	 a	 global	 variable,	 and	 that	 is	 to	 use	 the	window	 object,
which	will	be	discussed	in	the	later	chapters.

	

Note:	 It	 is	preferred	by	developers	 to	use	or	create	as	 few	global	variables	as	possible.
Mainly,	 usage	 of	 too	 many	 global	 variables	 can	 affect	 the	 performance	 of	 your	 script.
Usage	of	disposable	local	variables	is	better	to	optimize	the	usage	of	memory	resource	of
your	computer.	Use	global	variables	if	there	is	only	a	need.

	

Arguments	and	Parameters
	

If	local	variables	can	only	be	accessed	by	the	function	that	declared	it,	how	can	other
functions	access	them?	Usually,	some	developers	just	take	advantage	of	creating	a	global
variable	to	fix	that	in	a	very	convenient	way.	However,	if	you	like	to	have	optimized	and
well-performing	scripts,	you	will	want	to	use	arguments	and	parameters	in	your	function.

	

Parameters	are	local	variables	in	a	script	that	can	receive	arguments	or	values	when
invoked.	For	example:

	

>	function	simpleMultiplication(multiplier1,	multiplier2)	{

var	product	=	multiplier1	*	multiplier2;

alert(product);

}

<	undefined

>	simpleMultiplication(25,	5);

<	undefined

>	_

	

In	this	example,	two	parameters	were	created.	Those	are	multiplier1	and	multiplier2.
Parameters	are	like	local	variables.	The	differences	between	them	are	parameters	are
declared	together	with	the	function’s	identifier	and	they	can	receive	arguments	or	values
when	the	function	is	invoked.

	

In	the	example,	the	function	simpleMultiplication	was	invoked	and	the	invocation
provided	two	arguments,	25	and	5.	So,	how	can	parameters	and	arguments	solve	the
problem	with	scopes?	Check	this	example:

	

>	function	simpleMultiplication(multiplier1,	multiplier2)	{

var	product	=	multiplier1	*	multiplier2;

showProduct(product);

}

<	undefined

>	function	showProduct(number)	{

alert(number);

}

<	undefined

>	simpleMultiplication(25,	5);

<	undefined

>	_

	

When	 this	 example	 is	 executed,	 the	 variable	 product	 will	 be	 provided	 to	 the
showProduct()	function,	which	effectively	passes	the	value	of	a	local	variable	to	another
function.

	

Some	 new	 developers	 who	 are	 not	 familiar	 with	 arguments	 and	 parameters	 do	 this	 by
using	global	variables.	For	example:

	

>	var	product

<	undefined

>	var	multiplier1

<	undefined

>	var	multiplier2

<	undefined

>	function	simpleMultiplication()	{

product	=	multiplier1	*	multiplier2;

showProduct();

}

<	undefined

>	function	showProduct()	{

alert(product);

}

<	undefined

>	multiplier1	=	25

<	25

>	multiplier2	=	5

<	5

>	simpleMultiplication();

<	undefined

>	_

	

With	a	quick	glance,	you	can	easily	tell	that	using	parameters	and	arguments	over	global
variables	is	a	much	better,	cleaner,	and	simpler	way	to	allow	functions	to	“communicate”
and	pass	through	values.

	

Function	return
What	would	you	do	if	you	want	the	function	to	pass	on	a	value?	In	the	previous	example,
what	would	be	a	better	way	to	shorten	the	code?	The	answer	to	those	questions	is	the	use
of	the	return	keyword	and	statement.

To	 make	 it	 simpler	 to	 pass	 on	 local	 variables,	 you	 can	 also	 take	 advantage	 of	 return
statements.	Return	statements	are	there	to	let	a	statement	that	invokes	a	function	to	receive
a	value	in	“return”.	For	example:

	

>	function	simpleMultiplication(multiplier1,	multiplier2)	{

return	multiplier1	*	multiplier2;

}

<	undefined

>	simpleMultiplication(25,	5);

<	125

>	alert(simpleMultiplication(25,	5));

<	undefined

>	_

	

As	you	might	 have	noticed	 in	 the	 console,	when	you	 invoke	 the	 function	 this	 time,	 the
console	provides	the	answer	for	the	function	instead	of	the	usual	undefined.	Receiving	the
answer	 (or	 the	 statement	 or	 the	 value	 of	 the	 expression	 that	 is	 indicated	 in	 the	 return
statement)	means	that	the	function	returns	a	value.

	

By	 the	 way,	 alert	 is	 also	 considered	 a	 function,	 a	 built-in	 function	 in	 JavaScript	 to	 be
precise.	However,	unlike	the	new	version	of	the	simpleMultiplication	example	function,	it
does	not	return	a	value.

	

Anyway,	when	the	alert	function	is	called,	it	will	provide	a	message	box	that	contains	the
answer	or	the	return	value	of	the	function.	Simple,	right?

Recap
	

In	JavaScript,	you	can	group	statements	into	code	blocks	by	placing	them	inside	curly
braces.	Most	developers	do	not	do	this	since	they	usually	take	advantage	of	comments
instead	to	organize	their	code	blocks.

	

On	the	other	hand,	providing	your	code	blocks	with	identifiers	together	with	the	function
keyword	makes	them	functions.	The	main	difference	between	functions	and	code	blocks	is
that	functions	will	not	be	executed	as	long	as	they	are	not	called	or	invoked.

	

When	it	comes	to	scope,	there	are	two	variable	scopes	in	JavaScript:	global	and	local.
Declare	a	variable	outside	of	functions,	and	they	will	have	global	scope.	Declare	variables
in	functions,	and	they	will	have	local	scope.

	

Passing	through	variable	values	in	and	out	of	functions	can	be	eased	by	using	parameters,
arguments,	and	return	statements.	Do	remember	that	it	is	highly	discouraged	to	use	global
variables,	especially	if	your	script	is	large	due	to	performance	issues.

Chapter	8:	Conditionals
	

To	make	your	program	think	or	grant	 it	with	dynamisms,	you	need	to	take	advantage	of
conditional	operations.	For	example,	if	you	want	to	make	your	script	do	something	else	if
a	certain	variable	obtain	a	specific	value,	then	a	conditional	statement	is	in	order.

	

Conditional	Statement	If
	

The	most	basic	conditional	statement	in	JavaScript,	and	almost	every	other	programming
languages	out	there,	is	the	if	conditional	statement.	The	if	conditional	statement	works	in	a
simple	 manner.	 You	 indicate	 a	 condition.	 When	 that	 condition	 is	 met,	 the	 code	 block
within	the	conditional	statement	if	will	be	executed.	For	example:

	

var	x	=	2;

x	=	x	+	3;

if(x	==	5)	{

alert(“Adding	x,	which	has	the	value	of	2,	with	3	equates	to	5.”);

}

	

In	the	example,	variable	x	was	been	assigned	a	value	of	2.	After	that,	3	was	added	to	it.
The	next	statement	was	a	conditional	if	statement.	In	the	statement,	x	==	5	is	a	condition.
In	human	language,	it	means	that	x	is	equal	to	5.	Below	the	if	statement,	an	alert	statement
is	placed.

	

If	you	read	the	whole	conditional	if	statement,	it	will	be,	“if	variable	x	is	equal	to	5,	then
execute	alert(“Adding	x,	which	has	the	value	of	2,	with	3	equates	to	5.”)”.	Since	x	is	equal
to	5,	then	the	alert	box	will	appear.

By	 the	 way,	 do	 note	 that	 the	 assignment	 operator	 (=)	 is	 different	 from	 the	 ‘equal	 to’
operator	(==).	The	former	is	for	assigning	values	while	the	latter	is	for	comparing	values.

	

So,	what	will	happen	if	the	condition	in	the	conditional	statement	is	not	met?	For	example:

	

var	x	=	2;

x	=	x	+	3;

if(x	==	6)	{

alert(“Adding	x,	which	has	the	value	of	2,	with	3	equates	to	5.”);

}

alert(“It	will	not	work.”);

	

When	you	run	that	script,	 the	alert	statement	will	not	be	executed.	Everything	inside	the
curly	braces	of	 the	 if	conditional	statement	will	be	 ignored,	and	 the	next	statement	after

the	if	block	will	be	executed	instead.	In	this	case,	the	alert(“It	will	not	work.”)	statement
will	be	the	only	thing	that	will	be	executed.

	

What	 if	 you	 want	 to	 add	 a	 different	 code	 block	 to	 execute	 in	 case	 the	 previous	 if
conditional	statement	did	not	trigger?	You	have	two	ways	to	do	that.	The	first	one	is	to	use
another	if	statement.	For	example:

	

var	x	=	2;

x	=	x	+	3;

if(x	==	6)	{

alert(“Adding	x,	which	has	the	value	of	2,	with	3	does	not	equate	to	6.”);

}

if(x	==	5)	{

alert(“Adding	x,	which	has	the	value	of	2,	with	3	equates	to	5.”);

}

	

The	next	way	will	be	discussed	in	the	next	section.

	

If	Else	Statement
	

Another	efficient	way	to	let	your	script	do	something	if	the	previous	if	statement	did	not
trigger	is	to	use	the	else	conditional	statement.	An	else	conditional	statement	is	similar	to
if.	The	main	difference	is	that	the	condition	of	the	else	statement	depends	on	the	previous
condition	of	the	if	statement	that	is	written	before	it.	For	example:

	

var	iLoveYou	=	0;

if(iLoveYou	==	0)	{

alert(“Fat	chance.	I	do	not	love	you,	too.”);

}

else	{

alert(“Gosh,	I	did	not	know	that	you	love	me.”);

}

	

In	 this	 case,	 in	 case	 that	 the	 value	 of	 the	 variable	 iLoveYou	 is	 set	 to	 0,	 the	 statements
inside	if	will	be	triggered,	and	the	else	statement	will	be	ignored.	In	case	that	the	variable
takes	in	a	number	other	than	0,	the	statements	within	the	if	conditional	statement	will	be
bypassed,	and	the	statements	within	the	else	conditional	statement	will	be	executed.

	

To	make	it	easier	for	you	to	understand	the	else	keyword	works,	then	check	this	alternative
version	of	the	code	using	if	statements	instead.

	

var	iLoveYou	=	0;

if(iLoveYou	==	0)	{

alert(“Fat	chance.	I	do	not	love	you,	too.”);

}

if	(iLoveYou	!=	0)	{

alert(“Gosh,	I	did	not	know	that	you	love	me.”);

}

	

In	 this	 version,	 the	 else	 statement	 is	 equivalent	 to	 the	 reverse	 of	 the	 condition	 in	 the
previous	 if.	 In	 the	 first	 if	 statement,	 the	 condition	 read	 as,	 “If	 the	 variable	 iLoveYou	 is
equals	to	0,	the	say	Fat	Chance.”.	In	the	second	if	statement,	the	condition	reads	as,	“If	the
variable	iLoveYou	is	not	equal	to	0,	then	say	Gosh.”	In	other	words,	the	else	and	second	if

statements	means	that,	“run	the	statements	if	the	value	of	variable	iLoveYou	is	other	than
the	numerical	integer	0.”

	

Why	use	else?	You	must	use	it	because	it	is	easier,	and	you	do	not	need	to	think	of	other
conditions.	The	computer	will	immediately	assume	that	you	want	to	do	something	in	case
that	 the	previous	statement	 is	not	satisfied.	Instead	of	 thinking	of	 the	obverse	version	of
the	previous	if	statement’s	condition,	the	computer	will	provide	it	instead.

Else	If	Statement
	

To	get	more	control	of	the	conditions	you	created,	you	can	use	else	if	statements.	Else	if
statements	 are	 else	 statements	 combined	 with	 another	 condition.	 You	 can	 use	 it	 in
conjunction	with	other	ifs	and	else	statements.	For	example:

	

var	emailDomain	=	“HotMail”;

if(emailDomain	==	“GMail”)	{

alert(“You	are	using	a	Google	account.”);

}

else	if(emailDomain	==	“YMail”)	{

alert(“You	are	using	a	Yahoo!	account.”);

}

else	if(emailDomain	==	“HotMail”)	{

alert(“You	are	using	a	HotMail	account.”);

}

else	{

alert(“I	don’t	know	your	email	provider.”);

}

	

Switch	Conditional	Statement
	

In	case	you	will	be	dealing	with	multiple	possible	values,	using	if,	else,	and	else	if	can	be
a	bit	messy.	Fortunately,	you	can	use	switch	statements	instead	if	you	will	only	base	your
conditions	in	one	variable	or	expression,	and	you	will	need	to	provide	statements	for	each
possible	value.	For	example:

var	emailDomain	=	“HotMail”;

switch(emailDomain)	{

case	“GMail”:

														alert(“You	are	using	a	Google	account.”);

break;

case	“YMail”:

														alert(“You	are	using	a	Yahoo!	account.”);

case	“HotMail”:

														alert(“You	are	using	a	Hot	Mail	account.”);

default:

														alert(“I	don’t	know	your	email	provider.”);

}

	

Case	Keyword
	

The	 case	 keyword	 is	 used	 to	 denote	 that	 value	 that	 you	 want	 to	 compare	 with	 the
expression	 or	 variable	 that	 you	 placed	 on	 the	 switch	 statement.	 In	 case	 that	 the	 value
together	with	the	case	statement	is	equal	to	the	value	in	the	switch	statement,	then	the	code
block	in	it	will	be	executed.

	

Break	Keyword
	

The	 break	 keyword	 is	 used	 to	 prevent	 the	 browser	 to	 execute	 the	 next	 statements,	 and
escape	 the	 switch	 statements.	 If	 not	 placed,	 the	 browser	will	 execute	 all	 the	 statements
within	the	switch	statements	until	it	sees	a	break	keyword	or	the	end	of	the	switch	block.

Default	Keyword
	

The	default	keyword	is	the	“else”	statement	of	a	switch	statement.	In	case	no	case	values
are	found	to	satisfy	the	value	in	the	switch	condition,	then	the	code	in	the	default	keyword
will	be	executed	instead.

Chapter	9:	Loops
	

Aside	 from	 allowing	 your	 script	 to	 have	 statements	 to	 be	 executed	 depending	 on	 the
condition	of	the	script,	you	can	also	insert	loops	in	JavaScript.	Loops	are	code	blocks	that
allow	the	browser	to	repeatedly	execute	statements.	You	can	specify	how	many	times	the
loop	will	 reexecute	 the	statements.	Or	you	can	just	 indicate	a	condition	that	will	 tell	 the
loop	when	to	stop	looping.

	

For	Loop
	

The	for	loop	is	the	most	basic	and	common	loop	that	you	can	use	in	JavaScript.	With	the
for	loop,	you	can	easily	create	a	loop	block	that	will	repeat	according	to	the	number	that
you	will	indicate.	For	example:

	

for	(i	=	1;	i	<	100;	i++)	{

alert(“This	message	will	popup	for	100	times.”)

}

	

The	for	loop	condition	has	three	parts.	The	first	is	the	declaration	of	variables	that	you	will
need	 in	 the	 loop	 condition	 or	 the	 code	 block.	 It	will	 be	 executed	 once	 before	 the	 loop
begins.	In	this	case,	the	variable	declared	is	i.	And	it	was	assigned	a	value	of	1.

	

The	next	part	of	the	condition	is	the	condition	itself.	As	long	as	the	condition	returns	True,
the	loop	will	continue	working.	When	the	condition	returns	False,	that	is	the	time	the	for
loop	will	stop.	The	condition	will	be	checked	before	a	loop	is	executed.

	

In	this	case,	the	condition	is	i	<	10.	As	long	as	the	variable	i’s	value	stays	less	than	10,	the
loop	will	continue.	On	the	other	hand,	once	it	becomes	equal	to	10	or	greater	than	10,	then
the	loop	will	stop.

	

The	last	part	is	the	step.	This	statement	will	be	executed	after	every	loop.	In	the	example,
the	step	part	is	i++.	The	statement	is	i	incremented	using	the	increment	operator.	In	every
loop,	1	 is	added	 to	 the	value	of	 i.	Because	of	 that,	 the	value	of	variable	 i	 is	changed	 in
every	loop.

	

Eternal	Loops
	

Eternal	loop	is	a	condition	wherein	your	loop	will	just	keep	on	looping	until	the	page,	your
browser,	 or	 your	 computer	 is	 closed	or	 crashed.	 In	most	 cases,	 eternal	 loops	happen	by
accident	 and	 carelessness.	 Unless	 intended,	 eternal	 loops	 can	 be	 bad	 since	 it	 can	 slow
down	your	page,	browser,	or	computer.	Depending	on	 the	number	and	complexty	of	 the
statements	within	a	loop,	your	computer	may	crash	or	experience	a	massive	slowdown	due
to	wasted	computer	resources	(RAM	and	CPU)	by	the	eternal	loop.

	

Eternal	 loop	happens	 if	you	fail	 to	 insert	a	condition	 that	will	make	your	 loop	stop.	For
example:

	

for(i	=	1;i	>	0;	i++)	{

i++;

}

	

This	 example	 will	 loop	 forever	 because	 the	 condition	 placed	 on	 the	 for	 statement	 will
never	return	false.	As	the	example	code	goes,	the	variable	I	will	never	have	a	value	equal
to	0	or	less	than	0.	Although,	if	this	example	was	executed	in	a	modern	day	computer,	the
impact	would	be	not	enough	to	crash	a	computer	or	browser.	Nevertheless,	slow	down	can
be	experienced.

	

Of	 course,	 the	 best	way	 to	 fix	 this	 eternal	 loop	 is	 to	 fix	 the	 condition	 that	was	 placed.
Another	method	is	to	place	a	conditional	statement	together	with	the	break	keyword.	For
example:

	

for(i	=	1;i	>	0;	i++)	{

if(i	==	100)	{break;}

}

	

While	Loop
	

Another	 loop	that	you	can	use	in	JavaScript	 is	 the	while	 loop.	The	while	 loop	is	 like	an
advanced	version	of	the	for	loop	that	encourages	users	to	customize	their	loop.	Unlike	for
loop,	the	while	loop	only	requires	a	condition	to	run.	For	example:

	

var	i	=	1;

while(i	<	100)	{

alert(“This	message	will	popup	for	10	times.”);

i++

}

	

This	 is	 the	while	 loop	version	of	 the	first	for	 loop	example	provided	earlier.	As	you	can
see,	the	declaration	statement	for	variable	i	was	placed	outside	the	loop	itself	and	the	step
increment	is	placed	within	the	loop.

Of	 course,	 for	 new	 programmers,	 using	 the	 while	 loop	 will	 expose	 them	 to	 higher
probability	of	creating	eternal	loops.

	

Do	While	Loop
	

The	good	thing	with	while	loop	is	its	versatility.	And	to	let	you	have	full	control	on	how
your	 loop	behaves,	you	can	use	 the	do	keyword	 together	with	while.	To	use	a	do	while
loop,	check	out	this	example:

	

do	{

alert(“This	message	will	popup	for	10	times.”);

i++;

}

while(i	<	100);

	

The	 main	 difference	 of	 the	 do	 while	 loop	 in	 all	 the	 previous	 loop	 variants	 is	 that	 the
condition	will	 be	 only	 processed	 once	 a	 loop	 is	 finished.	Meaning,	 it	 will	 be	 executed
regardless	of	the	condition.	It	will	only	check	the	condition	after	the	first	loop,	and	if	the
condition	 returns	True,	 the	 loop	will	be	activated	once	more.	 IT	will	only	 stop	until	 the
while	condition	returns	False.

	

Chapter	10:	Events
	

The	 things	 that	 drive	 responsive	 webpages	 are	 user	 interactions	 with	 the	 website.
Whenever	 a	 user	 clicks	 on	 the	 button,	 something	 happens.	Whenever	 a	 user	 scrolls	 the
page,	something	happens.	Those	things	happen	due	to	the	JavaScript.

	

But	how	can	you	make	 those	scripts	work	when	 the	user	does	something	 to	your	page?
Well,	you	need	to	indicate	them	in	your	script.	And	capture	those	events.

	

In	 this	 section,	 you	will	 be	 taught	 of	 how	 you	 can	 take	 advantage	 of	 functions,	 simple
JavaScript	code	snippets,	and	incorporating	them	on	HTML	events.	For	example:

	

<button	onClick	=	“alert(‘This	is	a	popup	box.’)”	>Click	me	please!</button>

	

Try	inserting	that	on	your	sample	web	page.	Load	your	sample	web	page,	and	then	click
the	button	element	that	you	inserted.	Of	course,	as	the	sample	code	implies,	the	page	will
launch	a	popup	box	containing	the	message,	“This	is	a	popup	box.”

	

In	layman’s	terms,	that	HTML	line	makes	your	browser	put	a	button	element	that	executes
a	simple	alert	code	whenever	you	click	on	it	or	fire	the	onClick	event.	onClick	is	just	one
of	many	events	that	you	can	use	and	integrate	on	your	HTML	elements.

	

By	 indicating	 these	 events	 in	 the	 elements,	 you	 will	 be	 able	 to	 make	 your	 pages	 and
elements	“respond”	to	almost	all	actions	that	your	users	will	do.	A	few	of	events	that	you
can	capture	are	onLoad,	onChange,	and	onMouseOver.

	

Syntax	and	Case
	

Take	note:	since	these	events	must	be	coded	on	your	page’s	body,	case	sensitivity	does	not
apply	to	the	events.	For	example:

	

<button	ONCLICK	=	“alert(‘Another	button	clicked.’)”	>This	is	another	button?</button>

	

When	you	click	this	button,	 the	browser	will	still	“fire”	or	“invoke”	the	JavaScript	code
that	you	placed	on	it	regardless	of	the	case	of	the	event.	However,	changing	the	case	of	the
code	within	 the	event	can	cause	errors.	Despite	being	outside	of	 the	script	 tags,	 inserted
codes	 like	 these	 are	 still	 considered	 part	 of	 your	 JavaScript	 code.	 So,	 syntax	 rules	 of
JavaScript	are	still	applied	on	them.	For	example:

	

<button	 ONCLICK	 =	 “ALERT(‘THIS	WILL	NOT	WORK.’)”	 >This	 will	 not	 launch	 a
message	box.	Clicking	is	futile.</button>

	

Event	Exclusivity
	

Most	of	 the	events	can	be	used	on	almost	all	 elements.	For	example,	you	can	place	 the
onClick	event	on	a	paragraph	element	(<p>).

	

<p	onClick	=	‘alert(“You	clicked	on	me.	Yay!”)’	>This	is	a	sample	paragraph.</p>

	

However,	certain	events	are	exclusive	to	some	elements.	For	example,	the	onChange	event
cannot	be	used	to	button	(<button>)	and	paragraph	elements	(<p>),	but	it	will	work	on	a
text	area	element	(<textarea>).

	

<button	onChange	=	“alert(‘Will	this	work?’)”	>Click	me!</button>

<p	onChange	=	“alert(‘Most	probably	not.’)”	>Am	I	changeable?</p>

<textarea	onChange	=	“alert(‘You	have	changed	my	content,	you	foul	beast!’)”	/>

	

Since	you	cannot	change	 the	content	or	value	of	 the	paragraph	and	button	elements,	 the
onChange	event	will	not	fire.	On	the	other	hand,	if	you	do	change	the	content	of	the	text
area	element,	it	will	launch	a	popup.	Alternatively,	if	you	do	just	click	on	it	or	revert	the
changes	you	made	on	it,	the	event	will	not	fire.

	

Curious	Cat
	

What	 if	 you	 try	 something	 “smart”	 and	 tried	 to	 do	 some	 “changes”	 on	 an	 element	 like
button?	You	can	actually	change	the	content	of	those	kinds	of	elements	using	DOM	and
the	innerHTML	property.	Will	the	onChange	event	will	fire	if	you	do	that?	Try	these	lines
of	code:

	

<button	id=‘x’	onChange	=	“alert(‘Will	this	work?’)”	>Click	me!</button>

<button	 	 onClick	 =	 “document.getElementById(‘x’).innerHTML	 =	 ‘xxx’”	 >Click	 me!
</button>

	

Unfortunately,	you	cannot	work	around	 that.	On	 the	other	hand,	 trying	 to	emulate	 those
events	(and	hope	that	it	can	save	you	some	time)	is	inefficient.	You	can	just	code	it	instead
of	experimenting.

	

	

Multiple	Events
	

Of	 course,	 to	 make	 your	 page	more	 responsive,	 you	 can	 indicate	 and	 capture	multiple
events	in	one	element.	For	example:

<button	onClick	=	“alert(‘This	is	a	popup	box.’)”	onMouseover	=	“alert(‘This	is	a	popup
box.’)”		>Click	me	please!</button>

	

Chapter	11:	HTML	DOM
	

JavaScript	 is	 an	 object	 oriented	 programming	 language.	 In	 its	 eyes	 (figuratively),
everything	is	an	object	(with	a	few	exceptions	like	primitive	values).	In	order	to	use	it	in
conjunction	with	HTML,	it	uses	HTML	DOM	or	HTML	Document	Object	Model.

	

What	is	 the	Document	Object	Model	anyway?	The	HTML	Document	Object	Model	is	a
tree	(it	can	be	also	called	as	a	hierarchy)	of	all	the	objects	in	a	HTML	web	page.	It	is	an
organized	 structure	 where	 elements	 are	 neatly	 arranged	 according	 to	 their	 respective
parents	and	children.	On	top	of	a	Document	Object	Model	is	the	document	object.

	

Back	then,	the	document	object	or	the	HTML	page	(including	scripts	and	styling	code)	is
considered	the	topmost	object	or	parent	in	the	Document	Object	Model.	Nowadays,	due	to
changes	 in	 JavaScript	 and	browsers,	 the	document	object	 is	now	a	 child	of	 the	window
object.

	

Here	is	a	simple	sample	HTML	page.

<html>

<head>

<title>Sample	Web	Page</title>

</head>

<body>

<h1>Hello	World!</h1>

<p>This	is	a	sample	HTML	document.</p>

</body>

</html>

	

If	you	visualize	its	Document	Object	Model	in	bullet	form,	it	will	look	like	this:

	

document
head

title	=	“Simple	Web	Page”
body

h1	=	“Hello	World!”
p	=	“This	is	a	sample	HTML	document.”
	

Of	 course,	 that	 is	 just	 a	 simple	 representation	 of	 the	 Document	 Object	 Model.	 The
important	 thing	 to	 note	 is	 that	 through	 the	 document	 object,	 you	 can	 access	 and
manipulate	 all	 the	 elements	 in	your	page.	You	can	 treat	 the	 elements	 in	your	HTML	as
“properties”	of	your	document	object.	For	example,	try	to	do	this	in	your	console:

	

>	document.title

<	“Sample	Web	Page”

>	document.title	=	“New	Title”

<	“New	Title”

>	document.title

<	“New	Title”

>	_

	

After	doing	that,	you	can	check	the	tab	of	the	document	you	are	editing.	And	yes,	the	title
of	the	page	became	“New	Title”.	With	Document	Object	Model,	 it	has	become	easier	to
interact	and	manipulate	everything	in	your	HTML	document.

	

It	appears	so	simple,	but	what	about	the	other	elements	in	your	page?	This	is	where	it	gets
interesting.	True,	it	is	easy	to	change	and	access	the	title	element	in	your	webpage.	After
all,	there	is	only	one	title	element	in	every	web	page.	How	about	the	other	elements	that
are	used	multiple	times,	like	<p>	and	?

	

But	before	you	dive	deep	to	that,	know	more	about	the	document	object	and	the	concept	of
parents	and	children	first.

	

The	Document	Object
	

The	document	object	is	the	primary	parent	node	of	HTML	DOM.	Since	it	is	in	the	topmost
part	of	 the	Document	Object	Model,	 it	 is	often	called	 the	 root	node	or	object.	All	other
nodes,	objects,	or	elements	are	contained	within	or	are	owned	by	the	document	object.	By
the	way,	the	objects	within	DOM	are	often	called	as	nodes	due	to	the	structural	design	of
the	DOM	itself.

	

Also,	despite	being	 the	root	node,	 the	document	object	 is	under	 the	window	object.	The
window	object	is	the	window	of	the	browser.	Unlike	the	document	object,	some	browsers
do	 not	 support	 the	window	 object.	 For	 now,	 the	main	 focus	 of	 this	 chapter	will	 be	 the
document	object	since	it	usually	receives	the	most	interaction	from	you.

	

Document	Object’s	Properties	and	Methods
	

The	document	object	has	a	lot	of	properties,	methods,	and	child	nodes	that	you	can	access.
Of	course,	you	will	not	need	to	learn	all	of	them	at	once	at	this	point.	For	now,	you	will
know	the	most	used	methods	and	properties	you	need.

Navigating	Through	the	Document	Object	Model
	

Parent	and	Child	Concept
	

Anyway,	 the	 concept	 of	 parent	 and	 children	 nodes	 is	 simple.	 If	 element	 A	 is	 within
element	B,	element	A	is	a	child	of	element	B	and	element	B	is	the	parent	of	element	A.
For	example:

	

The	element	<body>	is	a	child	node	of	the	element	<html>	or	the	document	object	itself.
On	 the	 other	 hand,	 the	 element	 <html>	 or	 the	 document	 object	 is	 the	 parent	 node	 of
element	<head>	and	<body>.

Chapter	12:	HTML	and	CSS	Editing	Using	JavaScript	and
DOM

	
Now,	 you	 are	 familiar	 with	 HTML	DOM.	 You	 have	 now	 the	 power	 to	 change	 almost
anything	in	your	page	using	scripts.	Aside	from	that,	you	can	create	simple	functions	that
can	allow	you	to	perform	checks	on	your	forms.	You	can	now	create	email	text	boxes	that
automatically	checks	if	the	email	address	format	is	correct,	among	other	things.

	

The	getElementById	method	and	innerHTML	Property
	

Just	like	with	CSS,	JavaScript	and	HTML	DOM	also	have	selectors.	However,	it	is	more
proper	to	call	them	methods	of	the	document	object	since	there	are	other	methods	that	are
referred	 to	 selectors	 (CSS	 selectors	 to	 be	 precise	 —	 i.e.,	 querySelector()	 and
querySelectorAll()).

	

Primarily,	 the	method	 that	 you	will	 be	 using	most	 of	 the	 time	 is	 the	 getElementById()
method	of	the	document	object.	This	method	allows	you	to	“select”	the	specific	element
that	you	want	to	access	or	manipulate	in	your	web	document.	For	example:

	

<html>

<head>

<title>Another	Sample	Page</title>

</head>

<body>

<p	id=“sampleParagraph1”	>This	is	an	example	paragraph</p>

<p	id=“sampleParagraph2”	>This	is	another	example	paragraph</p>

</body>

</html>

	

If	you	want	to	access	the	text	of	the	paragraph	element	with	the	id	sampleParagraph1,	you
will	need	to	code:

	

>	document.getElementById(“sampleParagraph1”).innerHTML

<	“This	is	an	example	paragraph”

>	_

	

By	the	way,	to	access	strings	that	are	placed	between	an	opening	tag	and	closing	tag,	you
can	 use	 that	 object’s	 innerHTML	 property.	 You	 can	 also	 change	 its	 value	 by	 assigning
another	string	to	it.	For	example:

	

>	document.getElementById(“sampleParagraph1”).innerHTML	=	“Yay.	I	changed	it!”

<	”	Yay.	I	changed	it!”

>	_

	

Of	 course,	 elements	 that	 have	 empty	 tags,	 such	 as	 input	 and	 br,	 will	 always	 return	 an
empty	or	””	innerHTML	property.

	

What	will	happen	if	there	are	multiple	elements	that	have	the	same	id?	Of	course,	standard
practice	 dictates	 you	 should	 not	 create	 elements	 with	 same	 IDs;	 however,	 if	 you	 have
intended	 or	 accidentally	 created	 elements	 like	 that,	 the	 first	 element	 that	was	 parsed	 or
read	in	the	document	will	be	selected.	For	example:

	

<html>

<head>

<title>Another	Sample	Page</title>

</head>

<body>

<p	id=“sampleParagraph1”	>This	is	an	example	paragraph</p>

<p	id=“sampleParagraph1”	>This	is	another	example	paragraph</p>

<p	id=“sampleParagraph1”	>This	is	another	example	paragasdasdraph</p>

</body>

</html>

If	you	try	to	access	the	element	with	the	ID	“sampleParagraph1”,	this	will	happen:

>	document.getElementById(“sampleParagraph1”).innerHTML

<	“This	is	an	example	paragraph”

>	_

	

innerHTML	versus	innerText	versus	textContent
	

Some	of	you	might	have	been	already	researching	about	JavaScript,	and	you	might	have
already	encountered	the	innerText	property.	And	you	might	question	why	use	innerHTML
to	retrieve	strings	instead	of	innerText	when	it	basically	does	the	same	thing?

	

Unfortunately,	they	do	not	do	the	same	thing.	First	of	all,	innerHTML	retrieves	the	string
between	 the	 opening	 and	 closing	 tags.	 It	 does	 not	 perform	 any	 alteration	 and	 space
trimming	(removal	of	trailing	or	consecutive	spaces).

On	 the	 other	 hand,	 innerText	 perform	 trimming	 and	 remove	 any	 line	 break,	 carriage
return,	tabs,	or	new	line	characters	in	the	string.	For	example:

	

<html>

<head>

<title>Another	Sample	Page</title>

</head>

<body>

<p	id=“sampleParagraph1”	>

This	is					an	example	paragraph

</p>

</body>

</html>

When	you	access	the	text	using	innerHTML:

>	document.getElementById(“sampleParagraph1”).innerHTML

<	“

This	is					an	example	paragraph

“

>	_

When	you	access	the	text	using	innerText:

>	document.getElementById(“sampleParagraph1”).innerText

<	“This	is	an	example	paragraph”

>	_

As	you	can	see,	the	linebreaks	and	trailing	spaces	are	removed	in	the	innerText	property
while	it	was	retained	on	the	innerHTML	property.

	

Another	major	difference	between	 them	is	 that	 innerText	 removes	all	 the	 tags	contained
inside	the	elements	—	innerHTML	returns	everything.	For	example:

	

<html>

<head>

<title>Another	Sample	Page</title>

</head>

<body>

<p	id=“sampleParagraph1”	>

This	is	an example	paragraph

</p>

</body>

</html>

When	you	access	the	text	using	innerHTML:

>	document.getElementById(“sampleParagraph1”).innerHTML

<	“

This	is	an	 example	paragraph

“

>	_

When	you	access	the	text	using	innerText:

>	document.getElementById(“sampleParagraph1”).innerText

<	“This	is	an	example	paragraph”

>	_

	

As	you	can	see,	the		opening	and	closing	tags	and	the	non-breaking	space	are	shown
in	innerHTML	while	both	were	not	provided	in	innerText.

	

How	about	 textContent?	The	property	 is	 similar	 to	 innerHTML.	There	 are	 performance
related	 technicalities	 about	 their	 difference,	 but	 primarily,	 developer	 networks,	 such	 as
MDN	 or	 Mozilla	 Developers’	 Network,	 recommend	 the	 use	 of	 textContent	 instead	 of
innerHTML.	They	recommend	the	former	than	the	latter	because	it	performs	faster	and	is
more	secure.	Even	though	it	is	more	recommended,	most	web	developers	and	scripters	use
innerHTML.

	

So,	what’s	the	point	of	learning	all	of	these?	Firstly,	the	innerText	property	is	considered
not	a	W3C	standard,	which	means	that	some	browsers	do	not	support	this	property.	One	of
those	 browsers	 is	 Mozilla	 Firefox.	 Other	 browsers	 do	 not	 have	 problems	 with	 the
innerText	property,	such	as	Internet	Explorer	and	Google	Chrome,	despite	its	status.

	

On	the	other	hand,	you	should	know	when	or	where	you	should	use	these	properties.	For
example,	unlike	innerHTML	and	textContent,	innerText	cannot	retrieve	HTML	or	“hidden
text”	placed	on	meta	elements	like	script	and	style.	Alternatively,	if	you	want	to	alter	the
HTML	content	 of	 an	 element	with	HTML	 code,	 you	might	want	 to	 use	 innerHTML	or
textContent	instead.

	

JavaScript	and	CSS
	

Aside	 from	 manipulating	 HTML	 content,	 you	 can	 handle	 your	 page’s	 CSS	 properties
using	JavaScript.	With	proper	use	of	JavaScript	and	HTML	DOM,	you	can	change	themes
on	the	go,	perform	animations,	and	even	create	cool	effects	in	your	page.

Just	 like	 with	 the	 previous	 sections,	 the	 key	 here	 is	 HTML	 DOM.	 The	 concept	 of
manipulating	CSS	entries	can	be	done	by	accessing	your	elements’	properties/attributes.
To	 be	 frank,	 in	 changing	 and	 reading	 CSS	 properties,	 you	 will	 spend	 a	 lot	 of	 time
tinkering	with	 your	 elements’	 style	 attributes.	 Nevertheless,	 there	 are	 other	 ways	 to	 do
that,	too.

	

This	is	an	example	on	how	you	can	change	an	elements	CSS	properties.

	

<html>

<head>

<title>Sample	Web	Page</title>

</head>

<body>

<h1	id=“header1”	>This	is	a	sample	header</h1>

</body>

Example	script:

>	document.getElementById(“header1”).style.color	=	“yellow”;

<	“yellow”

>	document.getElementById(“header1”).style.backgroundColor	=	“red”;

<	“red”

>	document.getElementById(“header1”).style.paddingLeft	=	“35px”;

<	“35px”

>	_

	

When	manipulating	CSS	properties,	you	need	to	remember	a	few	simple:

First	of	all,	you	can	change	almost	any	CSS	property	of	an	element	through	its	style
property.

	

Second,	the	name	of	the	CSS	property	is	relatively	the	same	when	you	access	it

through	JavaScript.	The	main	difference	is	that,	all	spaces	or	dashes	in	a	property’s
name	is	removed,	and	on	its	stead	is	an	uppercase	letter	of	the	next	word.	For
example,	changing	the	left	padding	on	CSS	will	require	you	to	set	a	value	on
padding-left.	In	JavaScript,	the	property	name	is	paddingLeft.

	

	

Third,	all	values	that	you	will	place	must	be	in	string	form.	Meaning,	you	will	need
to	place	quotation	marks	in	every	value	you	will	assign	to	a	CSS	property.

Chapter	13:	JavaScript	Object	Oriented	Programming
	

Congratulations	 on	 reaching	 this	 part	 of	 the	 book.	 As	 of	 now,	 you	 know	 the	 basics	 of
JavaScript.	With	 your	 current	 knowledge,	 you	 can	 now	 provide	 semi-dynamic	 content.
With	a	little	knowledge	in	server-side	scripting	language	and	MySQL,	you	will	be	capable
of	creating	fully	dynamic	websites	with	rich	web	content.	Sounds	good,	right?	So	what	is
next?

	

The	 next	 part	 that	 you	 need	 to	 know	 is	 object	 oriented	 programming.	 Learning	 this
programming	paradigm	will	allow	you	to	create	advanced,	complex,	and	large	scripts	with
ease	 and	 clarity.	 With	 it,	 you	 will	 be	 able	 to	 harness	 more	 than	 half	 of	 JavaScript’s
capability.

	

With	 the	 knowledge	 of	 object	 oriented	 programming,	 you	 will	 be	 able	 to	 create	 web
applications	 like	games,	eCommerce	sites,	and	complex	data	manipulation	scripts.	Also,
you	will	 have	 familiarity	with	 almost	 all	 popular	 programming	 languages	 available.	Of
course,	this	is	not	a	promise	or	a	guarantee.	This	book	will	only	show	you	the	way,	and	it
is	up	to	you	if	you	are	going	to	walk	on	it.

	

Programming	Paradigms
	

In	programming,	goals	can	be	achieved	and	programs	can	be	created	in	multiple	ways.	For
example,	a	calculator	program	may	function	all	the	same	but	can	be	coded	differently.	An
addition	operation	in	programming,	or	even	in	Mathematics,	can	be	performed	in	different
ways.	One	can	do	it	by	simply	using	the	addition	operator	(1	+	1),	or	another	can	do	it	by
using	the	subtraction	operator	and	the	unary	negative	operator	(1	–	(-1)).

	

Of	 course,	 despite	 achieving	 the	 same	 goal,	 programs	with	 different	 source	 codes	may
have	 additional	 behaviours	 that	 may	 be	 controlled	 or	 uncontrolled.	 One	 of	 those
behaviours	 is	 the	 tendency	of	 a	 code	 using	more	 resources	 than	 the	 other	 code,	 despite
providing	the	same	purpose	as	the	other.

	

In	creating	larger	and	more	complex	program	development,	how	you	write	your	code	will
matter.	Depending	on	how	you	write,	your	program	may	perform	faster	or	 slower.	Your
development	 time	 may	 become	 easier	 or	 harder.	 Your	 code	 might	 be	 easily	 read	 or
difficult	to	comprehend.

	

And	due	 to	 those	concerns,	broad	programming	models	and	paradigms	were	developed.
Standard	practices	started	to	exist.	And	writing	styles	were	created.	On	the	flip	side,	due	to
the	 advancement	 in	 computing,	 those	 issues	 mentioned	 before	 have	 been	 reduced	 and
might	become	too	unnoticeable,	especially	for	beginners.

	

These	 days,	 choosing	 the	 programming	model,	 standard	 practice,	 and	writing	 style	 has
become	more	of	a	preference	issue	rather	than	performance.	However,	do	still	note	that	in
bigger	projects,	as	mentioned	before,	choosing	 the	right	model,	styles,	and	practices	can
still	provide	a	huge	impact	to	you,	your	team,	and	your	program.

	

Structured	and	Unstructured	Programming
	

Since	 this	 is	 a	book	about	 JavaScript,	 a	multi	 paradigm	 language,	 you	will	 be	provided
with	an	introduction	to	object	oriented	programming	and	a	brief	explanation	to	procedural
programming.

	

So	 what	 is	 object	 oriented	 programming	 anyway?	 As	 it	 name	 implies,	 OOP	 is	 a
programming	model	that	focuses	on	objects	rather	than	just	statements	or	actions.	Before
you	have	reached	this	chapter,	you	have	been	performing	procedural	programming,	which
heavily	relies	on	functions.

Object	oriented	programming	is	considered	as	a	structured	paradigm.	Structured	contrasts
with	 unstructured,	 a	 programming	model	 that	 tends	 to	make	 programmers	 create	 linear
programs	or	codes	that	are	usually	run	incrementally	through	line	numbers	and	jump	from
one	 point	 to	 another	 using	 goto	 commands.	 The	 unstructured	 model	 is	 a	 primitive
paradigm	 that	 often	 leads	 to	 messy	 codes,	 which	 is	 called	 spaghetti	 code	 due	 to	 its
recursive	nature.

	

The	main	difference	of	structured	and	unstructured	programming	is	the	usage	of	functions,
procedures,	 or	 subroutines.	 Instead	 of	 just	 relying	 to	 goto,	 a	 flow	 control	 command,
developers	can	take	advantage	of	“grouping”	certain	statements	and	use	them	readily	by
invoking	 them.	 It	 eliminates	 the	need	 for	 the	parser	 to	 incrementally	move	 through	and
execute	unnecessary	statements	or	make	the	programmer	create	conditional	jumps	to	get
back	to	the	previous	line	where	the	initial	goto	was	invoked.	Of	course,	those	can	be	easily
remedied	 by	 using	 loops	 and	 other	 keywords.	 However,	 the	 exclusion	 of	 the	 usage	 of
functions	can	prevent	you	to	easily	allow	your	program	to	perform	repetition	of	grouped
statements	without	rewriting	and	pointing	your	code	to	go	back	in	a	specific	line	number
again	and	again.

	

Of	 course,	 unstructured	 programming	 was	 not	 a	 preferred	 choice;	 rather,	 it	 was	 a
limitation	 of	 the	 programming	 languages	 back	 then.	 When	 functions	 were	 introduced,
developers	became	more	accustomed	in	procedural.

	

Yes,	 as	 its	 name	 implies,	 procedural	 programming	 is	 a	 paradigm	 that	 heavily	 relies	 on
procedures	 or	 functions.	 Procedural	 programming	 is	 considered	 as	 a	 structural
programming	 paradigm.	 It	 is	 also	 related	 to	 code	 block	 programming;	 however,	 for
simplicity’s	sake,	the	book	will	only	cover	procedural.

	

Procedural	Programming
	

As	mentioned	a	while	ago,	before	you	have	reached	this	chapter,	you	were	actually	doing
procedural	 and	 functional	 programming.	 The	 main	 aspect	 that	 made	 you	 a	 procedural
programmer	up	to	this	point	is	the	usage	of	functions.

	

Aside	 from	 functions,	 the	 concept	 of	 variable	 scoping,	 is	 also	 a	 part	 of	 procedural
programming,	which	can	be	mainly	attributed	to	structured	programming.

	

Do	 note	 that	 most	 programming	 languages	 do	 offer	 procedural	 programming.	 This
paradigm	 is	 always	 considered	 as	 an	 entry	 point	 for	 every	 aspiring	 programmer,	 unless
they	 tackle	 on	OOP	 head	 on	 or	 decide	 to	 explore	 languages	 that	 are	 heavily	 reliant	 on
other	programming	paradigm.

	

Object	Oriented	Programming
	

Now,	before	anything	else,	do	note	that	JavaScript	is	a	multi	paradigm	language.	It	means
that	 multiple	 programming	 models	 or	 styles	 can	 be	 used	 in	 this	 client-side	 scripting
language.

	

JavaScript	can	be	considered	as	a	procedural,	event	driven	(this	will	be	tackled	on	a	later
chapter	 since	 management	 of	 events	 is	 crucial	 in	 JavaScript),	 and	 object	 oriented
programming	language.	Nevertheless,	most	people	will	refer	it	as	an	OOP	language	due	to
its	 programming	 structure	 and	 the	 usage	 of	 DOM	 (Document	 Object	 Model),	 which
primarily	forces	you	to	interact	with	objects,	hence	accustoms	you	to	do	OOP.

	

But	what	exactly	is	object	oriented	programming?

	

Primarily,	OOP	introduces	the	use	of	objects	in	programming.	Objects	are	like	variables.
However,	instead	of	storing	a	singular	data,	it	can	have	its	own	functions,	called	methods,
and	variables,	called	properties.

Together	with	objects,	OOP	also	introduces	namespaces,	classes,	constructors,	inheritance,
encapsulation,	abstraction,	and	polymorphism.

Chapter	14:	Objects
	

As	you	have	seen,	the	code	window.alert()	allowed	you	to	create	a	popup	box	in	your	web
page.	This	 code	 has	 four	 parts:	window,	 .	 (the	 dot),	 alert,	 and	 ()	 (the	 parentheses).	The
“window”	part	is	an	object.	The	dot	is	a	property	accessor.	The	alert	is	a	method.	And	the
parentheses	are	enclosures	for	the	method’s	arguments.

	

Those	are	loads	of	information	that	might	confusion,	but	do	not	fret;	take	it	one	step	at	a
time.

	

An	object	is	an	element	that	contains	properties	and	methods.	Methods	are	like	commands
or	 actions	 that	 the	 object	 can	 do.	 Properties	 are	 like	 descriptions	 or	 attributes	 that	 the
object	has.

	

A	good	analogy	is	a	stove	and	an	object.	A	stove	has	one	common	method,	and	that	is	to
make	 fire	or	 induce	heat	on	 its	 stovetop.	On	 the	other	hand,	 it	 has	properties	 like	 stove
type,	remaining	fuel,	and	material.

	

In	the	previous	example,	the	object	that	was	featured	was	the	window	object.	The	window
object	has	the	methods	alert(),	confirm(),	close(),	stop(),	and	so	forth.	Alternatively,	it	has
the	properties	screenX,	screenY,	outerHeight,	outerWidth,	and	so	forth.

	

JavaScript	can	give	you	access	to	these	methods	and	properties.	You	can	use	the	methods
at	will	 whenever	 you	want.	And	 change	 the	 properties	 to	whatever	 value	 possible.	 For
example,	 you	 can	 use	 window’s	 alert()	 method	 to	 make	 a	 popup	 box	 appear.	 You	 can
check	the	location	or	address	of	a	window	or	web	page	by	accessing	the	location	property
of	the	window	object.

JavaScript	 has	 predefined	 objects.	 A	 few	 of	 them	 are	 String,	 Array,	 Object,	 and	Math.
When	dealing	with	 JavaScript	 and	web	pages,	HTML	DOM	will	 also	provide	you	with
predefined	objects	that	were	created	from	the	HTML	page	that	was	rendered.

	

On	the	other	hand,	almost	everything	in	JavaScripts	is	treated	as	an	object.	For	example,
string	values	are	treated	as	objects	under	String.	Because	of	that,	string	values	or	variables
containing	strings	can	use	methods	and	properties	of	String.	The	same	goes	with	arrays,
and	the	list	goes	on	and	on.

	

Assigning	Objects	to	Variables	—	By	Value	and	By
Reference

	

Yes,	 you	 can	 assign	 objects	 to	 variables.	However,	 please	 do	 note	 that	 unlike	 the	 usual
assignment	 of	 literals	 in	 a	 variable,	 variables	 that	 get	 assigned	 with	 an	 object	 behave
differently.

	

In	 programming,	 assigning	 to	 a	 variable	 can	 be	 by	 value	 or	 by	 reference.	 By	 default,
assignment	of	variables	containing	regular	literals	such	as	numbers	and	strings	to	another
variable	 is	 by	 value.	 By	 value	 assignment	 means	 that	 the	 value	 of	 the	 variable	 being
assigned	will	be	only	copied	to	the	value	of	the	variable	on	the	left	side	of	the	assignment
operator.	For	example:

	

>	var	x	=	2

<	undefined

>	var	y	=	3

<	undefined

>	x	=	y

<	3

>	x

<	3

>	_

	

On	 the	 other	 hand,	 if	 you	 assign	 an	 object	 or	 an	 array	 variable	 to	 another	 variable,	 the
assignment	 will	 be	 automatically	 by	 reference.	 By	 reference	 assignment	 means	 that
instead	 of	 copying	 the	 value	 of	 the	 variable	 being	 assigned,	 the	 object	 or	 array	will	 be
referenced.	Referencing	in	programming	is	like	creating	another	“identifier”	that	can	serve
as	 another	 identifier	 holding	 the	methods,	 properties,	 or	 content	 of	 another	 object.	 For
example:

	

>	var	x	=	3

<	undefined

>	var	yObject	=	new	Object()

<	undefined

>	yObject.sampleProperty	=	6

<	6

>	x	=	y

<	Object	{sampleProperty:6}

>	x

<	Object	{sampleProperty:6}

>	x.sampleProperty	=	90

<	90

>	y.sampleProperty

<	90

>	_

	

In	 this	 example,	 object	 y	 was	 created.	 After	 that,	 it	 was	 given	 a	 property	 named
sampleProperty	with	a	value	of	6.	When	y	was	assigned	to	x,	you	can	see	that	its	property
was	included	in	the	assignment.	However,	when	the	example	tried	to	change	the	property
that	was	inherited,	the	same	property	in	object	y	reflected	the	change,	too.

	

Technically,	with	referencing,	the	object	that	was	assigned	to	the	variable	will	receive	all
the	 changes	 that	 will	 be	 applied	 to	 the	 variable	 that	 received	 the	 assignment.	 Usually,
programmers	take	advantage	of	this	by	referencing	an	object	with	a	long	name	to	a	short
name	variable.	For	example:

	

>	var	x	=	document.getElementById(‘sampleParagraph’)

<	undefined

>	x.textContent

<	“This	is	a	sample	paragraph”

>	x.textContent	=	“This	has	been	modified	through	JavaScript.”

<	“This	has	been	modified	through	JavaScript.”

>	_

	

Instead	 of	 repeatedly	 accessing	 the	 sampleParagraph	 in	 the	 page	 using	 the
getElementById	method,	which	will	make	you	 type	 a	 lot,	 you	can	 just	 reference	 it	 to	 a
short	named	variable	such	as	x.	It	is	much	convenient,	and	can	assure	you	clean	code.

	

	

Object	Creation	Using	Object	Literal
	

In	JavaScript,	multiple	methods	on	how	to	create	an	object	exist.	One	of	the	simplest	and
easiest	ways	is	to	create	one	using	an	object	literal.	Doing	it	this	way	is	almost	too	similar
in	creating	an	array.	For	example:

	

>	var	exStove	=	{fuel:100,	type:“single	burner”,	state:“off”,	fuelPerSecond:1}

<	undefined

>	exStove

<	Object	{fuel:	100,	type:	“single	burner”,	state:	“off”,	fuelConsumptionPerSecond:	1}

>	exStove.fuel

<	100

>	_

	

The	statement	created	the	object	named	exStove.	It	was	assigned	with	the	properties	fuel,
burner,	 state,	 and	 fuelConsumptionPerSecond.	To	access	 the	properties,	you	can	use	 the
dot	accessor.	For	example:

	

>	var	exStove	=	{fuel:100,	type:“single	burner”,	state:“off”,	fuelPerSecond:1}

<	undefined

>	exStove

<	Object	{fuel:	100,	type:	“single	burner”,	state:	“off”,	fuelConsumptionPerSecond:	1}

>	exStove.fuel

<	100

When	typing	the	code	in	a	file	or	within	the	HTML,	you	can	make	your	statement	much
simpler	and	easier	to	read	by	adding	line	breaks	on	the	object	literal	as	if	you	are	placing	a
CSS	declaration.	For	example:

	

var	exStove	=	{

fuel:100,

type:“single	burner”,

state:“off”,

fuelPerSecond:1

}

	

If	you	want	to	add	another	property	in	your	object,	you	can	easily	do	that	by	just	assigning
a	value	to	the	property	that	you	want.	For	example:

	

>	var	exStove	=	{fuel:100,	type:“single	burner”,	state:“off”,	fuelPerSecond:1}

<	undefined

>	exStove

<	Object	{fuel:	100,	type:	“single	burner”,	state:	“off”,	fuelConsumptionPerSecond:	1}

>	exStove.fuelType

<	undefined

>	exStove.fuelType	=	“LPG”

<	“LPG”

>	exStove.fuelType

<	“LPG”

>	_

You	can	also	change	the	value	of	the	property	this	way,	too.

Chapter	15:	Classes,	Properties,	and	Methods
	

Before	you	proceed	on	the	other	methods	in	creating	objects	in	JavaScript,	you	must	learn
about	 classes.	 If	 you	 have	 prior	 experience	 with	 other	 OOP	 languages,	 you	 might	 get
confused	a	bit	in	dealing	with	objects	and	classes	in	JavaScript.

	

In	 a	 nutshell,	 classes	 in	 JavaScript	 are	more	 casually	 referred	 to	 object	 types	 or	 object
constructor.	But	to	prevent	more	confusion,	read	the	next	sections	carefully.

	

More	often	 than	not,	most	programmers	 tend	 to	associate	classes	with	OOP.	If	 there	are
classes	 in	 a	 language,	 then	 it	 is	 probably	 an	 OOP	 language.	 However,	 in	 JavaScript,
classes	or	even	the	keyword	class	does	not	exist	since	it	is	a	prototype-based	language.

	

Note:	As	of	June	2015,	ECMAScript	6	or	ES6	Harmony	has	been	released.	In	this	version,
the	keyword	class	has	been	included.	Due	to	that,	another	method	of	defining	“classes”	in
JavaScript	is	available.

	

However,	 due	 to	 it	 being	 recently	 released,	 it	 is	 still	 better	 to	 stick	 with	 the	 standard
methods	of	creating	classes.	Nevertheless,	if	the	syntax	of	creating	classes	in	JavaScript	is
bugging	you,	you	can	go	ahead	with	using	the	class	keyword.

	

But	 as	 of	 now,	 this	 is	 not	 advisable.	 After	 all,	 not	 all	 browsers	 are	 compatible	 with
ECMAScript	6	as	of	yet.	Due	to	that,	older	browsers	will	not	recognize	the	existence	of	the
class	keyword	in	your	script,	and	that	might	make	old	browser	incapable	of	running	your
scripts	the	way	you	wanted.

	

Prototype-based,	 instance-based,	 prototype	 oriented,	 or	 classless	 programming	 is	 a
subclass	 of	 object-oriented	 programming.	 Instead	 of	 relying	 to	 user-defined	 classes	 to
create	objects,	you	can	use	the	predefined	classes	or	objects	to	create	objects	of	your	own.
However,	it	does	not	mean	that	you	cannot	user-defined	objects	in	this	type	of	OOP.

	

What	are	classes	anyway?	Classes	are	template	for	objects.	To	make	it	easy	to	create	new
objects	 without	 repeating	 the	 code	 on	 how	 the	 program	 can	 construct	 the	 objects,
programmers	often	create	templates	called	classes.

	

For	example,	in	a	massive	production	of	a	toy	car,	a	template	is	needed.	The	template	is
the	class;	the	toy	car	that	was	created	from	that	template	is	the	object.

	

Of	course,	to	create	a	custom	object	of	your	own,	you	must	create	a	pseudo	class	of	your
own	in	your	code.	Unlike	in	other	languages	that	rely	on	the	usage	of	the	class	keyword	to
instantiate	a	class	 in	 their	code,	you	will	need	 to	 rely	on	creating	a	constructor	 for	your
class	instead	by	using	the	function	keyword.	Here	is	an	example:

	

>	var	ToyCar	=	function	()	{};

<	undefined

>	ToyCar

<	function	()	{}

>	_

	

To	create	an	object	using	 that	class,	you	will	need	 to	use	 the	new	keyword	and	 indicate
that	it	will	be	an	object	under	a	certain	class.	For	example:

	

>	var	RC_Car	=	new	ToyCar

<	undefined

>	RC_Car

<	ToyCar	{}

>	_

	

The	new	object	will	inherit	all	the	methods	and	properties	that	were	declared	in	the	class.
But	this	discussion	will	be	continued	after	discussing	about	methods,	properties,	and	the
constructor.

	

Constructor	Function	and	new	Keyword
	

What	is	a	constructor	function?	A	constructor	function	can	be	used	to	define	an	object	type
or	class	for	an	object.	You	can	declare	the	inherent	properties	and	methods	of	an	object	in
a	constructor	function.	And	to	create	an	object	based	on	a	constructor,	you	must	declare	it
together	with	the	new	keyword.	Here	is	an	example:

	

>	var	exObject	=	new	Object();

<	undefined

>	exObject

<	exObject

>	_

	

In	the	example,	we	created	an	object	by	using	the	keyword	new	and	defining	the	class	or
object	 type,	 which	 is	 Object().	 It	 was	mentioned	 before	 that	 JavaScript	 has	 predefined
objects	 such	as	String,	Array,	 and	even	Object.	These	 same	objects	 can	also	be	used	as
constructor	functions.

	

However,	constructors	like	those	are	rarely	used.	After	all,	instead	of	specifying	the	data
type	for	the	variable,	it	is	much	faster	to	just	assign	the	variable	and	let	the	browser	do	the
hard	work.	JavaScript	is	a	dynamically	typed	language,	so	it	will	be	much	more	efficient.

	

>	var	exampleString	=	new	String();

<	undefined

>	exampleString

<	String	{length:	0,	[[PrimitiveValue]]:	””}

>	exampleString	=	“Sample	String”;

<	“Sample	String”

>	exampleString;

<	“Sample	String”

>	_

This	is	much	longer	than	this:

>	var	exampleString	=	“Sample	String”;

<	undefined

>	exampleString;

<	“Sample	String”

>	_

	

Object	Creation	Using	Constructor	Function
	

To	 create	 an	 object	 using	 a	 user	 defined	 constructor	 function,	 you	 must	 declare	 the
constructor	first.	For	example:

	

>	function	NewClass()	{}

<	undefined

>	NewClass

<	function	NewClass()	{}

>	var	sampleObject	=	newClass;

<	undefined

>	sampleObject

<	function	newClass()	{}

>	_

Another	way	you	can	do	this	is	to	do	this:

>	var	NewClass	=	function()	{}

<	undefined

>	var	sampleObject	=	new	NewClass;

<	undefined

>	sampleObject

<	NewClass	{}

>	_

	

Note:	This	 example	 uses	 another	method	 to	 create	 a	 function	 using	 the	 var	 keyword	or
statement.	Basically,	you	are	assigning	a	function	literal	to	a	variable	in	this	method.	This
might	 be	 confusing	 for	 new	 JavaScript	 developers.	 You	 will	 surely	 find	 function
declarations	like	this	every	now	and	then	while	checking	out	scripts	of	other	websites.

Chapter	16:	Properties	and	Methods
	

Properties	 are	 variables	 that	 are	 associated	 with	 an	 object.	 Their	 value	 can	 be	 only
accessed	through	the	object.	For	example,	the	property	window.name	is	only	exclusive	in
the	window	object.	It	works	like	that	to	prevent	confusion	in	coding.

	

For	 example,	 the	 property	 or	 attribute	 height	 for	 a	 paragraph	 (<p>)	 object/element	will
become	messed	up	if	the	height	property	is	not	exclusive	since	other	objects/elements	also
have	the	property	height.

	

Adding	properties	through	an	object	literal	has	been	already	demonstrated	in	the	previous
section.	 Is	 there	 any	 other	 way	 to	 add	 properties	 to	 an	 object?	 Yes,	 there	 is.	 And	 that
method	is	to	add	it	on	your	object’s	class	or	constructor.	For	example:

	

>	var	Sim	=	function()	{

this.hunger	=	100;

this.comfort	=	100;

this.hygiene	=	100;

this.bladder	=	100;

this.energy	=	100;

this.fun	=	100;

this.social	=	100;

this.room	=	100;

}

<	undefined

>	var	JohnSim	=	new	Sim();

<	undefined

>	JohnSim

<	Sim	{hunger:	100,	comfort:	100,	hygiene:	100,	bladder:	100,	energy:	100…}

>	JohnSim.hygiene

<	100

>	_

	

In	case	you	are	familiar	with	the	game	The	Sims,	this	is	how	its	developers	have	coded	a

Sim	object	in	the	game.	Of	course,	the	number	of	properties	it	has	is	not	complete,	but	you
will	get	the	idea.

	

In	 this	 example,	 properties	 of	 the	 Sim	 object	were	 provided	 immediately.	Do	 note	 that
whenever	 you	 create	 an	 object,	 all	 the	 statements	 within	 the	 object	 type,	 prototype,	 or
class’	function	will	be	executed.

	

this	Keyword
	

You	might	have	noticed	 something	different	 in	 this	example.	Yes,	we	used	 the	keyword
this.	The	keyword	this	is	a	keyword	that	automatically	references	the	object	that	owns	or
contains	the	statements.	In	this	case,	the	keyword	this	is	a	reference	to	the	newly	created
object	JohnSim.	This	keyword	makes	it	easier	for	you	to	code	and	of	course,	shorten	the
statements	that	you	write.

	

Methods
	

As	mentioned	before,	methods	are	like	actions	or	commands	in	programming.	They	can	be
called	functions,	too.	However,	if	they	are	associated	to	an	object,	they	are	called	methods
instead.	Although,	 there	 are	 other	 terminologies	 that	 can	be	 used,	 for	 clarity’s	 sake,	 the
term	method	will	be	used	instead.

	

To	add	a	method	 to	a	class	or	object	 type,	you	will	need	 to	write	a	 separate	code	block
from	the	constructor.	Also,	you	will	need	to	add	the	function	inside	the	prototype	property
of	your	object.	The	prototype	property	is	always	present	in	your	classes.	For	example:

	

>	var	Sim	=	function()	{

this.hunger	=	100;

this.comfort	=	100;

this.hygiene	=	100;

this.bladder	=	100;

this.energy	=	100;

this.fun	=	100;

this.social	=	100;

this.room	=	100;

}

<	undefined

>	Sim.prototype.eat	=	function()	{

alert(“Your	Sim	is	eating.”)

}

<	function()	{

alert(“Your	Sim	is	eating.”)

}

>	var	JohnSim	=	new	Sim();

<	undefined

>	JohnSim.eat()

<	undefined

>	_

	

Do	note	 that	 the	prototype	property	will	only	be	available	 in	your	class.	The	object	 that
you	will	create	will	not	have	 it.	Also,	all	 the	 functions	 that	you	placed	on	 the	prototype
property	will	become	readily	available	to	the	objects.

	

You	can	also	add	methods	 to	your	object	directly.	To	do	 that,	all	you	need	 to	 is	 to	do	a
function	literal	to	a	method	that	you	named.	For	example:

	

>	var	Sim	=	function()	{

this.hunger	=	100;

this.comfort	=	100;

this.hygiene	=	100;

this.bladder	=	100;

this.energy	=	100;

this.fun	=	100;

this.social	=	100;

this.room	=	100;

}

<	undefined

>	var	JohnSim	=	new	Sim();

<	undefined

>	JohnSim.stand	=	function()	{

alert(“Your	Sim	is	standing.”)

}

<	function()	{

alert(“Your	Sim	is	standing.”)

}

<	undefined

>	_

	

When	assigning	a	method	directly	to	an	object,	you	will	not	need	to	access	the	prototype
property	of	the	class.

	

The	Concept	of	Get	and	Set/Let
	

Whenever	you	deal	with	properties,	two	things	happen	behind	the	scene.	First,	when	you
access	 a	 property	 from	an	object,	 you	 are	 actually	 asking	 the	program	 to	perform	a	get
action.	The	get	action	retrieves	the	value	of	the	property.

	

On	the	other	hand,	whenever	you	assign	a	value	to	an	object’s	property,	you	are	actually
asking	the	program	to	perform	a	let	or	set	a	value	to	the	property.	In	creating	JavaScript
script,	 you	 do	 not	 need	 to	 worry	 about	 this.	 Nevertheless,	 the	 understanding	 of	 these
concepts	will	help	you	once	you	explore	programming	more.

	

However,	 do	 note	 that	 set	 and	 let	might	 have	 different	 contextual	meaning	 in	 different
programming	languages.

Providing	Arguments	and	Parameters	to	Your	Constructor
	

Would	it	not	be	better	if	you	can	just	create	an	object	and	assign	values	to	its	properties	in
one	 statement?	 Well,	 you	 can	 do	 that.	 You	 can	 just	 take	 advantage	 of	 arguments	 and
parameters.	After	all,	constructors	are	functions,	too.	For	example:

	

>	var	Sim	=	function(firstName,	lastName)	{

this.hunger	=	100;

this.comfort	=	100;

this.hygiene	=	100;

this.bladder	=	100;

this.energy	=	100;

this.fun	=	100;

this.social	=	100;

this.room	=	100;

this.firstName	=	firstName;

this.lastName	=	lastName;

this.name	=	firstName	+	”	”	+	lastName;

alert(“Your	new	Sim’s	name	is	”	+	this.name);

}

<	undefined

>	var	sim1	=	new	Sim(“John”,	“Sim”)

<	undefined

>	sim1.name

<	“John	Sim”

>	_

Chapter	17:	Common	Methods
	

String	Methods	or	Commands
	

In	 the	web,	manipulation	 or	 processing	 text	 is	 an	 important	 task.	 Just	 knowing	 how	 to
process	text	well	in	JavaScript	can	make	you	become	a	valuable	web	developer.	So,	here
are	some	methods,	commands,	or	keywords	that	can	help	you	manage	string	data.

	

search()	method
	

The	search()	method	allows	you	 to	check	 if	a	certain	string	exists	within	another	string.
You	can	also	use	search()	to	give	you	the	exact	location	the	string	that	you	want	to	find	in
another	string.	For	example:

	
<body>

<p	id	=	“as”	>The	string	isThistheText?	exists	in	this	string.”</p>

<script>

var	searchQuery	=	“isThistheText?”;

var	article	=	document.getElementById(‘as’).innerHTML;

if	(article.search(searchQuery))	{

alert(searchQuery	+	”	is	present	on	the	string:	”	+	article)

}

else	{

alert(searchQuery	+	”	is	not	present	on	the	string:	”	+	article);

}

	

</script>

</body>

	

If	the	value	of	the	search()	method	returns	more	than	1,	it	will	be	considered	as	true.	The
search()	method	returns	0	if	the	string	being	searched	do	not	exist.	Do	remember	that	any
number	aside	from	0	is	considered	True.	And	the	number	0	is	False.

	

On	 the	 other	 hand,	 if	 you	 just	want	 to	 find	 the	 location	 of	 the	 string,	 you	 can	 just	 use
search	and	the	number	it	returns.	For	example:

	
<body>

<p	id	=	“as”	>The	string	isThistheText?	exists	in	this	string.”</p>

<script>

var	searchQuery	=	“isThistheText?”;

var	article	=	document.getElementById(‘as’).innerHTML;

var	position	=	article.search(searchQuery);

alert(“The	string	”	+	searchQuery	+	”	starts	at	character	”	+	position	+	“.”)

	

</script>

</body>

	

Having	 knowledge	 about	 the	 position	 of	 the	 string	 you	 are	 searching	 can	 allow	 you	 to
perform	other	useful	functions	at	the	string.

Take	note:	the	search()	will	only	return	the	first	instance	of	the	string	you	are	searching.
For	example:

	
<body>

<p	id	=	“as”	>The	string	isThistheText?	exists	in	this	string.	isThistheText?	“</p>

<script>

var	searchQuery	=	“isThistheText?”;

var	article	=	document.getElementById(‘as’).innerHTML;

var	position	=	article.search(searchQuery);

alert(“The	string	”	+	searchQuery	+	”	starts	at	character	”	+	position	+	“.”)

	

</script>

</body>

	

This	example	code	will	always	return	11	even	if	you	keep	adding	another	instance	of	the
searchQuery	at	the	end	or	at	any	position	after	the	first	instance	of	searchQuery,

	

Array	Methods	and	Properties
	

Arrays	 in	programming	are	usually	 treated	as	objects	—	 it	 is	 true	 in	 JavaScript.	And	 in
JavaScript,	 arrays	 have	 built-in	 properties	 and	 methods	 that	 can	 help	 you	 manage	 and
manipulate	arrays	better	and	easier.

Length
	

One	 of	 the	 properties	 that	 you	will	 be	 using	 a	 lot	when	 handling	 arrays	 is	 length.	 The
length	property	allows	you	to	know	how	many	data	or	elements	are	within	an	array.	For
example:

	

var	exampleArray	=	[“Google”,	“Yahoo!”,	“Bing”];

alert(exampleArray.length);

	

In	this	example,	the	message	box	will	contain	the	number	3	because	there	are	three	values
inside	exampleArray.

	

Dot	Accessor	Operator
	

The	 dot	 operator	 is	 JavaScript’s	 accessor	 operator.	 The	 accessor	 operator	 allows
programmers	to	access	the	properties	and	methods	of	an	object.	Since	arrays	are	objects,
you	 can	 use	 the	 dot	 accessor	 to	 access	 its	 properties	 and	methods	 such	 as	 length.	 The
syntax	for	using	the	dot	accessor	is:	object.properties.

	

Push
	

Push	is	an	array	object	method.	What	it	does	is	that	it	allows	you	to	add	another	value	in
an	existing	array.	For	example:

	

var	exampleArray	=	[“Google”,	“Yahoo!”,	“Bing”];

alert(exampleArray.length);

var	exampleArray.push(“DuckDuckGo”);

alert(exampleArray.length);

	

As	you	will	see,	the	values	within	the	exampleArray	will	increase	by	one.

	

Chapter	18:	JavaScript	Math
	

Math	is	a	built-in	object	in	JavaSript,	which	has	methods	and	properties	for	math	functions
and	 constants,	 but	 not	 a	 function	 object.	 Math	 is	 not	 considered	 a	 constructor	 in
JavaScript,	unlike	other	global	objects.	The	methods	and	properties	of	JS	Math	are	static.
We	can	consider	the	constant	pi	as	Math.PI;	we	can	refer	to	the	sine	as	Math.sin(x).	Take
note	 that	 the	 X	 refers	 to	 the	 argument	 of	 the	 method.	 In	 JavaScript,	 constants	 are
prescribed	with	complete	precision,	thanks	to	real	numbers	(as	opposed	to	integers).

	

Properties	of	Math	in	JS
	

Refer	to	the	table	below	for	the	different	math	properties	used	in	JavaScript

	

Properties Description

Math.E The	 Euler’s	 Constant,	 which	 is	 the
base	of	natural	logs,	about	2.718

Math.LN10 The	natural	log	of	10,	about	2.303

Math.LN2 The	natural	log	of	2,	about	0.693

Math.LOG10E Base	10	log	of	E,	about	0.434

Math.LOG2E Base	2	log	of	E,	about	1.443

Math.SQRT2 Sq.	root	of	2,	about	1.414

Math.SQRT1_2 Sq.root	of	½	eq,	1	/	sq.	2,	about	0.707

Math.PI Ratio	 of	 circle	 circum	 to	 the	 diam
about	3.1415

	

	

	

Methods
	

Take	note	that	the	trigo	functions	(atan2(),	atan(),	acos(),	asin(),	tan(),	cos(),	sin())	return
radians	angles.	 In	order	 to	conv	 radians	 into	degrees,	you	can	divide	using	Math.PI	and
multiply	it	for	reverse	conversion.

	

In	 addition,	 the	 precision	 of	 math	 functions	 in	 JS	 are	 dependent	 on	 implementation.
Hence,	 various	 browsers	will	 yield	 varying	 results.	 Even	 similar	 engines	 on	 a	 different
architecture	or	operating	system	may	yield	varying	results.

	

Refer	to	the	table	below	for	the	different	Math	Methods	in	JS

	

Methods	Math. Description

.abs(x) Yields	the	absolute	number	value

.acosh(x) Yields	the	number’s	hyperbolic	arcosine.

.acos(x) Yields	the	number’s	arcosine

.asinh(x) Yields	the	number’s	hyperbolic	arcsine

.asin(x) Yields	the	number’s	arcsine

.atanh(x) Yields	the	number’s	hyperbolic	arctangent

.atan(x) Yields	the	number’s	arctangent

.atan2(x,	y) Yields	the	quotient’s	arctangent	arguments

.cbrt(x) Yields	the	number’s	cube	root

.clz32(x) Yields	the	number	prime	zeros	of	a	32-bit	int

.ceil(x) Yields	the	min	integer	>=	to	x

.cos(x) Yields	the	number’s	cosine

.coshh(x) Yields	the	number’s	hyperbolic	cosine

.exp(x) Yields	Ex	(x=argument,	E=Euler’s	constant	 (log
base)

.floor(x) Yields	the	biggest	int	<=	to	x

.fround(x) Yields	the	number’s	nearest	single	precision	float
rep

.hypot(x) Yields	the	sq	root	of	the	sum	of	sq	of	args

.imul(x,y) Yields	the	result	of	multiplying	32-bit	int

.log(x) Yields	the	number’s	natural	log

.log2(x) Yields	the	number’s	base	2	log

.log1p(x) Yields	the	number’s	natural	log	of	1+x

.log10(x) Yields	the	number’s	base	10	log

.max([x[,y[,-]]]) Yields	the	biggest	zero	or	more	numbers

.min([x[,y[,-]]]) Yields	the	min	zero	or	more	numbers

.pow(x.	y) Yields	base	to	exp	power

.random Yields	 a	 pseudo-random	 number	 between	 zero
and	1

.sign(x) Yields	the	sign	of	the	number,	which	indicates	if
x	is	zero,	negative,	or	positive

.round(x) Yields	the	number’s	value	rounded	to	the	nearest
int

.sin(x) Yields	the	number’s	sine

.sinh(x) Yields	the	number’s	hyperbolic	sine

.sqrt(x) Yields	the	number’s	positive	sq	root

.tan(x) Yields	the	number’s	tangent

.tanh(x) Yields	the	number’s	hyperbolic	tangent

.trunc(x) Yields	the	number’s	integral	part,	which	removes
any	fractional	digits

.

Chapter	19:	Advanced	Data	Types	–	Data	Conversion	and
Constructor

	

Like	 other	 programming	 languages,	 JavaScript	 have	 built-in	 data	 structures.	 However,
these	usually	differ	 according	 to	 the	 language.	 In	 this	 chapter,	we	will	 try	 to	 list	 all	 the
built-in	data	structures	used	in	JavaScript	and	the	properties	they	include.	You	can	also	use
them	 to	 construct	 other	 data	 structures.	 If	 possible,	 other	 programming	 languages	 are
drawn.

	

Dynamic	Typing
	

JavaScript	is	a	dynamic	language	or	a	loosely	typed.	Hence,	there	is	no	need	to	declare	the
variable	type	earlier.	The	type	will	be	automatically	determined	while	you	are	processing
the	program.	So	it	will	also	mean	that	we	can	have	similar	variable	as	various	types:

	

	

Data	Types
	

Based	on	the	latest	ECMA	Script,	the	standard	defines	seven	types	of	data:

	

Primitive	Data	Types
	

Null
Number
Boolean
Undefined
String
Symbol	(added	in	ECMA	Script	6)
And	Object

	

Primitive	Values
	

All	 kinds	 except	 objects	 describe	 values	 that	 are	 fixed.	 For	 instance,	 Strings	 are
immutable,	which	is	not	similar	to	C.	These	values	are	primitive	values.

	

Null	Type
	

This	type	only	has	one	value,	which	is	null.

	

Boolean	Type
	

	

Boolean	describes	a	logical	entity,	and	could	only	have	two	values:	true	and	false.

	

Undefined	Type
	

A	value	is	considered	as	undefined	if	its	variable	has	not	been	assigned.

	

Number	Type
	

There	 is	 only	 one	 number	 type	 based	 on	 the	 ECMAScript	 standard.	 This	 is	 the
range	between	–(253	-1)	and	253	-1)	or	double-precision	64-bit	binary	format	IEEE
754	value.	Take	note	that	there’s	no	certain	kind	of	integers.	Aside	from	the	ability
to	 signify	 floating-point	 number,	 the	 number	 type	 also	 has	 three	 values	 that	 are
symbolic:	NaN	(Not	a	Number),	-Infinity,	and	+Infinity.

	

In	 order	 to	 check	 for	 smaller	 of	 larger	 values	 compared	 to	 positive/negative
Infinity,	we	 can	 utilize	 the	 constants	Number.MIN	VALUE	or	 the	Number.MAX
VALUE	and	beginning	with	the	ECMAScript	6,	we	can	also	check	if	the	number	is
of	 double	 precision	 floating	 point	 through	 Number.isSafeInteger()	 and	 the
Number.MIN	SAFE	INTEGER	and	Number.MAX	SAFE	INTEGER.	Outside	this
range,	the	JavaScript	numbers	are	not	anymore	safe.

	

The	number	type	with	only	a	single	integer	has	two	major	representations:	0	can	be
+0	or	 -0.	Zero	 is	a	default	 for	+0.	This	has	almost	zero	 impact	 in	 the	praxis.	For
instance,	+0===-0	is	true.	But	you	will	take	note	of	this	if	you	use	0	as	a	divisor:

	

>	34		/	+0

Infinity

>34	/	-0

-Infinity

	

Even	 though	 the	 number	 usually	 signifies	 only	 the	 value,	 JavaScript	 can	 offer	 several
binary	 operators.	 We	 can	 use	 them	 to	 signify	 several	 Boolean	 values	 in	 one	 number
through	 bit	 masking.	 This	 is	 often	 regarded	 as	 a	 malpractice.	 But	 JS	 provide	 no	 other
methods	to	signify	a	Boolean	set	such	as	an	array	of	Booleans	or	an	object	with	Boolean
values	defined	to	name	the	properties.

	

Bit	masking	also	has	the	tendency	to	make	the	code	hard	to	read,	interpret,	and	keep.		It	is
important	 to	 use	 these	 strategies	 in	 very	 limited	 environments	 such	 as	when	 you	 try	 to
cope	with	the	limitation	of	storage	or	in	extreme	cases	if	every	bit	over	the	network	will
count.	You	should	only	consider	this	strategy	if	this	is	the	only	option	you	can	use	for	size
optimization.

	

String	Type
	

The	String	 type	 in	 JavaScript	 is	 utilized	 to	 signify	 textual	 type	 of	 data.	This	 is	 a	 set	 of
values	unsigned	16-bit	 integer.	Every	element	in	the	String	will	occupy	a	position	in	the
String.	The	first	element	is	within	index	0,	and	the	next	will	be	1,	and	2,	and	so	forth.	The
String	length	refers	to	the	number	of	values	within.

	

Not	similar	to	programming	languages	such	as	C,	the	Strings	in	JS	are	immutable.	Hence,
when	you	create	a	string,	you	can’t	modify	it.	But	it	is	still	possible	to	make	another	string
depending	on	an	operation	of	the	original	string.	This	is	true	of	the	original	substring	by
choosing	 individual	 letters	 or	 by	 calling	 the	 String.substr().	 This	 is	 also	 true	 for	 a
concatenation	 of	 two	 individual	 strings	 by	 using	 the	 addition	 operator	 or	 by	 calling
String.concat().		

	

Code	String	Typing
	

You	may	 be	 tempted	 to	 use	 strings	 to	 signify	 complicated	 data.	 This	method	 has	 some
short-term	advantages:

	

Debugging	is	easy	with	string.	Anything	inside	the	string	will	be	printed.

	

A	lot	of	APIs	such	as	XMLHttpRequest,	local	storage	values,	and	input	fields	are
using	Strings	as	common	denominator.

	

	

It’s	easy	to	create	complicated	strings	using	concatenation

	

Conventionally,	it	is	possible	to	signify	any	data	structure	using	a	string.	But	this	is	not	a
good	idea.	For	example,	you	can	emulate	a	list	using	a	separator	even	though	a	JS	array	is
a	more	ideal	solution.	But	if	we	use	a	separator	in	the	list	elements,	there	is	the	tendency
for	the	list	to	be	broken.	You	can	still	choose	an	escape	character,	but	still	this	method	will
require	a	lot	of	conventions	and	will	just	create	unnecessary	maintenance	problem.

	

It	is	ideal	to	use	strings	only	for	textual	data.	In	signifying	complicated	data,	you	can	parse
strings	and	utilize	the	suitable	abstraction.

	

Symbol	Type
	

The	JS	ECMAScript	6	features	Symbols,	which	are	unique	and	immutable	primitive	value
and	 could	 be	 used	 as	 the	 key	 of	 an	 Object	 property.	 In	 some	 languages,	 Symbols	 are
known	as	atoms.	While	in	C,	they	can	be	compared	to	enum.

	

Objects
	

In	programming,	an	object	refers	to	a	value	in	memory	that	is	possibly	referenced	by	an
identifier.

	

Properties
	

In	JS,	objects	could	be	regarded	as	a	group	of	properties.	Using	the	object	literal	syntax,
you	 can	 initialize	 a	 limited	 set	 of	 properties,	which	 you	 can	 easily	 add	 or	 remove.	The
values	 of	 property	 could	 be	 of	 any	 type,	 which	 includes	 other	 objects	 that	 will	 enable
creating	complicated	data	structures.	You	can	identify	properties	using	key	values,	which
could	either	be	a	Symbol	or	a	String	value.

	

We	 have	 two	 kinds	 of	 object	 properties	 that	 have	 specific	 attributes	 –	 The	 accessor
property	and	data	property.

	

	

Accessor	Property
	

This	property	associates	a	key	with	one	or	two	accessor	functions	in	order	to	store
or	retrieve	a	value.	This	property	has	the	following	attributes:

	

ATTRIBUTE TYPE DEFAULT
VALUE

DESCRIPTION

[[Configurable]] Boolean False If	 false,	 you	 can’t	 delete	 the
property	and	you	can’t	 change
it	to	a	data	property.

[[Enumerable]] Boolean False If	 true,	 you	can	 enumerate	 the
property	in	for…in	loops.

[[Set]] Undefined
or
Function
Object

Undefined You	 can	 call	 this	 function
using	 an	 argument	 containing
the	assigned	value	This	will	be
executed	 once	 you	 specify
property	to	be	changed

[[Get]] Undefined
or
Function
Object

Undefined You	 can	 call	 this	 function
using	 an	 empty	 arg	 list	 and
retrieve	 the	 value	 property	 if
you	perform	a	get	access	to	the
value

	

Take	note	that	attribute	is	often	use	in	JS	engine.	Hence,	there	is	no	way	to	directly
access	it.	Hence,	the	attribute	is	written	within	two	squared	braces	rather	than	one.

Data	Property
	

Data	property	relates	a	key	with	a	value.	It	has	the	following	attributes:

	

	

	

ATTRIBUTE TYPE DEFAULT
VALUE

DESCRIPTION

[[Configurable]] Boolean False If	 false,	 you	 can’t	 delete	 the
property	 and	 you	 cannot	 change
the	 attributes	 other	 than	 the
[[Writable]]	and	[[Value]].

[[Enumerable]] Boolean False If	 true,	 you	 can	 enumerate	 the
property	for…in	loops.

[[Writable]] Boolean False If	 false,	 you	 can’t	 change	 the
[[Value]]	property

[[Value]] Any	Type Undefined You	 can	 retrieve	 the	 value
through	a	property’s	get	access.

	

The	following	attributes	became	obsolete	in	the	ECMA	Script3,	and	renamed	in	the	ECMA	Script5.

	

Attribute Type Description

DontDelete Boolean [[Configurable]]	attribute	–	reverse	state	of	ES5

DontEnum Boolean [[Enumerable]]	attribute	–	reverse	state	of	ES5

Read-only Boolean [[Writable]]	attribute	–	reverse	state	of	ES5

	

Accessor	Property
	

The	 accessor	 property	 relates	 a	 key	with	 get	 and	 set	 functions	 in	 order	 to	 store	 or	 retrieve	 value.	The
following	has	its	attributes:

	

Attribute Type Default	Value Description

[[Configurable]] Boolean False If	false,	you	can’t
delete	the	property
and	you	can’t
change	it	to	data
property.

[[Enumerable]] Boolean False If	true,	you	can
enumerate	the
property	for…in
loops

[[Set]] Undefined	or
Function	Object

Undefined You	can	call	the
function	using	an
arg	containing	the
assigned	value	and
executed	if	you	try
to	change	a
specified	property.

[[Get]] Undefined	or
Function	Object

Undefined You	can	call	the
function	using	an
empty	arg	list	and
restore	the	value
property	by
performing	a	get
access	to	the
value.

	

“Normal”	Functions	and	Objects
	

A	 JS	 object	 is	 considered	 as	 a	mapping	 between	 values	 and	 keys.	Keys	 are	 Symbols	 or	 Strings	while
values	could	be	anything.	This	will	make	the	object	a	normal	fit	for	hashmaps.	Meanwhile,	functions	are
normal	objects,	which	can	be	called.

	

DATA	CONVERSION
	

Java	is	a	 loosely	typed	language.	Hence,	as	a	programmer,	you	still	need	to	consider	the	actual	kind	of
values	 that	 you	 are	 dealing.	A	usual	 error	 in	 browser	 scripting	 is	 to	 read	 the	 property	 value	 of	 a	 form
control	that	the	user	can	type	a	number	and	will	add	this	value	to	a	different	number.	The	property	values
of	form	controls	are	strings.	Even	the	characters	the	series	contains	still	signify	a	number.	Trying	to	add	a
string	 to	 a	 value,	 even	 if	 this	 value	 is	 a	 number,	will	 result	 to	 the	 second	 value	 type-converted	 into	 a
string,	which	is	concatenated	to	the	end	of	the	first	string	value	originating	from	the	form	control.	This
error	 is	 caused	 by	 the	 dual	 nature	 of	 the	 positive	 operator	 used	 for	 numeric	 addition	 as	well	 as	 string
concatenation.	Hence,	 the	 nature	 of	 the	 operation	 performed	 is	 distinguished	 by	 the	 context	where	 the
operands	are	numbers	to	begin	with	will	the	positive	operator	will	execute	addition.	Or	else,	it	transforms
all	the	operands	to	strings	and	performs	concatenation.

	

The	 discussions	 that	 follow	 is	 illustrated	 using	 tables	 of	 values	 generated	 using	 JavaScript	 conversion
operations.	The	headers	of	 the	 tables	show	the	value	as	signified	 in	 the	JS	source	code	used	 instead	of
their	internal	representation.

	

For	 instance,	 321e-2	 as	 a	 number	 was	 the	 character	 series	 encoded	 in	 the	 source	 code.	 This	 will	 be
interpreted	as	a	number	value	of	3.21.	The	different	values	here	have	been	selected	to	show	the	aspects	of
conversion	type.	Take	note	that	these	aspects	may	not	be	true	to	all	the	tables	presented.	But	all	the	test
values	are	included	in	the	tables	for	complete	comparison,	except	where	no	type	of	conversion	happens.
The	table	bodies	list	all	the	results	of	the	different	type	operations	conversion.

	

Conversion	to	Boolean
	

In	assessing	the	expression	of	an	if	statement,	the	JavaScript	interpreter	will	type-convert	the	result	of	this
expression	 into	Boolean	 so	 it	 could	 arrive	 into	 a	decision.	Meanwhile,	 different	operators	 type-convert
their	operands	 to	Boolean	to	 identify	 its	action,	 including	the	 logical	operators	such	as	Not	(!),	OR	(||),
and	AND	(&&).	The	operator	NOT	will	convert	the	operand	into	Boolean	and	if	its	value	is	true,	it	will
return	 false,	and	 if	 false,	 it	will	 return	 true.	Because	 the	 result	of	a	NOT	operation	 is	a	Boolean	value,
which	is	the	inverse	of	the	type-converted	veracity	of	the	operand.	Two	NOT	operations	combined	will
yield	a	Boolean	value,	which	is	equal	to	the	result	of	the	type-conversion	of	the	Boolean	operand:

	

	

You	can	use	this	method	to	produce	the	tables	below.

	

Another	method	of	producing	a	Boolean	value,	which	represents	the	type-converted	veracity	of	a	value	is
to	pass	this	value	to	the	function	called	Boolean	constructor.

	

Numeric	Values:	Double	NOT	(!!col)

	

	 NaN +Infinity -Infinity 321e-2 16.8 16 8 1.6 1 +0 -0

!!col false true true true true true true true true false false

	

If	the	numbers	are	transformed	into	a	Boolean,	zero	will	become	false.	Other	numbers	will	be	true	except
of	the	special	numeric	value	Not	a	Number	(NaN)	used	if	another	kind	is	transformed	to	a	number,	but
this	conversion	will	not	 result	 in	a	sensible	number.	Take	note	 that	NaN	is	always	 false.	The	values	of
negative	and	positive	infinity,	while	not	finite	values,	are	non-zero	numbers	and	will	always	type-convert
to	a	true	Boolean.

	

String	Values:	Double	NOT	(!!col)
	

	 “xx” “-0x10” “-010” “0xFF”
(Hex)

“0x10”

(Hex)

“010” (Octal) “321e-
2”

“16.8” “16” “8” “1.6” “1” “0” “-1.6” “”

(empty
string)

!!col true true true true true true true true true true true true true true true false

	

The	rules	are	even	easier	 to	understand	for	converting	string	to	Boolean,	because	all	non-empty	strings
will	be	true	and	empty	strings	will	be	false.

	

Other	Values:	Double	NOT	(!!col)
	

	 function()
{return;}

new
Object()

false true null undefined

!!col true true false true false false

	

Null	and	Undefined	will	be	converted	to	Boolean	false	values,	which	are	not	converted,	while	functions
are	always	true.

	

This	 is	 the	 most	 important	 aspect	 of	 type-converting	 to	 Boolean,	 because	 it	 permits	 a	 script	 to
differentiate	between	properties	in	an	environment,	which	could	be	undefined	or	could	refer	to	an	object.
Considering	a	null	or	an	undefined	value	as	an	object	will	 result	 to	errors.	Hence,	 if	you	are	 in	doubt,
code	can	prevent	producing	errors	by	wrapping	the	code,	which	likes	to	gain	access	an	object	in	the	test
if.	Including	the	suspect	reference	to	the	expression	object	will	be	converted	into	Boolean,	and	the	result
will	be	false	if	the	object	is	not	existing	while	true	if	it	is	existing.

	

	

The	 double	 NOT	 operation	will	 allow	 the	 setting	 of	 Boolean	 flags,	 which	 you	 can	 use	 to	 signify	 the
existence	of	different	objects:

	

	

Conversion	to	String
	

As	discussed	earlier,	conversion	type	to	a	string	will	usually	result	from	the	action	of	the	positive	operator
if	one	operator	is	not	a	number.	The	simplest	way	to	get	the	string,	which	results	from	the	conversion	type
is	through	concatenation	of	value	to	an	empty	string.	This	technique	is	often	used	to	produce	the	tables
below.

	

Another	way	 is	 to	 convert	 a	 value	 into	 a	 string	 to	 pass	 it	 as	 an	 arg	 to	 the	 constructor	 string	 called	 as
function:

	

Numeric	Values:	type-convert	to	string	(“”	+	col)

	 NaN +Infinity -Infinity 321e-2 16.8 16 8 1.6 1 +0 -0

“”+col NaN Infinity -Infinity 3.21 16.8 16 8 1.6 1 0 0

	

Take	note	 that	 the	number	produced	from	the	source	code	321e-2	has	generated	 the	string	3.21,	as	 this
string	signifies	the	internal	number	generated	from	the	source	code.	But	the	internal	number	of	JavaScript
will	take	the	form	of	double	precision	IEEE	floating	point,	and	which	means	that	we	cannot	signify	the
numbers	with	precision.	The	outcome	of	the	operations	could	only	yield	close	estimates	and	if	they	are
converted	into	strings,	this	string	will	signify	the	estimate	and	could	be	undesirable	or	unexpected.	This	is
usually	needed	to	use	custom	functions	to	yield	string	representations	of	numbers	in	the	format	you	need.
Rare	 is	 the	 case	 that	 the	 type	 conversion	mechanism	 is	 suited	 to	 generate	 numeric	 output	 needed	 for
presentation.

	

Other	Values:	type-convert	to	string	(“”	+	col)

	

	

	

	 function()
{return;}

new
Object()

false true null undefined

“”+col Function()
{return;

}

[object
Object]

false true null undefined

	

If	you	type	convert	the	functions	or	objects	to	strings,	you	need	to	call	their	toString	method.	These	will
default	 into	 the	 Function.prototype.toString	 and	Object.prototype.toString	 but	 this	 could	 be	 overloaded
with	a	function	called	to	a	“toString”	property	of	the	function/object.	Type	conversion	of	a	function	into	a
string	doesn’t	always	lead	to	the	source	code	of	the	function.	The	behavior	of	Function.prototype.toString
is	dependent	on	 the	 implementation	and	could	vary	a	 lot,	 like	 the	outcome	 from	 the	methods	and	host
objects.	 This	 includes	 the	 methods	 and	 objects	 provided	 by	 the	 environment	 including	 the	 DOM
elements.

	

Conversion	to	Numbers
	

Conversion	of	values	to	numbers,	especially	strings	to	numbers,	 is	a	common	requirement	and	you	can
use	different	methods.	Any	numerical	operator	aside	 from	 the	addition	and	concatenation	operator	will
force	 type-conversion.	 Hence,	 the	 conversion	 of	 a	 string	 to	 a	 number	 may	 involve	 performing	 a
mathematical	operation	on	the	representation	of	a	string,	which	will	not	affect	the	outcome	number	like
multiplying	by	one	or	subtracting	zero.

	

But	the	unary	+	operator	will	also	type-convert	the	operand	to	a	number,	as	it	will	not	perform	any	more
mathematical	operations,	it	will	be	the	easiest	method	for	type-conversion	of	a	string	into	a	number.

	

Meanwhile,	 the	 unary	 –	 operator	will	 also	 include	 the	 type-conversion	 of	 the	 operand	 if	 needed	 aside
from	negating	the	value.

	

	

Even	though	the	unary	+	is	the	quickest	way	to	convert	a	string	into	a	number,	you	can	still	use	a	final
method,	 which	 will	 use	 the	 JavaScript	 type	 conversion	 for	 algorithms.	 You	 can	 call	 the	 constructor
Number	as	the	argument	while	the	return	value	will	be	the	number,	which	represents	the	type-conversion
of	the	result.

	

	

The	 constructor	Number	 is	 a	 slow	 form	 of	 the	 type-conversion	methods.	 However,	 if	 speed	 is	 not	 an
overriding	element,	it	will	generate	an	easier-to-understand	source	code.

	

The	tables	below	show	the	outcomes	of	type-converting	into	a	number	through	the	unary	+	operator.	But
take	 note	 that	 all	 the	 preceding	 alternative	 method	 will	 generate	 the	 same	 outcome	 as	 they	 all	 use
precisely	the	same	algorithm	to	perform	the	conversion.

	

String	Values:	Type	Conversion	to	Number	(+col)

	

	

	 “xx” “-0x10” “-010” “0xFF”

(Hex)

“0x10”

(Hex)

“010”

(Octal)

“321e-
2”

“16.8” “16” “8” “1.6” “1” “0” “-1.6”

+col NaN NaN -10 255 16 10 1.23 16.8 16 8 1.6 1 0 -1.6

	

In	 converting	 strings	 to	 numbers,	 it	 is	 important	 to	 consider	 the	 type	 conversion	 outcomes	 from	 the
strings,	which	do	not	signify	numbers.	The	empty	string	will	be	converted	into	the	number	zero,	which
depends	on	the	application	could	be	damaging	to	the	code.	Still,	 it	 is	crucial	to	be	aware	of	the	risk.	In
other	 context	 strings	 that	 follow	 the	 JS	 format	 for	 octal	 number	 could	 be	 disastrous.	 However,	 the
conversion	will	still	treat	them	as	base	10.		But	the	strings,	which	follow	the	format	for	Hex	numbers	will
be	interpreted	as	hexadecimals.	Meanwhile,	the	strings	that	cannot	be	interpreted	as	a	number-type	will	be
converted	 to	NaN	 that	 could	 be	 checked	 for	 the	 isNan	 function.	 Strings	 that	 represent	 numbers	 in	 an
exponential	format	(“321e-2”)	are	interpreted	alongside	minus	symbols.

	

Other	Values:	Type-Convert	to	Number	(+col)

	

	 function()
{return;}

new
Object()

false true null undefined

+col NaN NaN 0 1 0 NaN

	

Functions	and	objects	are	always	type-converted	into	NaN	numbers	similar	to	undefined	values.	It	is	also
important	 to	 take	 note	 that	 null	 will	 be	 type-converted	 to	 zero.	 Possibly	 because	 this	 will	 be	 type-

converted	 to	Boolean	 first	 and	 then	 to	 number.	 If	 you	 take	 a	 closer	 look	 at	 the	Boolean	 results	 in	 the
preceding	table,	null	will	be	converted	into	Boolean	false	that	will	then	become	numeric	zero.	There	is	no
need	 to	 type-convert	 these	value	 types	 to	numbers.	The	conversion	 is	only	 relevant	by	considering	 the
accidental	outcome	of	value	conversion,	which	is	expected	to	be	a	string	but	could	really	be	performing
arithmetic	operations	using	a	value	as	an	operand.

	

	

Parsing	to	Number
	

Another	way	of	changing	a	string	to	number	is	through	a	global	function	designed	to	parse	a	string	and
return	a	number.	The	 function	parseFloat	will	 accept	a	 string	argument	and	will	 return	a	 floating	point
number,	which	will	result	from	parsing	that	string.	Non-string	args	will	be	type-coverted	first	to	a	string
as	 discussed	 earlier.	The	 functions	 for	 string	 functions	will	 be	 interpreted	 in	 the	 string	 based	on	 every
character	until	they	stumble	upon	a	character,	which	should	not	be	part	of	the	number.	At	this	point,	they
will	stop	and	yield	a	number	based	on	the	characters,	which	they	have	interpreted	that	should	not	be	part
of	 that	number.	You	can	fully	exploit	 this	feature,	for	 instance,	 through	a	string	signifying	a	CSSlength
value	like	parseFloat	“34.6eh.	The	“eh”	will	be	ignored	because	these	characters	cannot	be	added	with	the
preceding	set	to	generate	a	valid	number.	The	printed	number	would	only	be	34.6,	which	is	the	numeral
composition	of	the	CSS	and	refined	of	its	units.

	

parseFloat
	

String	Values:	parseFloat(col)

	

	 “xx” “-0x10” “-010” “0xFF”

(Hex)

“0x10”

(Hex)

“010”

(Octal)

“321e-
2”

“16.8” “16” “8” “1.6” “1” “0”

parseFloat(col NaN 0 -10 0 0 10 3.21 16.8 16 8 1.6 1 0

	

Through	 the	 parseFloat	 function,	 the	 empty	 string	will	 generate	NaN,	 along	 the	 strings	 that	 cannot	 be
subject	to	numerical	interpretation.	The	exponential	format	is	interpreted	and	the	primary	zero	in	the	octal
format	will	not	block	the	reading	of	the	string	as	a	decimal	number.	Hexadecimal	strings	could	be	read	as
the	number	zero,	as	the	following	“x”	will	not	be	read	as	part	of	a	number.	Hence,	parsing	will	stop	after
the	primary	zero.

	

	 function()
{return;}

new
Object()

false true null undefined

parseFloat+col NaN NaN NaN NaN NaN NaN

	

The	non-string	values	are	first	changed	into	a	string,	which	is	used	through	the	parseFloat.	Because	the
type-conversion	to	a	string	will	not	usually	lead	in	a	string	that	could	be	read	as	a	number,	the	result	will
be	NaN.	The	functions	and	objects	could	have	a	custom	method	toString,	which	could	return	strings	that
could	be	seen	as	numbers	but	this	will	be	a	special	need.

	

parseInt
	

The	function	parseInt	will	behave	like	the	function	parseFloat,	aside	from	its	feature	of	reading	the	string
argument	as	an	integer	and	as	an	outcome	will	recognize	fewer	characters	as	potential	candidates	 to	be
part	of	this	number.	You	can	also	use	parseInt	to	convert	a	floating	point	number	into	integer.	However,
this	is	not	an	ideal	method,	because	if	the	argument	is	of	numeric	type,	this	will	be	changed	into	a	string
and	then	will	be	parsed	as	a	number.	This	method	can	be	very	inefficient.	This	could	generate	conflicting
outcomes	with	numbers	like	3e-300,	in	which	the	next	smaller	integer	will	be	zero.	But	the	parseInt	will
yield	2.

	

In	addition,	because	of	the	numerical	format	employed	by	JavaScript,	the	numbers	are	usually	signified
by	near	estimates.	For	instance,	1/6+1/3+1/2	=	0.999999,	which	will	not	be	interpreted	as	one.	Through
the	function	parseInt,	the	equation	will	result	to	zero	if	you	call	it	to	act	on	the	operation	result.

	

In	rounding	integers	to	one,	Math.floor	and	Math.round.Math.ceil	are	more	ideal.	For	a	desired	outcome,
which	 could	be	 expressed	 as	 a	32-bit	 signed	 integer,	 the	bitwise	operation	 shown	below	could	 also	be
suitable:

	

	

Numeric	Values:	parseInt(col)
	

	 NaN +Infinity -Infinity 321e-2 16.8 16 8 1.6 1 +0 -0

parseInt(col) NaN NaN NaN 1 16 16 8 1 1 0 0

	

If	it	is	acting	on	number,	the	result	of	the	argument’s	early	type-conversion	to	a	string	will	be	clear	on	the
results.	Take	note	that	the	value	3210-2	is	the	number	3.21	internally,	and	this	type	will	be	converted	into
the	string	“32.1”.	Hence,	the	entry	in	the	table	above	could	look	odd,	but	the	results	are	actually	right.

	

String	Values:parseInt(col)
	

	 “xx” “-0x10” “-010” “0xFF”

(Hex)

“0x10”

(Hex)

“010”

(Octal)

“321e-
2”

“16.8” “16” “8” “1.6” “1” “0”

parseInt(col) NaN -16 -8 255 16 8 321 16 16 8 1 1 0

	

Strings	 in	 the	 hexadecimal	 and	 octal	 number	 formats	will	 signify	 integers	 and	 parseInt	 can	 read	 them
according	to	the	rules	of	JS	source	code,	even	if	they	have	leading	minus	symbols.

	

Other	Values:	parseInt(col)
	

	 function()
{return;}

new
Object()

false true null undefined

+col NaN NaN NaN NaN NaN NaN

	

As	 the	 parseInt	 performs	 type-conversion	 of	 the	 non-string	 args	 to	 strings,	 it	will	 always	 generate	 the
same	outcomes	for	function,	object,	undefined,	null,	and	Boolean	arguments	like	in	parseFloat.

	

ToInt32
	

ToInt32	 is	an	 internal	 function,	which	you	can	only	use	 in	 the	 JS	 implementation,	and	you	cannot	call
directly	 from	 the	 scripts	 similar	 to	 the	 method	 for	 parseInt.	 This	 is	 a	 bit	 off	 relevant	 to	 the	 topic	 of
converting	Javascript	values	into	numbers,	but	this	could	be	used	in	special	cases.

	

The	bitwise	operators	such	as	AND	(&)	and	OR	(|)	are	operating	on	numbers,	so	they	are	type-converting
the	operands	into	numbers.	But	they	can	still	operate	on	32-bit	signed	integers.	Hence,	with	the	numerical
value,	they	call	the	internal	ToInt32	function	with	the	number	as	the	argument	and	use	the	returned	value
as	the	operand.	This	returned	value	is	a	constant	32-bit	integer.

	

The	result	could	be	similar	to	parseInt	added	with	type-conversion	of	numbers.	Even	though	the	outcome
is	restricted	in	range	to	32	bits,	this	is	always	numerical	and	not	+/-	Infinity	or	NaN.

	

Similar	to	using	numerical	operators	for	operations	with	no	effect	on	the	value	of	any	number,	it	is	still
doable	 to	do	a	bitwise	operation,	which	has	no	effect	on	 the	value	yielded	by	calling	 the	ToInt32.	The
following	tables	were	produced	through	a	zero	or	a	bitwise	operation.

	

	

	

Numeric	Values:	ToInt32(col|0)
	

	 NaN +Infinity -Infinity 321e-2 16.8 16 8 1.6 1 +0 -0

col|0 0 0 0 3 16 16 8 1 1 0 0

	

Notice	 that	 –Infinity,	 +Infinity,	 and	NaN	 are	 all	 changed	 to	 zero,	while	 the	 floating	 point	 values	were
truncated	to	integer.

	

String	Values:	ToInt32(col|0)
	

	 “xx” “-0x10” “-010” “0xFF”

(Hex)

“0x10”

(Hex)

“010”

(Octal)

“321e-
2”

“16.8” “16” “8” “1.6” “1” “0” “-1.6”

(col|0) 0 0 -10 255 16 10 1 16 16 8 1 1 0 -1

	

The	string	values,	which	will	be	type-converted	into	NaN	will	be	converted	into	as	zero	from	ToInt32.

	

Other	Values:	ToInt32(col|0)

	

	 function()
{return;}

new
Object()

false true null undefined

col|0 0 0 0 1 0 0

	

The	 undefined	 functions	 and	 objects	 are	 transformed	 to	 zero	 through	 this	 operation.	 Remember,	 the
Boolean	true	will	be	changed	to	the	value	of	1.

	

Conversion	of	User	Input
	

Many	of	the	mechanisms	for	obtaining	user	input	as	well	as	prompt,	generate	results	in	string	forms.	If
you	expect	the	user	to	input	a	number,	it	is	still	needed	to	enter	something.	If	you	need	to	convert	a	string
into	a	number	for	future	operations,	you	can	use	any	method	discussed	above,	just	make	certain	that	the
method	will	be	suitable	 to	 the	 input	of	 the	nature.	Results	with	some	 typos	or	erroneous	data	could	be
challenging	to	detect	and	manage.

	

Before	changing	a	string	to	a	number,	it	may	be	ideal	to	employ	a	Regular	Expression	in	order	to	check
the	content	of	the	string	to	make	certain	that	they	are	conforming	to	a	format	that	is	acceptable.	This	will
serve	to	get	rid	of	the	string	values,	which	may	otherwise	suffer	from	the	nuances	of	the	string	to	number
that	converts	processes	if	applied	to	string	values	that	are	unexpected.

	

Chapter	20:	Dates	and	Time

	

The	Date	Object
	

The	data	object	enables	basic	storage	and	recall	of	dates	and	times.	Below	is	the	syntax	for
the	date	object:

	

	

	

Below	are	the	parameters	of	the	date	object:

	

	

Parameter Description

dateObi Mandatory.	This	is	used	to	assign	the	Date	object.

dateVal Mandatory.	When	a	numeric	value,	this	parameter	signifies	the
number	of	milliseconds	in	UCT	between	the	certain	time	and	Jan
1	1970	midnight.	If	dateVal	is	a	string,	this	will	be	parsed	based
on	the	rules	in	JavaScript.	Meanwhile,	the	dateVal	argument
could	also	be	a	VT_DATE	value	as	generated	from	certain
objects	ActiveX.

ms Optional.	Refers	to	the	number	between	zero	to	999,	which
specifies	milliseconds.

seconds Optional.	Should	be	included	if	you	add	milliseconds.	This	refers
to	the	number	from	zero	to	59,	which	signifies	the	seconds.

minutes Optional.	Should	be	included	if	you	add	seconds.	This	refers	to
the	number	from	zero	to	59,	which	signifies	the	minutes.

hours Optional.	Should	be	included	if	you	add	minutes.	This	refers	to
the	number	from	zero	to	23	(mn	to	11:00	pm,	which	refers	to	the

hour)

month Mandatory.	The	month	is	a	number	from	zero	to	11	(Jan	to	Dec)

year Mandatory.	Should	be	complete	year	such	as	1996	and	not	96

date Mandatory.	The	date	as	an	integer	in	between	one	and	31.

	

Take	note	that	a	data	object	will	contain	a	number	signifying	a	certain	occurrence	in	time
to	within	a	millisecond.	When	the	value	of	an	argument	is	larger	than	the	range	or	this	is	a
negative	 number.	 Other	 stored	 values	 will	 be	 modified.	 For	 instance,	 if	 you	 enter	 240
seconds,	the	JavaScript	will	redefine	the	number	as	four	minutes.

	

When	the	number	is	NaN,	the	object	will	not	represent	a	particular	time	instant.	When	you
pass	no	parameters	 to	 the	Date	object,	 it	will	be	 initialized	 to	UTC.	Remember,	a	value
should	be	provided	to	the	object	before	using	this.	The	date	range	could	be	signified	in	the
object	Date	about	285616	years	before	and	after	Jan	1	1970.

	

The	example	below	shows	the	use	of	the	Date	object.

	

Date	Object	Properties
	

There	are	two	properties	of	the	Date	Object:	prototype	Property	and	constructor	Property.

	

Property Description

Prototype Yield	a	reference	to	the	objects	class	prototype

Constructor Specifies	the	function	that	creates	an	object

	

	

	

Date	Object	Functions
	

Functions Description

Date.UTC Yields	the	number	of	milliseconds	between	Jan	1,	1970
UTC	and	the	date	added

Date.parse Parses	that	string	that	contains	a	date,	and	yields	the
milliseconds	between	the	date	and	midnight	Jan	1,

1970	UTC

Date.now Yields	the	milliseconds	between	Jan	1,	1970	and	the
present	time	and	date

	

Date	Object	Methods
	

Below	is	the	list	of	Date	object	methods:

	

Method Description

getFullYear Yields	the	year	value	in	local	time.

getHours Yields	the	hours	value	in	local	time.

getDay Yields	the	week	day	in	local	time.

getDate Yields	the	month	day	through	local	time

getMinutes Yields	the	minute	value	in	local	time

getMonth Yields	the	month	value	in	local	time

getSeconds Yields	the	seconds	value	in	local	time

getMilliseconds Yields	the	milli	seconds	in	local	time

getTime Yields	 the	 time	 within	 an	 object	 Date	 as	 the	 no.	 of	 milli
seconds	since	Jan	1,	1970	midnight

getUTCDate Yields	the	month	day	in	UTC

getUTCDay Yields	the	week	day	in	UTC

getUTCFullYear Yields	the	year	in	UTC

getUTCHours Yields	the	hours	in	UTC

getUTCMilliseconds Yields	the	milliseconds	in	UTC

getUTCMinutes Yields	the	minutes	in	UTC

getUTCMonth Yields	the	month	in	UTC

getSeconds Yields	the	seconds	in	UTC

getTimezoneOffset Yields	 the	 minute	 difference	 between	 the	 UTC	 and	 the
computer

getYear Yields	the	value	year

getVarDate Yields	the	value	VT_DATE	in	a	Date	object

isPrototype Yields	 a	 Boolean	 value,	 which	 signifies	 if	 an	 object	 is
existing	in	the	prototype	chain	of	an	object

hasOwnProperty Yields	the	Boolean	value,	which	signifies	if	an	object	has	a
property	with	the	particular	name

propertyIsEnumerable Yields	a	Boolean	value,	which	signifies	if	a	certain	property
is	a	composition	of	an	object	and	if	it	is	enumerable.

setSeconds Defines	the	seconds	value	in	local	time

setMonth Defines	the	month	value	in	local	time

setMinutes Defines	the	minute	value	in	local	time

setMilliseconds Defines	the	milliseconds	value	in	local	time

setHours Defines	the	hour	value	in	local	time

setDate Defines	the	numerical	month	day	in	local	time

setFullYear Defines	the	value	year	in	local	time

setUTCSeconds Defines	the	seconds	value	in	UTC

setUTCMonth Defines	the	month	value	in	UTC

setUTCMinutes Defines	the	minutes	value	in	UTC

setUTCMilliseconds Defines	the	milliseconds	value	in	UTC

setUTCHours Defines	the	hours	value	in	UTC

setUTCFullYear Defines	the	year	in	UTC

setUTCDate Defines	the	numerical	month	day	in	UTC

setTime Defines	the	date	and	time	value	in	object	Date

setYear Defines	the	year	value	in	loc	time

toLocaleTime Yields	a	time	as	a	value	string	suitable	to	the	current	local
of	the	host	environment

toLocaleDateString Yields	a	data	in	string	value	suitable	to	the	current	local	of
the	host	environment

toDateString Yields	a	data	in	value	string

toISOString Yields	a	date	in	value	string	but	in	ISO	format

toGMTString Yields	a	date	changes	to	a	string	in	GMT

toJSON Yields	 a	 changed	 data	 of	 type	 object	 prior	 to	 the	 JSON
serial

valueOf Yields	the	prime	value	of	a	defined	object

toTimeString Yields	the	time	as	a	string	value

toString Yields	a	string	representation	of	the	object

toUTCString Yields	a	date	changed	to	a	string	in	UTC

	

	

Calculating	Dates	and	Time	using	JavaScript
	

It	is	possible	to	use	the	object	Date	in	order	to	perform	usual	clock	and	calendar	tasks	like
computing	elapsed	time	and	date	comparison.

	

Setting	up	Date	to	the	Existing	Date
	

If	you	make	an	instance	of	the	object	Date	without	defining	a	date,	it	will	return	a	value,
which	 will	 signify	 the	 present	 date	 and	 time,	 which	 also	 includes	 the	 millisecond,	 the
second,	the	minute,	hour,	day,	and	year.	You	can	then	modify	or	read	this	date	and	time.

	

The	example	below	shows	the	process	of	instantiating	a	date	without	the	use	of	any	type
of	parameters	and	showing	the	result	in	mm-dd-yy	format.

	

	

Setting	up	a	Particular	Date
	

It	is	possible	to	set	a	particular	date	through	passing	string	date	to	the	constructor.

	

	

The	 time	zone	 shown	 in	 the	date	 string	 is	 suitable	 to	 the	 time	zone	defined	 in	 the	 local
machine.	 It	 is	 a	 good	 thing	 that	 JS	 is	 dynamic	 about	 the	 string	 format	 used	 as	 the
parameter.	For	instance,	you	can	use	“1-16-2016”,	“January	16,	2016”,	or	“16	Jan	2016”.

	

	

	

	

	

Chapter	21:	Regular	Expressions	in	JavaScript
	

	

Regular	Expressions	in	JavaScript	are	used	to	match	the	character	combinations	in	strings.
They	are	also	referenced	as	objects,	and	they	are	used	with	the	test	and	exec	methods	of
RegExp	with	 the	split,	search,	replace,	and	match	methods	of	String.	In	 this	chapter,	we
will	discuss	the	JavaScript	regular	expressions.

	

	

Constructing	a	Regular	Expression
	

You	can	create	a	regular	expression	in	one	of	the	two	ways:

	

Using	a	regular	expression	that	is	composed	of	a	pattern	within	slashes:

	

	

RegExp	 literals	offer	 compilation	of	 the	 regular	 expression	 if	you	 load	 the	 script.	 If	 the
regular	expression	could	stay	fixed,	it	is	ideal	to	use	this	for	better	performance.	You	can
also	call	the	function	constructor	of	the	object	RegExp	as	you	can	see	below:

	

	

You	can	easily	compile	the	runtime	RegExp	through	the	constructor	function.	You	can	use
this	 function	 if	you	are	aware	 that	 the	pattern	 for	 regular	expression	could	change,	or	 if
you	 are	 not	 aware	 of	 the	 pattern,	 and	 you	 are	 sourcing	 it	 from	 other	 avenues	 like	 user
input.

	

	

Writing	RegExp	Pattern
	

A	RegExp	pattern	 is	composed	of	basic	characters	 like	 /abc/	or	a	mixture	of	simple	and
special	symbols	such	as	/cb*a/	or	/Subject	(\x).\x*/.	This	example	uses	parentheses	that	are
used	as	a	memory	device.	The	match	made	through	this	composition	of	the	pattern	will	be
stored	for	future	use.

	

Basic	Patterns
	

Basic	patterns	are	created	of	symbols	for	which	that	you	like	to	look	a	direct	match.	For
instance,	 the	 pattern	 /cba/	 will	 match	 the	 combination	 of	 character	 in	 strings	 only	 if
specifically	 the	characters	‘cba’	are	matched	together	and	 in	 the	right	series.	This	match
will	be	successful	in	the	string	that	includes	‘cba’.

	

Special	Characters
	

If	 the	 search	 for	a	match	needs	 something	more	 than	a	direct	match	 like	 finding	one	or
more	c’s	or	 looking	for	white	space,	 the	pattern	will	also	 include	special	characters.	For
instance,	the	pattern	/cb*a/	will	match	any	combination	of	character,	in	which	the	c	will	be
followed	zero	or	more	b’s.	The	character	*	means	that	zero	or	more	instances	of	the	earlier
item,	which	will	be	followed	by	c.

	

The	 table	 below	 shows	 the	 complete	 list	 as	 well	 as	 the	 description	 of	 the	 special
characters,	which	you	can	use	in	RegExp.

	

	

CHARACTER DESCRIPTION

^ Will	match	 the	 start	 of	 input.	Can	 also	match	 easily	 after	 the
character	line	break	if	the	multi-line	flag	is	defined	as	true.	For
instance,	 /^B/	will	not	match	 the	‘B’	 in	“a	B”,	but	will	match
the	 ‘A’	 in	 “An	 I”.	 Also	 remember	 that	 ‘^’	 has	 a	 different
meaning	if	it	is	used	as	the	first	character	in	a	set	series.

\ The	character	‘\’	will	match	according	to	these	rules:

The	character	‘\’	preceding	a	non-special	character	will	signify
that	the	next	character	is	special	and	should	not	be	interpreted
literally.	For	instance,	a	‘c’	without	the	character	‘\’	will	match
the	lowercase	c’s	if	they	happen.	However,	the	‘\c’	in	itself	will
not	 match	 any	 character,	 as	 it	 will	 form	 the	 special	 word
character	boundary.

The	character	 ‘\’	 that	precedes	a	special	character	will	 signify
that	 the	 next	 character	 is	 not	 special	 and	 must	 be	 literally
interpreted.	 For	 instance,	 the	 sequence	 /c*/	 depends	 on	 the
asterisk	(*)	to	match	zero	or	several	c’s.	Meanwhile,	the	series
/a*/	will	ignore	the	*	as	a	special	character	so	the	strings	will
match.

	

* Will	 match	 the	 preceding	 expression	 0	 or	 several	 instances.
This	character	is	equal	to	{0,}.

For	 instance,	 /co*/	 will	 match	 the	 ‘cooooo’	 in	 “The	 baby
cooooooed”	and	‘c’	in	“The	cat	meowed”,	but	not	in	“The	teen
smirked.”

$ Will	match	the	end	of	the	input.	If	 the	multi-line	flag	is	set	to
true,	this	will	also	immediately	match	before	the	character	line
break.	For	instance,	/g$/	will	not	match	the	‘g’	in	“digger”,	but
will	match	in	“dog”.

? Will	match	the	preceding	expression	zero	or	one	time.	This	 is
equal	 to	 {0,1}.	 For	 instance,	 /e?re?/	 will	 match	 the	 ‘er’	 in
“ranger”	as	well	as	the	‘re’	in	“ogre”	and	also	the	‘r’	in	“torso”.

If	you	use	this	immediately	after	the	quantifiers	such	as	{},	?,
+,	 or	 *,	 this	 will	 make	 the	 quantifier	 non-greedy,	 which
matches	 the	 fewest	 possible	 characters,	 in	 comparison	 to	 the
default	 that	 could	match	 characters	 as	much	as	possible.	 	For
instance,	 if	 you	 use	 /\g+/	 to	 “321def”	 will	 match	 321.	 But
adding	/\g+?/	to	the	same	string	will	only	match	3.

+ Will	 match	 the	 preceding	 expression	 once	 or	 several	 times.
This	 is	 equal	 to	 {1,}.	 For	 instance,	 /r+/	will	match	 the	 ‘r’	 in
“brandy”	and	all	the	r’s	in	“grrrrrrrrowl”,	but	not	in	“bndy”

. The	decimal	point	will	match	any	single	character	aside	 from
the	newline	character.	For	instance,	/.s/	will	match	‘as’	and	‘is’
“Say	yes	if	you	think	he	is	smart”	but	not	‘say’.

(x) Will	match	‘x’	and	will	store	 the	match,	as	shown	below.	The
parentheses	 in	 this	 character	 are	 known	 as	 capturing
parentheses.

	

The	‘(cute)’	and	‘(bear)’	in	the	series	/(cute)	(bear)	\1\2/	match
and	the	series	will	store	the	first	two	words	in	the	string	“cute
bear	cute	bear”.	The	\1	\2	in	this	pattern	will	match	the	last	two
words	 of	 the	 string.	Notcie	 that	 the	 \1,	 \2,	 \n	 are	 used	 in	 the
matching	composition	of	the	regex.

x(?=y) Will	match	‘x’	if	‘x’	is	followed	by	‘y’.	For	instance,	/Jessica(?
=Alba)/	will	 only	match	 ‘Jessica’	 if	 it	 is	 followed	 by	 ‘Alba’.
/Jessica(?=Alba|Simpson)/	 will	 match	 ‘Jessica’	 if	 this	 is
followed	 by	 ‘Alba’	 or	 ‘Simpson’.	 But	 neither	 ‘Alba’	 nor
‘Simpson’	is	part	of	the	matching	results.

(?:x) Will	match	‘x’	but	will	not	store	it	in	memory.	The	parentheses
used	in	this	character	are	known	as	non-capturing	parentheses.
These	 will	 allow	 you	 to	 define	 subexpression	 for	 regexp
operators	to	perform	their	function.

Take	 a	 look	 at	 this	 example:	 /(?:bee){1,2}/	 If	 this	 expression

was	/bee{1,2}/,	the	characters	{1,2}	will	only	apply	to	the	last
‘e’	in	‘bee’.	Because	we	have	used	non-capturing	parentheses,
the	{1,2}	function	will	apply	for	the	whole	word	‘bee’.

x(?!y) This	is	known	as	a	negated	lookahead.	Will	match	x	if	it	is	not
followed	by	y.

For	 instance,	 /\d+(?!.)/	 will	 match	 a	 number	 if	 it	 is	 only
followed	 by	 a	 decimal	 point.	 The	 regexp	 /\d+
(?!.)/.exec(“2.564”)	will	match	564,	but	not	2.564.

x|y Will	match	x	or	y.

For	 instance,	 /yellow|black/	 will	 match	 ‘yellow’	 in	 “yellow
flag”	and	‘black’	in	“black	shirt”.

{n,m} In	 this	character,	n	and	m	are	positive	 integers	and	n	 is	 lower
than	 or	 equal	 to	 m.	 This	 will	 match	 at	 least	 n	 and	 at	 most
instances	of	the	preceding	expression.	If	you	omit	m,	it	will	be
treated	as	infinity.

	

	 For	 instance,	 /a{1,3}will	match	nothing	 in	 “brndy”,	 the	 ‘a’	 in
“brandy.”	The	first	two	a’s	in	“brandy,”	and	the	first	three	a’s	in
“braaaaaaandy”.	 Take	 note	 than	 in	matching	 “braaaaaaandy”,
the	 match	 will	 be	 “aaa”,	 although	 the	 primary	 string	 carries
more	than	a’s.

{n} Wil	match	precisely	n	instances	of	the	preceding	expression.	N
should	be	a	positive	integer.

For	instance,	/e{2}	will	not	match	the	‘e’	in	“rent”,	but	it	will
match	 all	 the	 e’s	 in	 “reent”	 as	 well	 as	 the	 first	 two	 e’s	 in
“reeent”.

[^xyz] This	 is	 a	 complemented	 or	 a	 negated	 character	 set.	 It	 will
match	anything,	which	 is	not	confined	 in	 the	braces.	You	can
define	 a	 range	 of	 characters	 through	 the	 use	 of	 a	 hyphen.
Everything	that	will	work	in	the	regular	character	set	will	also
function	here.

For	instance,	[^bod]	is	similar	to	[^b-d].

[xyz] This	 character	 set	 will	 match	 any	 character	 confined	 in	 the
braces,	 which	 includes	 the	 escape	 series.	 Special	 characters
such	as	the	asterisk	(*)	and	the	dot	(.)	will	lose	their	specialness
when	confined	within	 the	character	set,	so	 there	 is	no	need	to
escape	them.	You	can	define	a	range	of	characters	through	the

use	of	a	hyphen.

For	example,	the	pattern	[d-g]	functions	similar	to	the	match	of
[defg].	 Hence,	 it	 will	 match	 the	 ‘e’	 in	 “elephant”	 and	 ‘f’	 in
“fowl”.

\b Will	match	a	word	boundary,	which	matches	the	position	of	the
word	 character	 is	 not	 preceded	 or	 followed	 by	 another
character-word.	Remember,	a	matching	word	boundary	will	not
be	 included	 in	 the	match.	 To	 put	 it	 simply,	 the	 length	 of	 the
word	 boundary	match	 is	 0.	You	 should	 not	 confuse	 this	with
[\b].)

For	example:

/\bs/	will	match	the	‘s’	in	“soon”;

/oo\b/	will	not	match	the	‘oo’	in	“soon”,	as	‘oo’	is	followed	by
‘n’	that	is	a	word	character

/oon\b/	will	match	the	‘oon’	in	“soon”	as	the	‘oon’	is	the	string
end,	and	not	followed	by	the	character	word.

/\w\b\w/	will	 not	match	 anything,	 as	 the	word	 character	may
never	be	followed	by	both	word	and	non-word	character.

Take	note	that	the	RegExp	in	JavaScript	will	define	the	certain
set	of	characters	to	be	the	character	words.	Characters	that	are
not	 specified	 in	 the	 set	will	 be	 regarded	 as	 break	words.	The
character	sets	are	fairly	limited,	and	it	solely	composed	of	the
Roman	alphabet	 in	 lower	and	upper	case,	underscore	 symbol,
and	decimal	units.	Characters	that	are	accented	are	considered
as	word	breaks.

\cX In	 this	 character,	 X	 refers	 to	 a	 range	 from	A	 to	 Z.	 This	 will
match	a	 character	 control	 in	 a	 string.	For	 instance,	 /\cM/	will
match	the	string	in	control-M.

\B This	 character	 will	 match	 a	 boundary	 non-word.	 This	 will
match	a	position	that	the	preceding	and	following	character	are
the	 same,	which	 are	 both	 non-words	 or	words.	 The	 start	 and
end	string	are	regarded	as	non-words.

\D

	

Will	match	 any	 character	 that	 is	 non-digit,	 which	 is	 equal	 to
[^0-9]

\d Will	match	any	digit	character,	which	is	equal	to	[0-9]

	

Use	of	Parentheses
	

Adding	 parentheses	 in	 any	 RegExp	 pattern	 will	 result	 to	 that	 section	 to	 be	 stored	 in
memory.	Through	this,	you	can	retrieve	the	substring	for	other	purposes.

	

For	instance,	the	series	/Section	(\d+).\d*/	shows	added	escaped	and	special	characters	and
will	 indicate	 this	 section	of	 the	pattern	 should	be	 stored	 in	memory.	This	will	 precisely
match	the	characters	‘Section’	followed	by	a	single	or	several	numeral	character	(\d	refers
to	 any	numeral	 character	while	+	 refers	 once	 or	more	 instances).	This	 is	 followed	by	 a
decimal	point	that	is	a	special	character.	This	precedes	the	decimal	point	with	\means	the
series	should	find	the	character	‘.’	literally.

	

If	followed	by	any	numeral	character	zero	or	more	times,	(\d	refers	to	numeral	character,
while	*	refers	to	0	or	several	times.	Also,	the	parentheses	can	be	used	to	store	the	memory
for	the	first	matched	of	numeral	character.	This	series	is	found	in	“Read	Section	3.4,	line
5”	while	‘3’	is	stored	in	memory.	The	series	is	not	found	in	Section	3	and	4,	since	these
strings	are	not	followed	by	the	decimal	point.	

	

In	order	to	match	a	substring	without	the	storing	it	to	the	memory,	inside	the	parentheses,
you	can	preface	the	series	with	?.	For	instance,	(?:\d+)	will	match	one	or	several	numeral
characters.	However,	this	will	not	remember	the	characters	that	match.

	

Using	Methods	with	RegExp
	

You	can	use	regular	expressions	with	RegExp	methods	exec	and	test	alongside	the	String
methods:	split,	search,	replace,	and	match.	Below	is	a	short	description	of	these	methods:

	

	

	

	

Method Description

Split This	String	method	employs	a	fixed	string	or	a	RegExp	in	order
to	break	a	string	into	substring	arrays

Replace This	String	method	can	look	up	for	a	match	in	a	string,	and	will
replace	this	matched	substring	with	another	specified	substring

Search This	String	method	can	check	for	a	string	match.	It	will	return
the	match	index,	or	negative	1	if	there	is	a	failure	in	search

Match This	 String	 method	 can	 look	 up	 for	 a	 string	 match	 and	 will
return	mismatch	null	or	information	array.

Test This	RegExp	will	check	for	a	string	match,	which	returns
information	array.

Exec This	RegExp	method	will	launch	a	lookup	for	a	string	match,
and	will	return	information	array.

	

If	you	like	 to	determine	if	a	pattern	 is	present	 in	a	string,	you	can	use	 the	search	or	 test
method.	For	more	info	you	can	use	the	match	or	exec	methods.	If	you	are	using	the	match
or	exec	and	the	former	is	successful,	these	methods	will	yield	an	array	and	will	update	the
properties	 of	 the	 relevant	 RegExp	 object	 as	 well	 as	 the	 predefined	 regular	 expression
object.	If	the	match	is	a	failure,	the	method	exec	will	yield	null	that	will	coerce	false.

Chapter	22:	Errors	and	Debugging
	

Thanks	to	unavoidable	human	errors,	bugs	can	instantly	conquer	your	scripts.	And	since
modern	browsers	do	not	display	error	messages	on	the	screen,	errors	that	can	render	your
scripts	acting	weird	or	malfunction	can	become	unnoticeable.

	

Old	 browsers	 like	 Internet	Explorer	 6	 and	 lower	 do	 provide	 error	messages	 in	 a	 page’s
JavaScript	code.	However,	due	to	numerous	scripts	out	there	that	are	so	prone	with	errors,
error	messages	became	a	nuisance	rather	than	a	helpful	tool	for	web	users.

	

And	because	of	 that	and	 the	 increasing	 lack	of	knowledge	about	JavaScript	by	common
internet	 users,	 error	 reporting	 in	 browsers	 have	 become	 “reserved”	 to	 developers	 only.
Nowadays,	 browsers	 are	 equipped	 with	 debugging	 and	 developer	 console.	 And	 two	 of
those	 browsers	 that	 have	 great	 consoles	 are	 Chromium	 (Chrome,	 Opera,	 etcetera)	 and
Mozilla	Firefox	(Pale	Moon,	Waterfox,	etcetera).

	

Of	 course,	 having	 a	 debugging	 console	 is	 not	 enough.	 After	 all,	 the	 most	 common
behavior	that	browsers	have	when	they	encounter	an	error	is	to	halt	the	execution	of	the
script.	Unfortunately,	you	might	want	 to	 let	 the	browser	continue	on	executing	the	other
statements	despite	encountering	an	error.	If	you	need	that	to	happen,	you	will	need	to	use
try	and	catch.

	

Try,	Catch,	and	Finally
	

Try	and	catch	are	two	keywords	that	can	allow	you	to	specify	a	certain	block	of	code	and
test	it	if	it	will	generate	an	error.	On	the	other	hand,	the	finally	keyword	will	allow	your
program	 to	 execute	 statements	within	 it	 regardless	 if	 the	 browser	 encountered	 an	 error.
Basically,	this	is	how	they	work:

	

try	{alert(This	is	a	message);}

catch{alert(“The	script	encountered	an	error”);}

finally{alert(“I	don’t	care	if	there	is	an	error	or	none.	I	will	still	appear!”);}

What	 will	 happen	 is	 that,	 when	 the	 statement	 inside	 the	 try	 block	 gets	 an	 error,	 the
statements	on	the	catch	block	will	be	executed.	If	there	are	no	errors,	the	catch	block	will
be	ignored.	Alternatively,	the	statements	within	finally	will	still	execute	regardless	of	error
state.

Console.log
	

What	if	you	want	to	see	everything	in	the	console?	Every	value	or	variable	that	are	getting
change,	 you	 would	 want	 that	 especially	 during	 debugging.	 To	 be	 able	 to	 see	 a	 lot	 of
information	 in	your	console,	you	can	 take	advantage	of	 logging	functionality	of	console
browsers

	

To	print	a	message	on	the	console,	all	you	need	is	 to	provide	a	value	to	the	Console.log
method.	For	example:

	

>	var	x	=	1

<	undefined

>	var	y	=	2

<	undefined

>	var	z	=	3

<	undefined

>	var	a		=	x	+	y

<	undefined

>	var	b	=	y	+	z

<	undefined

>	console.log(a)

2015-01-01	00:00:01.001	3

<	undefined

>	console.log(b)

2015-01-01	00:00:02.002	5

<	undefined

>	_

	

	

	

	

Notification	Errors
	

Notification	 errors,	which	 show	up	 through	 IE	 dialog	 boxes	 or	 through	 console	 are	 the
outcomes	of	runtime	errors	and	syntax.	These	notification	errors	include	the	number	line
at	which	the	error	happens.

	

If	you’re	using	FireFox,	then	you	can	just	click	the	error	console	to	proceed	to	the	precise
line	in	the	script	with	error.

	

Debugging	a	Script
	

Below	are	the	different	ways	to	debug	a	JavaScript:

	

Add	Debugging	Code	to	the	Programs
	

The	methods	document.write()	or	alert()	in	the	program	can	debug	the	code.	For
instance,	you	can	use	the	following:

	

By	 studying	 the	 order	 and	 content	 of	 the	 alert()	 as	 they	 are	 positioned,	 you	 can
easily	study	the	status	of	your	program.

	

Add	JavaScript	Debugger
	

A	debugger	 refers	 to	 the	application,	which	places	 all	 factors	of	 execution	 script
under	 the	 command	 of	 the	 programmer.	Debuggers	 offer	 better	 control	 over	 the
script	status	through	an	interface,	which	permits	you	to	study	and	establish	values
as	well	as	execution	flow.

	

Once	you	 load	 a	 script	 into	 the	debugger,	 you	 can	 run	a	 single	 line	 at	 a	 time	or
commanded	 to	 stop	 at	 specific	 breakpoints.	When	 the	 execution	 is	 stopped,	 you
can	study	 the	 state	of	 the	 script	 as	well	 as	 the	variables	 to	know	 if	 something	 is
missing.	It	is	also	possible	to	take	a	closer	look	at	variables	for	value	changes.

	

JavaScript	Validator
	

Another	way	to	test	 the	JavaScript	code	for	erroneous	bugs	is	to	run	it	 through	a
program,	which	 tests	 it	 to	 ensure	 that	 this	 is	 valid,	 and	 that	 it	 follows	 the	 right
syntax	 of	 JavaScript.	 These	 are	 known	 as	 validators	 or	 validating	 parsers,	 and
usually	added	with	JS	editors	and	HTML.

	

The	 JavaScript	 Lint,	 developed	 by	 D.	 Crockford,	 is	 regarded	 as	 the	 most
convenient	 validator	 for	 JavaScript.	 This	 is	 available	 for	 free,	 and	 you	 can	 just
paste	 the	 code	 into	 the	 specified	 text	 area.	Once	 you	 click	 the	 jslint	 button,	 the
program	 will	 parse	 through	 the	 JS	 code,	 which	 ensures	 that	 the	 function	 and
variable	definitions	will	 follow	the	right	syntax.	This	will	also	 test	JS	statements
like	while	and	if,	to	make	certain	that	they	too	follow	the	right	format.

	

Helpful	Tips	for	Developers
	

The	following	tips	could	help	you	to	reduce	the	errors	in	your	script	as	well	as	to
simplify	the	process	of	debugging.

	

Use	 indentation	 to	 create	 codes	 that	 are	 easier	 to	 read.	 Also	 indent	 the
statements	 to	 make	 this	 easier	 for	 you	 to	 match	 up	 the	 curvy	 brackets,
starting	and	ending	tags,	as	well	as	other	HTML	and	script	elements.

	

Use	a	lot	of	comments,	because	these	will	enable	you	to	discuss	the	reason
why	 you	wrote	 the	 script	 and	 you	 can	 also	 explain	 the	 tricky	 sections	 of
code.

	

	

Keep	 the	consistency	 in	naming	your	 functions	and	variables.	You	can	 try
using	 names,	which	 are	 long	 enough	 and	more	meaningful.	 These	 names
should	also	describe	the	variable	contents	as	well	as	the	use	of	the	function.

	

Use	 constant	 syntax	 in	 naming	 functions	 and	 variables.	 To	 put	 it	 simply,
keep	 them	all	 uppercase	 or	 lowercase.	 If	 you	 like	 to	 use	 the	Camel	Back
notation,	use	it	all	throughout.

	

	

Write	 codes	 in	modular	 form.	 If	 possible,	 categorize	 your	 statements	 into
functions,	which	will	allow	you	to	group	statements	that	are	related	to	each
other,	 and	 check	 as	 well	 as	 reuse	 specific	 portions	 of	 the	 code	 with	 less
effort.

	

Check	 long	 scripts	 in	 modular	 form.	 To	 put	 this	 simply,	 don’t	 write	 the
whole	script	before	you	check	any	portion.	You	can	try	to	write	a	piece	and
obtain	it	to	work	before	including	the	next	portion	of	the	code.

	

	

Be	mindful	 of	 your	 quotation	marks.	 Take	mote	 that	 the	 quotation	marks
will	be	used	in	pairs	surrounding	the	strings	and	that	both	marks	should	be
of	 the	 same	 style.	 Choose	 single	 or	 double	 and	 use	 the	 same	 style	 all

throughout.

	

Use	 function	 names	 and	 descriptive	 variable	 and	 lessen	 the	 use	 of	 names
that	are	single	character.

Be	 mindful	 of	 your	 equals	 signs.	 Avoid	 using	 a	 single	 equals	 signs	 for
comparing	other	elements.

	

Explicitly	declare	variables	through	the	keyword	var.

Chapter	23:	AJAX
	

What	 is	AJAX?	AJAX	stands	for	Asynchronous	JavaScript	and	XML.	What	does	 it	do?
Well,	one	of	the	things	you	can	do	with	AJAX	is	to	access	other	pages,	scripts,	and/or	data
without	making	your	browser	load	another	page.

	

Primarily,	AJAX	is	an	important	component	of	creating	dynamic	content	web	pages.	With
it,	you	can	deliver	dynamic	content	and	create	rich	web	applications	such	as	chat.	You	can
perform	updates	on	any	part	of	your	page,	without	forcing	the	whole	page	to	reload.	And
those	are	just	a	few	of	the	things	you	can	do	with	AJAX.

	

By	the	way,	if	it	XML	is	included	in	AJAX,	it	does	not	mean	that	you	need	to	learn	XML.
With	 HTML	 knowledge	 and	 the	 things	 you	 have	 learned	 so	 far,	 you	 can	 take	 full
advantage	of	AJAX.

	

How	does	it	work?	Basically,	you	must	create	an	XMLHttpRequest.	That	request	will	be
sent	to	the	server.	The	server	will	process	the	request,	and	a	message	will	be	sent	back	to
you.	The	reply	of	the	server	depends	on	the	client	and	server	scripts	you	created.	Also,	it
will	be	up	to	your	script	to	process	the	reply	you	receive.

	

However,	 despite	 sounding	 too	 simple,	 achieving	 rich	 interactions	 with	 your	 page	 and
your	server	depends	on	your	ability	to	create	server	scripts.	Knowledge	on	PHP,	ASP,	or
other	 server	 scripting	 language	 is	 required.	 Also,	 if	 you	 will	 be	 playing	 with	 data,
knowledge	in	database	management	and	SQL	language	will	be	needed.

	

Of	course,	it	is	possible	that	you	are	unfamiliar	with	how	they	work	as	of	now	since	you
are	only	in	the	beginning	of	your	journey	as	a	web	developer	(you	are	still	learning	client
side	scripting).

	

Another	 reason	 that	 learning	AJAX	will	not	be	 fruitful	 as	of	now	 is	 that	you	might	not
have	proper	server	access.	Meaning,	if	you	do	not	have	a	web	hosting	account	or	do	not
have	a	server	application	in	your	computer	or	network,	you	can	only	do	little	with	AJAX.

	

Nevertheless,	 it	 is	still	possible	for	you	to	use	it,	and	add	more	functionality	and	flair	 to
your	web	documents.

	

	

	

Steps	in	AJAX	Operations
	

1.	Client	event	occurrence

2.	Creation	of	XMLHttpRequest

3.	Configuration	of	XMLHttpRequest

4.	Asynchronous	Request	of	the	XMLHttpRequest	to	the	Webserver.

5.	The	Webserver	will	return	the	result,	which	contains	the	XML	doc.

6.	 The	 object	 XMLHttpRequest	 will	 call	 the	 function	 callback()	 and	 the	 result	 will	 be
processed.

7.	Update	of	HTML	DOM.

	

Chapter	24:	JSON
	

Originally,	JavaScript	was	developed	as	a	page-script	language	for	Netscape	Navigator.	It
is	still	a	common	misconception	that	it	is	still	a	subset	of	Java,	but	this	is	not	true.	This	is	a
scheme-like	language	with	soft	objects	and	C-like	syntax.

	

Meanwhile,	 the	JSON	is	a	subset	of	the	literal	notation	object	of	JS.	Because	JSON	is	a
subset	of	JS,	this	could	be	used	in	the	language	easily.

	

	

In	the	example	above,	the	object	is	constructed	that	contains	a	one	member	bindings.	This
also	contains	array	confining	three	objects	such	as	regex,	method,	and	ircEvent	members.

	

The	members	could	also	be	restored	using	the	subscript	or	dot	operators.

	

	

In	order	to	change	a	JSON	text	into	the	object,	we	can	use	the	function	eval(),	which	calls
the	JS	compiler.	Because	JSON	is	a	formal	subset	of	JavaScript,	the	compiler	will	parse
the	text	and	will	yield	the	structure	of	the	object.	Meanwhile,	the	text	should	be	confined
in	parentheses	to	prevent	tripping	on	the	ambiguity	of	JS	syntax.

	

The	function	eval	is	fast	to	use.	But	this	could	compile	and	run	any	JS	program,	so	there
could	be	security	concerns.	Using	eval	is	signified	if	the	source	is	competent	and	trusted.
It	is	a	lot	more	secure	to	use	a	JSON	parser.	In	online	applications	over	XMLHttpRequest,
communication	is	allowed	only	to	the	same	origin,	which	provides	that	page,	so	this	will
be	trusted.	But	this	might	not	be	efficient.	When	the	server	is	not	thorough	in	encoding
JSON,	or	if	this	doesn’t	validate	all	the	inputs,	then	it	may	yield	invalid	JSON	text	that	can
also	carry	harmful	script.	The	function	eval	will	also	run	the	script,	which	will	unleash	the

bad	script.

	

To	improve	your	defense,	you	can	use	a	parser,	which	will	interpret	not	only	JSON	text,
but	will	also	reject	other	scripts.	In	web	browsers	that	offer	support,	parsers	are	a	lot	faster
compared	to	eval.	Of	course,	JSON	is	also	included	in	the	ECMAS	standard.

	

	

The	alternative	parameter	reviver	is	a	function,	which	you	can	call	for	each	key	and	value
at	each	level	of	the	final	outcome.	The	result	of	the	function	reviver	will	replace	every
value.	You	can	use	this	to	change	generic	objects	into	occurrences	of	pseudo-classes	or	to
change	the	date	strings	into	objects	Date.

	

	

The	JSON	stringifier	will	go	in	the	opposing	direction,	changing	the	JS	data	structures	into
text.	JSON	will	not	provide	support	for	cyclic	data	structures.	Hence,	be	sure	that	you	are
careful	in	not	providing	cyclical	structures	to	the	stringifier.

	

	

If	the	method	stringify	sees	an	object,	which	contains	the	method	toJSON,	it	will	call	that
method,	and	will	stringify	the	returned	value.	This	will	allow	the	object	to	identify	its	own
JSON	representation.

	

	

The	method	stringifier	may	take	another	string	array,	which	are	used	to	choose	the

properties	that	will	be	added	in	the	JSON	text.

	

	

The	method	stringifier	could	take	an	optional	function	replacer.	This	will	be	called	after
toJSON	method	(if	there’s	one)	on	every	of	the	values	in	the	structure.	This	could	be
passed	every	key	and	value	as	parameters,	and	this	could	be	confined	to	object	that	holds
the	key.

	

	

The	values	that	are	not	represented	in	JSON	such	as	undefined	and	functions	are	not
incuded.

	

	

Numbers	that	are	non-finite	are	replaced	using	null.	In	order	to	substitute	other	values,	you
can	use	a	function	replacer	such	as	this	code:

	

	

	

	

Chapter	25:	jQuery
	

Before	the	development	of	jQuery,	web	developers	had	to	make	their	own	JS	frameworks.
This	 permitted	 them	 to	 work	 around	 certain	 bugs	 without	 spending	 too	 much	 time	 to
debug	the	usual	features.	This	resulted	to	developers	making	JS	libraries,	which	are	free	to
use.

	

Basically,	JQuery	is	a	particular	library	of	JS	code.	There	are	other	JS	code	libraries	like
MooTools.	 However,	 jQuery	 became	widely	 used	 because	 it	 is	 simple	 to	 use	 and	 very
effective.

	

Even	 though	 many	 developers	 are	 still	 confused	 of	 jQuery	 and	 JavaScript	 as	 two
independent	 languages,	 it	 is	 crucial	 for	 you	 to	 know	 that	 these	 are	 both	 JS.	 The	 main
difference	 is	 that	 the	 jQuery	 could	 be	 optimized	 to	 perform	 other	 typical	 scripting
functions	and	it	could	still	do	while	using	less	code	lines.

	

Many	web	 developers	 have	 been	 debating	 if	 jQuery	 or	 JavaScript	 should	 be	 used	 in	 a
certain	situation.	But	 there	 is	actually	no	correct	answer.	You	can	use	either	 language	 to
create	the	same	results,	but	usually	jQuery	could	do	this	with	less	code	lines.

	

In	 general,	 jQuery	 is	 enough	 for	 majority	 of	 web	 development	 projects.	 There	 will	 be
some	projects,	which	require	conventional	JavaScript.	But	 they	are	becoming	quite	rare.
Even	 though	 jQuery	could	be	 the	better	option	 in	most	 settings,	 as	a	 starting	developer,
you	must	still	learn	both	jQuery	and	JavaScript.

	

Even	though	using	JavaScript	alone	could	slow	down	the	completion	of	your	project,	it	is
crucial	 to	know	how	 this	 language	works	 and	how	 it	 could	affect	 the	DOM	(Document
Object	Model).

Bear	in	mind	that	the	main	difference	between	JavaScript	and	jQuery	is	that	the	latter	has
been	 optimized	 to	 work	 with	 different	 browsers	 easily.	 Unluckily,	 JS	 still	 has	 some
concerns	with	cross-browser	compatibility	because	of	poor	 JS	 implementation	 strategies

of	developers.

	

Chapter	26:	JavaScript	in	Bootstrap
	

	

For	JavaScript	in	Bootstrap,	plugins	could	be	individually	included,	although	some	have
called	for	dependencies,	or	all	together.	Both	bootstrap.min.js	and	bootstrap.js	contain	all
plugins	in	one	file.

	

Data	Bootstrap	Attributes
	

It’s	okay	to	use	Bootstrap	plugins	completely	through	the	markup	API	without	encoding
one	line	of	JavaScript.	This	is	the	first	class	API	Bootstrap	and	should	be	your	main
consideration	in	using	a	plugin.

	

With	this,	in	certain	situations,	it	could	be	ideal	to	shut	off	this	functionality.	Hence,	we
can	provide	the	capacity	to	disable	the	attribute	of	the	data	API	by	unbinding	the	events	on
the	namespace	of	the	body	using	the	data	API.

	

	

On	the	other	hand,	to	target	a	certain	plugin,	you	can	add	the	name	of	the	plugin	as	a
namespace	alongside	the	data-api	such	as	this:

	

	

You	can	also	use	Bootstrap	plugins	completely	using	the	JavaScript	API.	Take	note	that	all
public	APIs	are	chainable,	single	methods	that	could	yield	the	acted	collection.

	

The	methods	must	be	receptive	of	the	objects	that	are	optional	–	a	string	that	targets	a
certain	method	or	nothing	that	initiates	a	plugin	using	a	default	behavior:

	

	

Every	plugin	will	also	show	the	raw	constructor	in	the	property	‘Constructor’

	

	

If	you	want	to	obtain	a	certain	plugin	occurrence,	you	can	directly	retrieve	it	from	an
element.

	

	

There	are	times	that	it	is	crucial	to	use	Bootstrap	plugins	using	other	UI	frameworks.	In
these	instances,	the	collisions	namespace	could	occur	occasionally.	When	this	happens,
you	can	call	the	noconflict	in	the	plugin	that	you	want	to	revert	the	value.

	

Events
	

Bootstrap	offers	customized	events	for	many	of	the	special	actions	of	most	plugins.	In
general,	these	could	come	in	past	participle	form	and	infinitive,	where	the	infinitive	will
be	triggered	at	the	beginning	of	the	event.	Meanwhile,	its	past	participle	form	will	be
triggered	when	the	action	has	been	completed.

	

All	the	infinitive	events	offer	the	functionality	preventDefault,	which	offers	the	ability	to
cease	the	implementation	of	the	action	before	it	begins.

Conclusion
	

Again,	thank	you	again	for	downloading	this	book!	

	

I	hope	this	book	was	able	to	help	understand	the	basics	of	Javascript,	and	that	you	were	at
least	able	to	practice	using	the	samples	mentioned.

	

The	next	step	is	to	try	looking	up	more	examples	so	you	can	start	to	convert	your	ideas	for
dynamic	web	pages	into	reality.	Also,	it’s	understandable	that	you	won’t	memorize	all	the
concepts	and	keywords	but	it	would	help	if	you	keep	this	book	with	you	and	use	the	ctrl+f
feature	to	look	up	keywords	should	you	need	to.

	

Finally,	 if	you	enjoyed	this	book,	please	take	the	time	to	share	your	 thoughts	and	post	a
review	on	Amazon.	It’d	be	greatly	appreciated!

	

Thank	you	and	good	luck!

	

	Introduction
	Table of Contents
	Chapter 1: JavaScript 101
	Frequently Asked Questions
	Setting Expectations and Prerequisites
	Supplementary Education
	Recommendations after Reading This Book
	The Goals of This Book
	Tools You Need
	What’s the Console for Anyway?
	What’s Next?

	Chapter 2: Variables, Identifiers, and Statements
	Writing Code
	Variables
	Identifiers
	Case Sensitivity

	Statements
	Recap and Additional Information

	Chapter 3: JavaScript Basic Syntax
	Case Sensitivity
	Keywords
	Comments
	Function of Comments in Scripting or Programming

	Two types of comments

	Chapter 4: Operators
	Common Types of Operators
	Arithmetic
	Assignment
	String Concatenation Operators
	Logical and Comparison Operators

	Chapter 5: Data Type
	Dynamic Data Typing
	Number
	Strings
	Adding Quotation Marks on Strings
	Smart Quotes or Curly Quotes
	Primitive Values
	undefined and null

	Arrays
	Array Index
	Array Values Data Types

	Chapter 6: Inserting JavaScript Code
	Where to Place JavaScript
	Within the Page
	Within Your Server as a Separate File
	Within Content Delivery Networks (CDNs) as a Separate File

	Sample Web Page File
	Code Sample: 1 (HTML TEMPLATE)

	Sample JavaScript Usage
	Code Sample: 2 (WINDOWS.ALERT)

	Chapter 7: Code Blocks, Functions, and Scope
	Functions
	Scope
	Global and Local Variables

	Arguments and Parameters
	Function return
	Recap

	Chapter 8: Conditionals
	Conditional Statement If
	If Else Statement
	Else If Statement
	Switch Conditional Statement
	Case Keyword
	Break Keyword
	Default Keyword

	Chapter 9: Loops
	For Loop
	Eternal Loops
	While Loop
	Do While Loop

	Chapter 10: Events
	Syntax and Case
	Event Exclusivity
	Curious Cat
	Multiple Events

	Chapter 11: HTML DOM
	The Document Object
	Document Object’s Properties and Methods
	Navigating Through the Document Object Model
	Parent and Child Concept

	Chapter 12: HTML and CSS Editing Using JavaScript and DOM
	The getElementById method and innerHTML Property
	innerHTML versus innerText versus textContent
	JavaScript and CSS

	Chapter 13: JavaScript Object Oriented Programming
	Programming Paradigms
	Structured and Unstructured Programming
	Procedural Programming
	Object Oriented Programming

	Chapter 14: Objects
	Assigning Objects to Variables — By Value and By Reference
	Object Creation Using Object Literal

	Chapter 15: Classes, Properties, and Methods
	Constructor Function and new Keyword
	Object Creation Using Constructor Function

	Chapter 16: Properties and Methods
	this Keyword
	Methods
	The Concept of Get and Set/Let
	Providing Arguments and Parameters to Your Constructor

	Chapter 17: Common Methods
	String Methods or Commands
	search() method

	Array Methods and Properties
	Length
	Dot Accessor Operator
	Push

	Chapter 18: JavaScript Math
	Chapter 19: Advanced Data Types – Data Conversion and Constructor
	Data Types

	Chapter 20: Dates and Time
	Chapter 21: Regular Expressions in JavaScript
	Chapter 22: Errors and Debugging
	Try, Catch, and Finally
	Console.log

	Chapter 23: AJAX
	Chapter 24: JSON
	Chapter 25: jQuery
	Chapter 26: JavaScript in Bootstrap
	Conclusion

