


Exploring ES6
Upgrade to the next version of JavaScript

Axel Rauschmayer

This book is for sale at http://leanpub.com/exploring-es6

This version was published on 2016-11-19

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

© 2015 - 2016 Axel Rauschmayer (cover by Fran Caye)

http://leanpub.com/exploring-es6
http://leanpub.com/
http://leanpub.com/manifesto


This book is dedicated to the impossible girl, who has taught me so much about love and life.



Contents

Short TOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

What you need to know about this book . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Audience: JavaScript programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Why should I read this book? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
How to read this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sources of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Strict mode versus sloppy mode . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Receiver (of a method call) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Signature of a function (or a method) . . . . . . . . . . . . . . . . . . . . . . . v
Internal slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Bindings and environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Destructive operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Documenting classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Capitalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Demo code on GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Sidebars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

About the author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. About ECMAScript 6 (ES6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 TC39 (Ecma Technical Committee 39) . . . . . . . . . . . . . . . . . . . . . . 2
1.2 How ECMAScript 6 was designed . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The design process after ES6 . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 JavaScript versus ECMAScript . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Upgrading to ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3



CONTENTS

1.5 Goals for ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.1 Goal: Be a better language . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.2 Goal: Improve interoperation . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.3 Goal: Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Categories of ES6 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 A brief history of ECMAScript . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7.1 The early years: ECMAScript 1–3 . . . . . . . . . . . . . . . . . . . . . . 6
1.7.2 ECMAScript 4 (abandoned in July 2008) . . . . . . . . . . . . . . . . . . 6
1.7.3 ECMAScript Harmony . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. FAQ: ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 How can I use ES6 today? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Isn’t ECMAScript 6 now called ECMAScript 2015? . . . . . . . . . . . . . . . 9
2.3 How do I migrate my ECMAScript 5 code to ECMAScript 6? . . . . . . . . . . 9
2.4 Does it still make sense to learn ECMAScript 5? . . . . . . . . . . . . . . . . . 9
2.5 Is ES6 bloated? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Isn’t the ES6 specification very big? . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Does ES6 have array comprehensions? . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Is ES6 statically typed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. One JavaScript: avoiding versioning in ECMAScript 6 . . . . . . . . . . . . . . . . 12
3.1 Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Evolution without versioning . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Strict mode and ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Supporting sloppy (non-strict) mode . . . . . . . . . . . . . . . . . . . . 14
3.2.2 let declarations in sloppy mode . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Block-level function declarations in sloppy mode . . . . . . . . . . . . . 15
3.2.4 Other keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.5 Implicit strict mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.6 Things that can’t be fixed . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Breaking changes in ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Core ES6 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 From var to let/const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 From IIFEs to blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 From concatenating strings to template literals . . . . . . . . . . . . . . . . . 20

4.3.1 String interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Multi-line strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 From function expressions to arrow functions . . . . . . . . . . . . . . . . . . 21
4.5 Handling multiple return values . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.1 Multiple return values via arrays . . . . . . . . . . . . . . . . . . . . . . 22
4.5.2 Multiple return values via objects . . . . . . . . . . . . . . . . . . . . . . 23

4.6 From for to forEach() to for-of . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Handling parameter default values . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 Handling named parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



CONTENTS

4.8.1 Making the parameter optional . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 From arguments to rest parameters . . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 From apply() to the spread operator (...) . . . . . . . . . . . . . . . . . . . . 27

4.10.1 Math.max() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.10.2 Array.prototype.push() . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.11 From concat() to the spread operator (...) . . . . . . . . . . . . . . . . . . . 28
4.12 From function expressions in object literals to method definitions . . . . . . . 28
4.13 From constructors to classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.13.1 Base classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.13.2 Derived classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.14 From custom error constructors to subclasses of Error . . . . . . . . . . . . . 31
4.15 From objects to Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.16 New string methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.17 New Array methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.17.1 From Array.prototype.indexOf to Array.prototype.findIndex . . . . 33
4.17.2 From Array.prototype.slice() to Array.from() or the spread operator 33
4.17.3 From apply() to Array.prototype.fill() . . . . . . . . . . . . . . . . 34

4.18 From CommonJS modules to ES6 modules . . . . . . . . . . . . . . . . . . . . 35
4.18.1 Multiple exports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.18.2 Single exports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.19 What to do next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5. New number and Math features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 New integer literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 New Number properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 New Math methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 New integer literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Use case for octal literals: Unix-style file permissions . . . . . . . . . . . 41
5.2.2 Number.parseInt() and the new integer literals . . . . . . . . . . . . . . 42

5.3 New static Number properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Previously global functions . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Number.EPSILON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.3 Number.isInteger(number) . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.4 Safe integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.1 Various numerical functionality . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.2 Using 0 instead of 1 with exponentiation and logarithm . . . . . . . . . . 50
5.4.3 Logarithms to base 2 and 10 . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.4 Support for compiling to JavaScript . . . . . . . . . . . . . . . . . . . . . 52
5.4.5 Bitwise operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.6 Trigonometric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 FAQ: numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.1 How can I use integers beyond JavaScript’s 53 bit range? . . . . . . . . . 53



CONTENTS

6. New string features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Unicode code point escapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 String interpolation, multi-line string literals and raw string literals . . . . . . 56
6.4 Iterating over strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 Iteration honors Unicode code points . . . . . . . . . . . . . . . . . . . . 57
6.4.2 Counting code points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4.3 Reversing strings with non-BMP code points . . . . . . . . . . . . . . . . 57

6.5 Numeric values of code points . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.6 Checking for inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.7 Repeating strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.8 String methods that delegate regular expression work to their parameters . . . 59
6.9 Reference: the new string methods . . . . . . . . . . . . . . . . . . . . . . . . 60

7. Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Use case 1: unique property keys . . . . . . . . . . . . . . . . . . . . . . 61
7.1.2 Use case 2: constants representing concepts . . . . . . . . . . . . . . . . 61
7.1.3 Pitfall: you can’t coerce symbols to strings . . . . . . . . . . . . . . . . . 62
7.1.4 Which operations related to property keys are aware of symbols? . . . . 63

7.2 A new primitive type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.1 Symbols as property keys . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Enumerating own property keys . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Using symbols to represent concepts . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Symbols as keys of properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4.1 Symbols as keys of non-public properties . . . . . . . . . . . . . . . . . . 67
7.4.2 Symbols as keys of meta-level properties . . . . . . . . . . . . . . . . . . 68
7.4.3 Examples of name clashes in JavaScript’s standard library . . . . . . . . 68

7.5 Converting symbols to other primitive types . . . . . . . . . . . . . . . . . . 69
7.5.1 Pitfall: coercion to string . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5.2 Making sense of the coercion rules . . . . . . . . . . . . . . . . . . . . . 69
7.5.3 Explicit and implicit conversion in the spec . . . . . . . . . . . . . . . . 70

7.6 Wrapper objects for symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.6.1 Accessing properties via [ ] and wrapped keys . . . . . . . . . . . . . . 73

7.7 Crossing realms with symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.8 FAQ: symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.8.1 Can I use symbols to define private properties? . . . . . . . . . . . . . . 75
7.8.2 Are symbols primitives or objects? . . . . . . . . . . . . . . . . . . . . . 76
7.8.3 Do we really need symbols? Aren’t strings enough? . . . . . . . . . . . . 76
7.8.4 Are JavaScript’s symbols like Ruby’s symbols? . . . . . . . . . . . . . . . 77

7.9 The spelling of well-known symbols: why Symbol.iterator and not Sym-
bol.ITERATOR (etc.)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.10 The symbol API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.10.1 The function Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.10.2 Methods of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.10.3 Converting symbols to other values . . . . . . . . . . . . . . . . . . . . . 77



CONTENTS

7.10.4 Well-known symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.10.5 Global symbol registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8. Template literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.1 Template literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.2 Escaping in template literals . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.3 Line terminators in template literals are always LF (\n) . . . . . . . . . . 82
8.2.4 Tagged template literals . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.3 Examples of using tagged template literals . . . . . . . . . . . . . . . . . . . . 83
8.3.1 Raw strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3.2 Shell commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3.3 Byte strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3.4 HTTP requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3.5 More powerful regular expressions . . . . . . . . . . . . . . . . . . . . . 85
8.3.6 Query languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3.7 React JSX via tagged templates . . . . . . . . . . . . . . . . . . . . . . . 86
8.3.8 Facebook GraphQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3.9 Text localization (L10N) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.10 Text templating via untagged template literals . . . . . . . . . . . . . . . 89
8.3.11 A tag function for HTML templating . . . . . . . . . . . . . . . . . . . . 91

8.4 Implementing tag functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.4.1 Number of template strings versus number of substitutions . . . . . . . . 93
8.4.2 Escaping in tagged template literals: cooked versus raw . . . . . . . . . . 93
8.4.3 Example: String.raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4.4 Example: implementing a tag function for HTML templating . . . . . . . 95
8.4.5 Example: assembling regular expressions . . . . . . . . . . . . . . . . . . 98

8.5 FAQ: template literals and tagged template literals . . . . . . . . . . . . . . . 99
8.5.1 Where do template literals and tagged template literals come from? . . . 99
8.5.2 What is the difference between macros and tagged template literals? . . . 99
8.5.3 Can I load a template literal from an external source? . . . . . . . . . . . 100
8.5.4 Why are backticks the delimiters for template literals? . . . . . . . . . . 100
8.5.5 Weren’t template literals once called template strings? . . . . . . . . . . 100

9. Variables and scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.1.1 let . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.1.2 const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.1.3 Ways of declaring variables . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.2 Block scoping via let and const . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.3 const creates immutable variables . . . . . . . . . . . . . . . . . . . . . . . . 103

9.3.1 Pitfall: const does not make the value immutable . . . . . . . . . . . . . 103
9.3.2 const in loop bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.4 The temporal dead zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.4.1 The life cycle of var-declared variables . . . . . . . . . . . . . . . . . . . 105



CONTENTS

9.4.2 The life cycle of let-declared variables . . . . . . . . . . . . . . . . . . . 105
9.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.4.4 typeof throws a ReferenceError for a variable in the TDZ . . . . . . . . 106
9.4.5 Why is there a temporal dead zone? . . . . . . . . . . . . . . . . . . . . 107
9.4.6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.5 let and const in loop heads . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.5.1 for loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.5.2 for-of loop and for-in loop . . . . . . . . . . . . . . . . . . . . . . . . 109
9.5.3 Why are per-iteration bindings useful? . . . . . . . . . . . . . . . . . . . 110

9.6 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.6.1 Parameters versus local variables . . . . . . . . . . . . . . . . . . . . . . 111
9.6.2 Parameter default values and the temporal dead zone . . . . . . . . . . . 112
9.6.3 Parameter default values don’t see the scope of the body . . . . . . . . . 112

9.7 The global object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.8 Function declarations and class declarations . . . . . . . . . . . . . . . . . . . 113
9.9 Coding style: const versus let versus var . . . . . . . . . . . . . . . . . . . . 114

9.9.1 An alternative approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10. Destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.1.1 Object destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.1.2 Array destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.1.3 Where can destructuring be used? . . . . . . . . . . . . . . . . . . . . . 117

10.2 Background: Constructing data versus extracting data . . . . . . . . . . . . . 117
10.3 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.3.1 Pick what you need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.4 How do patterns access the innards of values? . . . . . . . . . . . . . . . . . . 119

10.4.1 Object patterns coerce values to objects . . . . . . . . . . . . . . . . . . 119
10.4.2 Array patterns work with iterables . . . . . . . . . . . . . . . . . . . . . 120

10.5 Default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.5.1 undefined triggers default values . . . . . . . . . . . . . . . . . . . . . . 122
10.5.2 Default values are computed on demand . . . . . . . . . . . . . . . . . . 122
10.5.3 Default values can refer to other variables in the pattern . . . . . . . . . 122
10.5.4 Default values for patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.5.5 More complex default values . . . . . . . . . . . . . . . . . . . . . . . . 123

10.6 More object destructuring features . . . . . . . . . . . . . . . . . . . . . . . . 124
10.6.1 Property value shorthands . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.6.2 Computed property keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10.7 More Array destructuring features . . . . . . . . . . . . . . . . . . . . . . . . 125
10.7.1 Elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.7.2 Rest operator (...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.8 You can assign to more than just variables . . . . . . . . . . . . . . . . . . . . 126
10.9 Pitfalls of destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.9.1 Don’t start a statement with a curly brace . . . . . . . . . . . . . . . . . 126
10.10 Examples of destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.10.1Destructuring returned Arrays . . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS

10.10.2Destructuring returned objects . . . . . . . . . . . . . . . . . . . . . . . 128
10.10.3Array-destructuring iterable values . . . . . . . . . . . . . . . . . . . . . 128
10.10.4Multiple return values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.11 The destructuring algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.11.1The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.11.2Applying the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

11. Parameter handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11.1.1 Default parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.1.2 Rest parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.1.3 Named parameters via destructuring . . . . . . . . . . . . . . . . . . . . 138
11.1.4 Spread operator (...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11.2 Parameter handling as destructuring . . . . . . . . . . . . . . . . . . . . . . . 138
11.3 Parameter default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.3.1 Why does undefined trigger default values? . . . . . . . . . . . . . . . . 140
11.3.2 Referring to other parameters in default values . . . . . . . . . . . . . . 141
11.3.3 Referring to “inner” variables in default values . . . . . . . . . . . . . . . 141

11.4 Rest parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.4.1 No more arguments! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.5 Simulating named parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.5.1 Named Parameters as Descriptions . . . . . . . . . . . . . . . . . . . . . 144
11.5.2 Optional Named Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.5.3 Simulating Named Parameters in JavaScript . . . . . . . . . . . . . . . . 144

11.6 Examples of destructuring in parameter handling . . . . . . . . . . . . . . . . 146
11.6.1 forEach() and destructuring . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.6.2 Transforming Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.6.3 Handling an Array returned via a Promise . . . . . . . . . . . . . . . . . 147

11.7 Coding style tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
11.7.1 Optional parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.7.2 Required parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.7.3 Enforcing a maximum arity . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.8 The spread operator (...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.8.1 Spreading into function and method calls . . . . . . . . . . . . . . . . . 150
11.8.2 Spreading into constructors . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.8.3 Spreading into Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

III Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

12. Callable entities in ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
12.2 Ways of calling in ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12.2.1 Calls that can be made anywhere . . . . . . . . . . . . . . . . . . . . . . 155
12.2.2 Calls via super are restricted to specific locations . . . . . . . . . . . . . 155
12.2.3 Non-method functions versus methods . . . . . . . . . . . . . . . . . . . 155

12.3 Recommendations for using callable entities . . . . . . . . . . . . . . . . . . . 156



CONTENTS

12.3.1 Prefer arrow functions as callbacks . . . . . . . . . . . . . . . . . . . . . 156
12.3.2 Prefer function declarations as stand-alone functions . . . . . . . . . . . 157
12.3.3 Prefer method definitions for methods . . . . . . . . . . . . . . . . . . . 158
12.3.4 Methods versus callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 158
12.3.5 Avoid IIFEs in ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.3.6 Use classes as constructors . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.4 ES6 callable entities in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.4.1 Cheat sheet: callable entities . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.4.2 Traditional functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.4.3 Generator functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.4.4 Method definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.4.5 Generator method definitions . . . . . . . . . . . . . . . . . . . . . . . . 166
12.4.6 Arrow functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.4.7 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

12.5 Dispatched and direct method calls in ES5 and ES6 . . . . . . . . . . . . . . . 167
12.5.1 Background: prototype chains . . . . . . . . . . . . . . . . . . . . . . . . 168
12.5.2 Dispatched method calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.5.3 Direct method calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.5.4 Use cases for direct method calls . . . . . . . . . . . . . . . . . . . . . . 169
12.5.5 Abbreviations for Object.prototype and Array.prototype . . . . . . . 174

12.6 The name property of functions . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.6.1 Constructs that provide names for functions . . . . . . . . . . . . . . . . 175
12.6.2 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.6.3 Changing the names of functions . . . . . . . . . . . . . . . . . . . . . . 180
12.6.4 The function property name in the spec . . . . . . . . . . . . . . . . . . . 181

12.7 FAQ: callable entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.7.1 Why are there “fat” arrow functions (=>) in ES6, but no “thin” arrow

functions (->)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.7.2 How do I determine whether a function was invoked via new? . . . . . . 182

13. Arrow functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.2 Traditional functions are bad non-method functions, due to this . . . . . . . 183

13.2.1 Solution 1: that = this . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.2.2 Solution 2: specifying a value for this . . . . . . . . . . . . . . . . . . . 184
13.2.3 Solution 3: bind(this) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.2.4 ECMAScript 6 solution: arrow functions . . . . . . . . . . . . . . . . . . 185

13.3 Arrow function syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.3.1 Omitting parentheses around single parameters . . . . . . . . . . . . . . 186

13.4 Lexical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
13.4.1 Sources of variable values: static versus dynamic . . . . . . . . . . . . . 187
13.4.2 Variables that are lexical in arrow functions . . . . . . . . . . . . . . . . 187

13.5 Syntax pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.5.1 Arrow functions bind very loosely . . . . . . . . . . . . . . . . . . . . . 188
13.5.2 No line break after arrow function parameters . . . . . . . . . . . . . . . 188
13.5.3 You can’t use statements as expression bodies . . . . . . . . . . . . . . . 189



CONTENTS

13.5.4 Returning object literals . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
13.6 Immediately-invoked arrow functions . . . . . . . . . . . . . . . . . . . . . . 190
13.7 Arrow functions versus bind() . . . . . . . . . . . . . . . . . . . . . . . . . . 191

13.7.1 Extracting methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
13.7.2 this via parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
13.7.3 Partial evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

13.8 Arrow functions versus normal functions . . . . . . . . . . . . . . . . . . . . 193

14. New OOP features besides classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

14.1.1 New object literal features . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.1.2 New methods in Object . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

14.2 New features of object literals . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.2.1 Method definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.2.2 Property value shorthands . . . . . . . . . . . . . . . . . . . . . . . . . . 196
14.2.3 Computed property keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

14.3 New methods of Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
14.3.1 Object.assign(target, source_1, source_2, ···) . . . . . . . . . . . 198
14.3.2 Object.getOwnPropertySymbols(obj) . . . . . . . . . . . . . . . . . . . 201
14.3.3 Object.is(value1, value2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
14.3.4 Object.setPrototypeOf(obj, proto) . . . . . . . . . . . . . . . . . . . 202

14.4 Traversing properties in ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.4.1 Five operations that traverse properties . . . . . . . . . . . . . . . . . . . 203
14.4.2 Traversal order of properties . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.5 Assigning versus defining properties . . . . . . . . . . . . . . . . . . . . . . . 205
14.5.1 Overriding inherited read-only properties . . . . . . . . . . . . . . . . . 206

14.6 __proto__ in ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
14.6.1 __proto__ prior to ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . 207
14.6.2 The two kinds of __proto__ in ECMAScript 6 . . . . . . . . . . . . . . . 208
14.6.3 Avoiding the magic of __proto__ . . . . . . . . . . . . . . . . . . . . . . 210
14.6.4 Detecting support for ES6-style __proto__ . . . . . . . . . . . . . . . . . 212
14.6.5 __proto__ is pronounced “dunder proto” . . . . . . . . . . . . . . . . . . 212
14.6.6 Recommendations for __proto__ . . . . . . . . . . . . . . . . . . . . . . 213

14.7 Enumerability in ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . . . . 213
14.7.1 Property attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
14.7.2 Constructs affected by enumerability . . . . . . . . . . . . . . . . . . . . 214
14.7.3 Use cases for enumerability . . . . . . . . . . . . . . . . . . . . . . . . . 214
14.7.4 Naming inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
14.7.5 Looking ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

14.8 Customizing basic language operations via well-known symbols . . . . . . . . 219
14.8.1 Property key Symbol.hasInstance (method) . . . . . . . . . . . . . . . . 219
14.8.2 Property key Symbol.toPrimitive (method) . . . . . . . . . . . . . . . . 220
14.8.3 Property key Symbol.toStringTag (string) . . . . . . . . . . . . . . . . . 222
14.8.4 Property key Symbol.unscopables (Object) . . . . . . . . . . . . . . . . 225

14.9 FAQ: object literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
14.9.1 Can I use super in object literals? . . . . . . . . . . . . . . . . . . . . . . 225



CONTENTS

15. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.2 The essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

15.2.1 Base classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.2.2 Inside the body of a class definition . . . . . . . . . . . . . . . . . . . . . 229
15.2.3 Subclassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

15.3 Private data for classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
15.3.1 Private data via constructor environments . . . . . . . . . . . . . . . . . 237
15.3.2 Private data via a naming convention . . . . . . . . . . . . . . . . . . . . 238
15.3.3 Private data via WeakMaps . . . . . . . . . . . . . . . . . . . . . . . . . 239
15.3.4 Private data via symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
15.3.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

15.4 Simple mixins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
15.5 The details of classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

15.5.1 Various checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
15.5.2 Attributes of properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
15.5.3 Classes have inner names . . . . . . . . . . . . . . . . . . . . . . . . . . 245

15.6 The details of subclassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
15.6.1 Prototype chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
15.6.2 Allocating and initializing instances . . . . . . . . . . . . . . . . . . . . 248
15.6.3 Why can’t you subclass built-in constructors in ES5? . . . . . . . . . . . 251
15.6.4 Referring to superproperties in methods . . . . . . . . . . . . . . . . . . 253

15.7 The species pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
15.7.1 Helper methods for examples . . . . . . . . . . . . . . . . . . . . . . . . 256
15.7.2 The standard species pattern . . . . . . . . . . . . . . . . . . . . . . . . 256
15.7.3 The species pattern for Arrays . . . . . . . . . . . . . . . . . . . . . . . . 257
15.7.4 The species pattern in static methods . . . . . . . . . . . . . . . . . . . . 258
15.7.5 Overriding the default species in subclasses . . . . . . . . . . . . . . . . 258

15.8 The pros and cons of classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
15.8.1 Complaint: ES6 classes obscure the true nature of JavaScript inheritance . 260
15.8.2 Complaint: Classes provide only single inheritance . . . . . . . . . . . . 261
15.8.3 Complaint: Classes lock you in, due to mandatory new . . . . . . . . . . 261

15.9 FAQ: classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
15.9.1 Why can’t classes be function-called? . . . . . . . . . . . . . . . . . . . . 261
15.9.2 How do I instantiate a class, given an Array of arguments? . . . . . . . . 261

15.10 What is next for classes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
15.11 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

16. Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

16.1.1 Multiple named exports . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
16.1.2 Single default export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
16.1.3 Browsers: scripts versus modules . . . . . . . . . . . . . . . . . . . . . . 264

16.2 Modules in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
16.2.1 ECMAScript 5 module systems . . . . . . . . . . . . . . . . . . . . . . . 265
16.2.2 ECMAScript 6 modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



CONTENTS

16.3 The basics of ES6 modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
16.3.1 Named exports (several per module) . . . . . . . . . . . . . . . . . . . . 266
16.3.2 Default exports (one per module) . . . . . . . . . . . . . . . . . . . . . . 267
16.3.3 Imports and exports must be at the top level . . . . . . . . . . . . . . . . 269
16.3.4 Imports are hoisted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
16.3.5 Imports are read-only views on exports . . . . . . . . . . . . . . . . . . . 270
16.3.6 Support for cyclic dependencies . . . . . . . . . . . . . . . . . . . . . . . 271

16.4 Importing and exporting in detail . . . . . . . . . . . . . . . . . . . . . . . . 273
16.4.1 Importing styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
16.4.2 Named exporting styles: inline versus clause . . . . . . . . . . . . . . . . 273
16.4.3 Re-exporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
16.4.4 All exporting styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
16.4.5 Having both named exports and a default export in a module . . . . . . . 276

16.5 The ECMAScript 6 module loader API . . . . . . . . . . . . . . . . . . . . . . 278
16.5.1 Loaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
16.5.2 Loader method: importing modules . . . . . . . . . . . . . . . . . . . . . 279
16.5.3 More loader methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
16.5.4 Configuring module loading . . . . . . . . . . . . . . . . . . . . . . . . . 280

16.6 Using ES6 modules in browsers . . . . . . . . . . . . . . . . . . . . . . . . . . 280
16.6.1 Browsers: asynchronous modules versus synchronous scripts . . . . . . . 280

16.7 Details: imports as views on exports . . . . . . . . . . . . . . . . . . . . . . . 283
16.7.1 In CommonJS, imports are copies of exported values . . . . . . . . . . . 283
16.7.2 In ES6, imports are live read-only views on exported values . . . . . . . 284
16.7.3 Implementing views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
16.7.4 Imports as views in the spec . . . . . . . . . . . . . . . . . . . . . . . . . 289

16.8 Design goals for ES6 modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
16.8.1 Default exports are favored . . . . . . . . . . . . . . . . . . . . . . . . . 290
16.8.2 Static module structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
16.8.3 Support for both synchronous and asynchronous loading . . . . . . . . . 294
16.8.4 Support for cyclic dependencies between modules . . . . . . . . . . . . . 294

16.9 FAQ: modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
16.9.1 Can I use a variable to specify from which module I want to import? . . 294
16.9.2 Can I import a module conditionally or on demand? . . . . . . . . . . . 295
16.9.3 Can I use variables in an import statement? . . . . . . . . . . . . . . . . 295
16.9.4 Can I use destructuring in an import statement? . . . . . . . . . . . . . . 295
16.9.5 Are named exports necessary? Why not default-export objects? . . . . . 295
16.9.6 Can I eval() the code of module? . . . . . . . . . . . . . . . . . . . . . . 296

16.10 Advantages of ECMAScript 6 modules . . . . . . . . . . . . . . . . . . . . . . 296
16.11 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

IV Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

17. The for-of loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
17.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
17.2 Introducing the for-of loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 299



CONTENTS

17.3 Pitfall: for-of only works with iterable values . . . . . . . . . . . . . . . . . 300
17.4 Iteration variables: const declarations versus var declarations . . . . . . . . . 300
17.5 Iterating with existing variables, object properties and Array elements . . . . 301
17.6 Iterating with a destructuring pattern . . . . . . . . . . . . . . . . . . . . . . 301

18. New Array features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
18.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
18.2 New static Array methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

18.2.1 Array.from(arrayLike, mapFunc?, thisArg?) . . . . . . . . . . . . . . 303
18.2.2 Array.of(...items) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

18.3 New Array.prototype methods . . . . . . . . . . . . . . . . . . . . . . . . . 306
18.3.1 Iterating over Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
18.3.2 Searching for Array elements . . . . . . . . . . . . . . . . . . . . . . . . 307
18.3.3 Array.prototype.copyWithin() . . . . . . . . . . . . . . . . . . . . . . 308
18.3.4 Array.prototype.fill() . . . . . . . . . . . . . . . . . . . . . . . . . . 308

18.4 ES6 and holes in Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
18.4.1 ECMAScript 6 treats holes like undefined elements . . . . . . . . . . . . 309
18.4.2 Array operations and holes . . . . . . . . . . . . . . . . . . . . . . . . . 310
18.4.3 Creating Arrays filled with values . . . . . . . . . . . . . . . . . . . . . 312
18.4.4 Removing holes from Arrays . . . . . . . . . . . . . . . . . . . . . . . . 313

18.5 Configuringwhich objects are spread by concat() (Symbol.isConcatSpreadable) 314
18.5.1 Default for Arrays: spreading . . . . . . . . . . . . . . . . . . . . . . . . 314
18.5.2 Default for non-Arrays: no spreading . . . . . . . . . . . . . . . . . . . . 314
18.5.3 Detecting Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
18.5.4 Symbol.isConcatSpreadable in the standard library . . . . . . . . . . . 315

18.6 The numeric range of Array indices . . . . . . . . . . . . . . . . . . . . . . . 316

19. Maps and Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
19.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

19.1.1 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
19.1.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
19.1.3 WeakMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

19.2 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
19.2.1 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
19.2.2 Setting up a Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
19.2.3 Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
19.2.4 Iterating over Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
19.2.5 Looping over Map entries . . . . . . . . . . . . . . . . . . . . . . . . . . 323
19.2.6 Mapping and filtering Maps . . . . . . . . . . . . . . . . . . . . . . . . . 323
19.2.7 Combining Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
19.2.8 Arbitrary Maps as JSON via Arrays of pairs . . . . . . . . . . . . . . . . 325
19.2.9 String Maps as JSON via objects . . . . . . . . . . . . . . . . . . . . . . . 326
19.2.10Map API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

19.3 WeakMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
19.3.1 WeakMap keys are objects . . . . . . . . . . . . . . . . . . . . . . . . . . 328
19.3.2 WeakMap keys are weakly held . . . . . . . . . . . . . . . . . . . . . . . 329



CONTENTS

19.3.3 You can’t get an overview of a WeakMap or clear it . . . . . . . . . . . . 329
19.3.4 Use cases for WeakMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
19.3.5 WeakMap API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

19.4 Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
19.4.1 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
19.4.2 Setting up a Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
19.4.3 Comparing Set elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
19.4.4 Iterating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
19.4.5 Mapping and filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
19.4.6 Union, intersection, difference . . . . . . . . . . . . . . . . . . . . . . . . 335
19.4.7 Set API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

19.5 WeakSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
19.5.1 Use cases for WeakSets . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
19.5.2 WeakSet API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

19.6 FAQ: Maps and Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
19.6.1 Why do Maps and Sets have the property size and not length? . . . . . 339
19.6.2 Why can’t I configure how Maps and Sets compare keys and values? . . 339
19.6.3 Is there a way to specify a default value when getting something out of

a Map? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
19.6.4 When should I use a Map, when an object? . . . . . . . . . . . . . . . . . 340
19.6.5 When would I use an object as a key in a Map? . . . . . . . . . . . . . . 340

20. Typed Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
20.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

20.2.1 Element types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
20.2.2 Handling overflow and underflow . . . . . . . . . . . . . . . . . . . . . 344
20.2.3 Endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
20.2.4 Negative indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

20.3 ArrayBuffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
20.3.1 ArrayBuffer constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
20.3.2 Static ArrayBuffer methods . . . . . . . . . . . . . . . . . . . . . . . . . 347
20.3.3 ArrayBuffer.prototype properties . . . . . . . . . . . . . . . . . . . . . 347

20.4 Typed Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
20.4.1 Typed Arrays versus normal Arrays . . . . . . . . . . . . . . . . . . . . 347
20.4.2 Typed Arrays are iterable . . . . . . . . . . . . . . . . . . . . . . . . . . 348
20.4.3 Converting Typed Arrays to and from normal Arrays . . . . . . . . . . . 348
20.4.4 The Species pattern for Typed Arrays . . . . . . . . . . . . . . . . . . . . 349
20.4.5 The inheritance hierarchy of Typed Arrays . . . . . . . . . . . . . . . . . 349
20.4.6 Static TypedArray methods . . . . . . . . . . . . . . . . . . . . . . . . . 349
20.4.7 TypedArray.prototype properties . . . . . . . . . . . . . . . . . . . . . 351
20.4.8 «ElementType»Array constructor . . . . . . . . . . . . . . . . . . . . . . 353
20.4.9 Static «ElementType»Array properties . . . . . . . . . . . . . . . . . . . 354
20.4.10«ElementType»Array.prototype properties . . . . . . . . . . . . . . . . 354
20.4.11Concatenating Typed Arrays . . . . . . . . . . . . . . . . . . . . . . . . 354

20.5 DataViews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355



CONTENTS

20.5.1 DataView constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
20.5.2 DataView.prototype properties . . . . . . . . . . . . . . . . . . . . . . . 355

20.6 Browser APIs that support Typed Arrays . . . . . . . . . . . . . . . . . . . . 355
20.6.1 File API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
20.6.2 XMLHttpRequest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
20.6.3 Fetch API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
20.6.4 Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
20.6.5 WebSockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
20.6.6 Other APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

20.7 Extended example: JPEG SOF0 decoder . . . . . . . . . . . . . . . . . . . . . 358
20.7.1 The JPEG file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
20.7.2 The JavaScript code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

20.8 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

21. Iterables and iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
21.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

21.1.1 Iterable values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
21.1.2 Constructs supporting iteration . . . . . . . . . . . . . . . . . . . . . . . 361

21.2 Iterability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
21.3 Iterable data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

21.3.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
21.3.2 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
21.3.3 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
21.3.4 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
21.3.5 arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
21.3.6 DOM data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
21.3.7 Iterable computed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
21.3.8 Plain objects are not iterable . . . . . . . . . . . . . . . . . . . . . . . . . 366

21.4 Iterating language constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
21.4.1 Destructuring via an Array pattern . . . . . . . . . . . . . . . . . . . . . 368
21.4.2 The for-of loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
21.4.3 Array.from() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
21.4.4 The spread operator (...) . . . . . . . . . . . . . . . . . . . . . . . . . . 368
21.4.5 Maps and Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
21.4.6 Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
21.4.7 yield* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

21.5 Implementing iterables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
21.5.1 Iterators that are iterable . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
21.5.2 Optional iterator methods: return() and throw() . . . . . . . . . . . . . 374

21.6 More examples of iterables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
21.6.1 Tool functions that return iterables . . . . . . . . . . . . . . . . . . . . . 376
21.6.2 Combinators for iterables . . . . . . . . . . . . . . . . . . . . . . . . . . 377
21.6.3 Infinite iterables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

21.7 FAQ: iterables and iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
21.7.1 Isn’t the iteration protocol slow? . . . . . . . . . . . . . . . . . . . . . . 380
21.7.2 Can I reuse the same object several times? . . . . . . . . . . . . . . . . . 380



CONTENTS

21.7.3 Why doesn’t ECMAScript 6 have iterable combinators? . . . . . . . . . . 381
21.7.4 Aren’t iterables difficult to implement? . . . . . . . . . . . . . . . . . . . 381

21.8 The ECMAScript 6 iteration protocol in depth . . . . . . . . . . . . . . . . . . 381
21.8.1 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
21.8.2 Closing iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
21.8.3 Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

22. Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
22.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

22.1.1 What are generators? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
22.1.2 Kinds of generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
22.1.3 Use case: implementing iterables . . . . . . . . . . . . . . . . . . . . . . 393
22.1.4 Use case: simpler asynchronous code . . . . . . . . . . . . . . . . . . . . 394
22.1.5 Use case: receiving asynchronous data . . . . . . . . . . . . . . . . . . . 395

22.2 What are generators? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
22.2.1 Roles played by generators . . . . . . . . . . . . . . . . . . . . . . . . . 396

22.3 Generators as iterators (data production) . . . . . . . . . . . . . . . . . . . . 397
22.3.1 Ways of iterating over a generator . . . . . . . . . . . . . . . . . . . . . 397
22.3.2 Returning from a generator . . . . . . . . . . . . . . . . . . . . . . . . . 398
22.3.3 Throwing an exception from a generator . . . . . . . . . . . . . . . . . . 399
22.3.4 Example: iterating over properties . . . . . . . . . . . . . . . . . . . . . 399
22.3.5 You can only yield in generators . . . . . . . . . . . . . . . . . . . . . . 400
22.3.6 Recursion via yield* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

22.4 Generators as observers (data consumption) . . . . . . . . . . . . . . . . . . . 404
22.4.1 Sending values via next() . . . . . . . . . . . . . . . . . . . . . . . . . . 404
22.4.2 yield binds loosely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
22.4.3 return() and throw() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
22.4.4 return() terminates the generator . . . . . . . . . . . . . . . . . . . . . 409
22.4.5 throw() signals an error . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
22.4.6 Example: processing asynchronously pushed data . . . . . . . . . . . . . 412
22.4.7 yield*: the full story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

22.5 Generators as coroutines (cooperative multitasking) . . . . . . . . . . . . . . 417
22.5.1 The full generator interface . . . . . . . . . . . . . . . . . . . . . . . . . 417
22.5.2 Cooperative multitasking . . . . . . . . . . . . . . . . . . . . . . . . . . 418
22.5.3 The limitations of cooperative multitasking via generators . . . . . . . . 420

22.6 Examples of generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
22.6.1 Implementing iterables via generators . . . . . . . . . . . . . . . . . . . 421
22.6.2 Generators for lazy evaluation . . . . . . . . . . . . . . . . . . . . . . . 424
22.6.3 Cooperative multi-tasking via generators . . . . . . . . . . . . . . . . . . 433

22.7 Inheritance within the iteration API (including generators) . . . . . . . . . . . 437
22.7.1 IteratorPrototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
22.7.2 The value of this in generators . . . . . . . . . . . . . . . . . . . . . . . 440

22.8 Style consideration: whitespace before and after the asterisk . . . . . . . . . . 441
22.8.1 Generator function declarations and expressions . . . . . . . . . . . . . . 441
22.8.2 Generator method definitions . . . . . . . . . . . . . . . . . . . . . . . . 441
22.8.3 Formatting recursive yield . . . . . . . . . . . . . . . . . . . . . . . . . 442



CONTENTS

22.8.4 Documenting generator functions and methods . . . . . . . . . . . . . . 443
22.9 FAQ: generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

22.9.1 Why use the keyword function* for generators and not generator? . . . 443
22.9.2 Is yield a keyword? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

22.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
22.11 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

V Standard library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

23. New regular expression features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
23.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
23.2 New flag /y (sticky) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

23.2.1 RegExp.prototype.exec(str) . . . . . . . . . . . . . . . . . . . . . . . 447
23.2.2 RegExp.prototype.test(str) . . . . . . . . . . . . . . . . . . . . . . . 448
23.2.3 String.prototype.search(regex) . . . . . . . . . . . . . . . . . . . . . 449
23.2.4 String.prototype.match(regex) . . . . . . . . . . . . . . . . . . . . . . 449
23.2.5 String.prototype.split(separator, limit) . . . . . . . . . . . . . . 450
23.2.6 String.prototype.replace(search, replacement) . . . . . . . . . . . 451
23.2.7 Example: using sticky matching for tokenizing . . . . . . . . . . . . . . . 452
23.2.8 Example: manually implementing sticky matching . . . . . . . . . . . . 453

23.3 New flag /u (unicode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
23.3.1 Consequence: lone surrogates in the regular expression only match lone

surrogates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
23.3.2 Consequence: you can put code points in character classes . . . . . . . . 454
23.3.3 Consequence: the dot operator (.) matches code points, not code units . . 455
23.3.4 Consequence: quantifiers apply to code points, not code units . . . . . . 455

23.4 New data property flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
23.5 RegExp() can be used as a copy constructor . . . . . . . . . . . . . . . . . . . 456

23.5.1 Example: an iterable version of exec() . . . . . . . . . . . . . . . . . . . 457
23.6 String methods that delegate to regular expression methods . . . . . . . . . . 457

24. Asynchronous programming (background) . . . . . . . . . . . . . . . . . . . . . . 459
24.1 The JavaScript call stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
24.2 The browser event loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

24.2.1 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
24.2.2 Displaying DOM changes . . . . . . . . . . . . . . . . . . . . . . . . . . 462
24.2.3 Run-to-completion semantics . . . . . . . . . . . . . . . . . . . . . . . . 462
24.2.4 Blocking the event loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
24.2.5 Avoiding blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

24.3 Receiving results asynchronously . . . . . . . . . . . . . . . . . . . . . . . . . 464
24.3.1 Asynchronous results via events . . . . . . . . . . . . . . . . . . . . . . 464
24.3.2 Asynchronous results via callbacks . . . . . . . . . . . . . . . . . . . . . 465
24.3.3 Continuation-passing style . . . . . . . . . . . . . . . . . . . . . . . . . 466
24.3.4 Composing code in CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
24.3.5 Pros and cons of callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 468

24.4 Looking ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468



CONTENTS

24.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

25. Promises for asynchronous programming . . . . . . . . . . . . . . . . . . . . . . . 469
25.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

25.1.1 Chaining then() calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
25.1.2 Executing asynchronous functions in parallel . . . . . . . . . . . . . . . 470
25.1.3 Glossary: Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

25.2 Introduction: Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
25.3 A first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
25.4 Three ways of understanding Promises . . . . . . . . . . . . . . . . . . . . . 474

25.4.1 Conceptually: calling a Promise-based function is blocking . . . . . . . . 474
25.4.2 A Promise is a container for an asynchronously delivered value . . . . . 475
25.4.3 A Promise is an event emitter . . . . . . . . . . . . . . . . . . . . . . . . 475

25.5 Creating and using Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
25.5.1 Producing a Promise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
25.5.2 The states of Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
25.5.3 Consuming a Promise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
25.5.4 Promises are always asynchronous . . . . . . . . . . . . . . . . . . . . . 478

25.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
25.6.1 Example: promisifying fs.readFile() . . . . . . . . . . . . . . . . . . . 478
25.6.2 Example: promisifying XMLHttpRequest . . . . . . . . . . . . . . . . . . 479
25.6.3 Example: delaying an activity . . . . . . . . . . . . . . . . . . . . . . . . 480
25.6.4 Example: timing out a Promise . . . . . . . . . . . . . . . . . . . . . . . 480

25.7 Other ways of creating Promises . . . . . . . . . . . . . . . . . . . . . . . . . 481
25.7.1 Promise.resolve() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
25.7.2 Promise.reject() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

25.8 Chaining Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
25.8.1 Resolving Q with a normal value . . . . . . . . . . . . . . . . . . . . . . 482
25.8.2 Resolving Q with a thenable . . . . . . . . . . . . . . . . . . . . . . . . . 483
25.8.3 Resolving Q from onRejected . . . . . . . . . . . . . . . . . . . . . . . . 483
25.8.4 Rejecting Q by throwing an exception . . . . . . . . . . . . . . . . . . . 484
25.8.5 Chaining and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

25.9 Common Promise chaining mistakes . . . . . . . . . . . . . . . . . . . . . . . 484
25.9.1 Mistake: losing the tail of a Promise chain . . . . . . . . . . . . . . . . . 484
25.9.2 Mistake: nesting Promises . . . . . . . . . . . . . . . . . . . . . . . . . . 485
25.9.3 Mistake: creating Promises instead of chaining . . . . . . . . . . . . . . . 486
25.9.4 Mistake: using then() for error handling . . . . . . . . . . . . . . . . . . 487

25.10 Tips for error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
25.10.1Operational errors versus programmer errors . . . . . . . . . . . . . . . 487
25.10.2Handling exceptions in Promise-based functions . . . . . . . . . . . . . . 488
25.10.3Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

25.11 Composing Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
25.11.1Manually forking and joining computations . . . . . . . . . . . . . . . . 490
25.11.2Forking and joining computations via Promise.all() . . . . . . . . . . . 491
25.11.3map() via Promise.all() . . . . . . . . . . . . . . . . . . . . . . . . . . 492
25.11.4Timing out via Promise.race() . . . . . . . . . . . . . . . . . . . . . . . 492



CONTENTS

25.12 Two useful additional Promise methods . . . . . . . . . . . . . . . . . . . . . 493
25.12.1done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
25.12.2finally() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

25.13 Node.js: using callback-based sync functions with Promises . . . . . . . . . . 496
25.14 ES6-compatible Promise libraries . . . . . . . . . . . . . . . . . . . . . . . . . 496
25.15 Promises and generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
25.16 Next step: using Promises via generators . . . . . . . . . . . . . . . . . . . . . 497
25.17 Promises in depth: a simple implementation . . . . . . . . . . . . . . . . . . . 498

25.17.1A stand-alone Promise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
25.17.2Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
25.17.3Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
25.17.4Promise states in more detail . . . . . . . . . . . . . . . . . . . . . . . . 504
25.17.5Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
25.17.6Revealing constructor pattern . . . . . . . . . . . . . . . . . . . . . . . . 506

25.18 Advantages and limitations of Promises . . . . . . . . . . . . . . . . . . . . . 507
25.18.1Advantages of Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
25.18.2Promises are not always the best choice . . . . . . . . . . . . . . . . . . 508

25.19 Reference: the ECMAScript 6 Promise API . . . . . . . . . . . . . . . . . . . . 509
25.19.1Promise constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
25.19.2Static Promise methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
25.19.3Promise.prototype methods . . . . . . . . . . . . . . . . . . . . . . . . 510

25.20 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

VI Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

26. Unicode in ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
26.1 Unicode is better supported in ES6 . . . . . . . . . . . . . . . . . . . . . . . . 513
26.2 Escape sequences in ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

26.2.1 Where can escape sequences be used? . . . . . . . . . . . . . . . . . . . 514
26.2.2 Escape sequences in the ES6 spec . . . . . . . . . . . . . . . . . . . . . . 515

27. Tail call optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
27.1 What is tail call optimization? . . . . . . . . . . . . . . . . . . . . . . . . . . 517

27.1.1 Normal execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
27.1.2 Tail call optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

27.2 Checking whether a function call is in a tail position . . . . . . . . . . . . . . 522
27.2.1 Tail calls in expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
27.2.2 Tail calls in statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
27.2.3 Tail call optimization can only be made in strict mode . . . . . . . . . . . 524
27.2.4 Pitfall: solo function calls are never in tail position . . . . . . . . . . . . . 524

27.3 Tail-recursive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
27.3.1 Tail-recursive loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

28. Metaprogramming with proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
28.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
28.2 Programming versus metaprogramming . . . . . . . . . . . . . . . . . . . . . 527



CONTENTS

28.2.1 Kinds of metaprogramming . . . . . . . . . . . . . . . . . . . . . . . . . 528
28.3 Proxies explained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

28.3.1 Function-specific traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
28.3.2 Intercepting method calls . . . . . . . . . . . . . . . . . . . . . . . . . . 531
28.3.3 Revocable proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
28.3.4 Proxies as prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
28.3.5 Forwarding intercepted operations . . . . . . . . . . . . . . . . . . . . . 533
28.3.6 Pitfall: not all objects can be wrapped transparently by proxies . . . . . . 535

28.4 Use cases for proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
28.4.1 Tracing property accesses (get, set) . . . . . . . . . . . . . . . . . . . . 538
28.4.2 Warning about unknown properties (get, set) . . . . . . . . . . . . . . . 540
28.4.3 Negative Array indices (get) . . . . . . . . . . . . . . . . . . . . . . . . 541
28.4.4 Data binding (set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
28.4.5 Accessing a restful web service (method calls) . . . . . . . . . . . . . . . 543
28.4.6 Revocable references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
28.4.7 Implementing the DOM in JavaScript . . . . . . . . . . . . . . . . . . . . 546
28.4.8 Other use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

28.5 The design of the proxy API . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
28.5.1 Stratification: keeping base level and meta level separate . . . . . . . . . 547
28.5.2 Virtual objects versus wrappers . . . . . . . . . . . . . . . . . . . . . . . 548
28.5.3 Transparent virtualization and handler encapsulation . . . . . . . . . . . 549
28.5.4 The meta object protocol and proxy traps . . . . . . . . . . . . . . . . . 550
28.5.5 Enforcing invariants for proxies . . . . . . . . . . . . . . . . . . . . . . . 552

28.6 FAQ: proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
28.6.1 Where is the enumerate trap? . . . . . . . . . . . . . . . . . . . . . . . . 556

28.7 Reference: the proxy API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
28.7.1 Creating proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
28.7.2 Handler methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
28.7.3 Invariants of handler methods . . . . . . . . . . . . . . . . . . . . . . . . 558
28.7.4 Operations that affect the prototype chain . . . . . . . . . . . . . . . . . 560
28.7.5 Reflect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

28.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
28.9 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

29. Coding style tips for ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

30. An overview of what’s new in ES6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
30.1 Categories of ES6 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
30.2 New number and Math features . . . . . . . . . . . . . . . . . . . . . . . . . . 566

30.2.1 New integer literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
30.2.2 New Number properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
30.2.3 New Math methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

30.3 New string features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
30.4 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

30.4.1 Use case 1: unique property keys . . . . . . . . . . . . . . . . . . . . . . 569
30.4.2 Use case 2: constants representing concepts . . . . . . . . . . . . . . . . 570



CONTENTS

30.4.3 Pitfall: you can’t coerce symbols to strings . . . . . . . . . . . . . . . . . 570
30.4.4 Which operations related to property keys are aware of symbols? . . . . 571

30.5 Template literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
30.6 Variables and scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

30.6.1 let . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
30.6.2 const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
30.6.3 Ways of declaring variables . . . . . . . . . . . . . . . . . . . . . . . . . 573

30.7 Destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
30.7.1 Object destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
30.7.2 Array destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
30.7.3 Where can destructuring be used? . . . . . . . . . . . . . . . . . . . . . 574

30.8 Parameter handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
30.8.1 Spread operator (...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

30.9 Callable entities in ECMAScript 6 . . . . . . . . . . . . . . . . . . . . . . . . 576
30.10 Arrow functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
30.11 New OOP features besides classes . . . . . . . . . . . . . . . . . . . . . . . . 578

30.11.1New object literal features . . . . . . . . . . . . . . . . . . . . . . . . . . 578
30.11.2New methods in Object . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

30.12 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
30.13 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

30.13.1Multiple named exports . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
30.13.2Single default export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
30.13.3Browsers: scripts versus modules . . . . . . . . . . . . . . . . . . . . . . 582

30.14 The for-of loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
30.15 New Array features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
30.16 Maps and Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

30.16.1Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
30.16.2Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
30.16.3WeakMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

30.17 Typed Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
30.18 Iterables and iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

30.18.1Iterable values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
30.18.2Constructs supporting iteration . . . . . . . . . . . . . . . . . . . . . . . 587

30.19 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
30.19.1What are generators? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
30.19.2Kinds of generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
30.19.3Use case: implementing iterables . . . . . . . . . . . . . . . . . . . . . . 589
30.19.4Use case: simpler asynchronous code . . . . . . . . . . . . . . . . . . . . 590
30.19.5Use case: receiving asynchronous data . . . . . . . . . . . . . . . . . . . 591

30.20 New regular expression features . . . . . . . . . . . . . . . . . . . . . . . . . 591
30.21 Promises for asynchronous programming . . . . . . . . . . . . . . . . . . . . 592

30.21.1Chaining then() calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
30.21.2Executing asynchronous functions in parallel . . . . . . . . . . . . . . . 593
30.21.3Glossary: Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

30.22 Metaprogramming with proxies . . . . . . . . . . . . . . . . . . . . . . . . . 594



Short TOC
What you need to know about this book
Foreword
Preface
Acknowledgements
About the author

I. Background

1. About ECMAScript 6 (ES6)
2. FAQ: ECMAScript 6
3. One JavaScript: avoiding versioning in ECMAScript 6
4. Core ES6 features

II. Data

5. New number and Math features
6. New string features
7. Symbols
8. Template literals
9. Variables and scoping
10. Destructuring
11. Parameter handling

III. Modularity

12. Callable entities in ECMAScript 6
13. Arrow functions
14. New OOP features besides classes
15. Classes
16. Modules

IV. Collections

17. The for-of loop
18. New Array features
19. Maps and Sets
20. Typed Arrays
21. Iterables and iterators
22. Generators

V. Standard library

23. New regular expression features
24. Asynchronous programming (background)
25. Promises for asynchronous programming

VI. Miscellaneous



Short TOC ii

26. Unicode in ES6
27. Tail call optimization
28. Metaprogramming with proxies
29. Coding style tips for ECMAScript 6
30. An overview of what’s new in ES6



What you need to know about this
book
This book is about ECMAScript 6 (whose official name is ECMAScript 2015), a new version of
JavaScript.

Audience: JavaScript programmers

In order to understand this book, you should already know JavaScript. If you don’t: my other
book “Speaking JavaScript¹” is free online and teaches programmers all of JavaScript (up to and
including ECMAScript 5).

Why should I read this book?

• You decide how deep to go: This book covers ECMAScript 6 in depth, but is structured
so that you can also quickly get an overview if you want to.

• Not just “what”, also “why”: This book not only tells you how ES6 works, it also tells you
why it works the way it does.

• Thoroughly researched: In order to make sense of ES6, I have consulted many sources:
– The language specification (to which you’ll occasionally find pointers in this book)
– The es-discuss mailing list
– The TC39 meeting notes
– Scientific papers
– Documentation on features in other languages that inspired ES6 features
– And more

How to read this book

This book covers ES6 with three levels of detail:

• Quick start: Begin with the chapter “Core ES6 features”. Additionally, almost every
chapter starts with a section giving an overview of what’s in the chapter. The last chapter
collects all of these overview sections in a single location.

• Solid foundation: Each chapter always starts with the essentials and then increasingly
goes into details. The headings should give you a good idea of when to stop reading, but I
also occasionally give tips in sidebars w.r.t. how important it is to know something.

¹http://speakingjs.com/

http://speakingjs.com/
http://speakingjs.com/


What you need to know about this book iv

• In-depth knowledge: Read all of a chapter, including the in-depth parts.

Other things to know:

• Recommendations: I occasionally recommend simple rules. Those are meant as guide-
lines, to keep you safe without you having to know (or remember) all of the details. I tend
to favor mainstream over elegance, because most code doesn’t exist in a vacuum. However,
I’ll always give you enough information so that you can make up your own mind.

• Forum: The “Exploring ES6” homepage links to a forum² where you can discuss questions
and ideas related to this book.

• Errata (typos, errors, etc.): On the “Exploring ES6” homepage³, there are links to a form
for submitting errata and to a list with submitted errata.

Sources of this book

I started writing this book long before there were implementations of ES6 features, which
required quite a bit of research. Essential sources were:

• The es-discuss mailing list⁴
• TC39 meeting notes⁵
• The ECMAScript language specification⁶
• The old ECMAScript Harmony wiki⁷
• Scientific papers (e.g. the ones written about ES6 proxies) and other material on the web.
• Asking around to fill remaining holes (the people who answered are acknowledged
throughout the book)

Glossary

Strict mode versus sloppy mode

ECMAScript 5 introduced language modes: Strict mode makes JavaScript a cleaner language by
changing its semantics, performing more checks and throwing more exceptions. Consult Sect.
“Strict Mode⁸” in “Speaking JavaScript” for more information. The legacy/default mode is called
non-strict mode or sloppy mode.

Strict mode is switched on via the following line (which does nothing in ECMAScript versions
before ES5):

²http://exploringjs.com/es6.html#forum
³http://exploringjs.com/es6.html#errata
⁴https://mail.mozilla.org/listinfo/es-discuss
⁵https://github.com/tc39/tc39-notes/
⁶http://www.ecma-international.org/ecma-262/6.0/
⁷http://wiki.ecmascript.org/doku.php?id=harmony:harmony
⁸http://speakingjs.com/es5/ch07.html#strict_mode

http://exploringjs.com/es6.html#forum
http://exploringjs.com/es6.html#errata
https://mail.mozilla.org/listinfo/es-discuss
https://github.com/tc39/tc39-notes/
http://www.ecma-international.org/ecma-262/6.0/
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
http://speakingjs.com/es5/ch07.html#strict_mode
http://exploringjs.com/es6.html#forum
http://exploringjs.com/es6.html#errata
https://mail.mozilla.org/listinfo/es-discuss
https://github.com/tc39/tc39-notes/
http://www.ecma-international.org/ecma-262/6.0/
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
http://speakingjs.com/es5/ch07.html#strict_mode


What you need to know about this book v

'use strict';

If you put this line at the beginning of a file, all code in it is in strict mode. If you make this line
the first line of a function, only that function is in strict mode.

Using a directive to switch on strict mode is not very user friendly and was one of the reasons
why strict mode was not nearly as popular in ES5 as it should be. However, ES6 modules and
classes are implicitly in strict mode. Given that most ES6 code will live in modules, strict mode
becomes the de-facto default for ES6.

Protocol

The term protocol has various meanings in computing. In the context of programming languages
and API design, I’m using it as follows:

A protocol defines interfaces (signatures for methods and/or functions) and rules for
using them.

The idea is to specify how a service is to be performed. Then anyone can perform the service
and anyone can request it and they are guaranteed to work together well.

Note that the definition given here is different from viewing a protocol as an interface (as, for
example, Objective C does), because this definition includes rules.

Receiver (of a method call)

Given a method call obj.m(···), obj is the receiver of the method call and accessible via this

inside the method.

Signature of a function (or a method)

The (type) signature of a function describes how the function is to be called, what its inputs and
its output are. I’m using the syntax established by Microsoft TypeScript and Facebook Flow in
this book. An example of a signature:

parseInt(string : string, radix? : number) : number

You can see that parseInt() expects a string and a number and returns a number. If the type of
a parameter is clear, I often omit the type annotation.

Internal slots

The ES6 language specification uses internal slots to store internal data. In the spec, internal slots
are accessed as if they were properties whose names are in square brackets:



What you need to know about this book vi

O.[[GetPrototypeOf]]()

Two things differentiate them from properties:

• They are not read via “get” operations and written via “set” operations.
• They are only known to the spec and not accessible from JavaScript. For example: the link
between an object and its prototype is the internal slot [[Prototype]]. The value of that
slot cannot be read directly via JavaScript, but you can use Object.getPrototypeOf() to
do so.

How exactly internal slots are stored is left unspecified. Some may not even exist in actual
JavaScript implementations.

Bindings and environments

The ECMAScript spec uses a data structure called environment to store the variables of a scope.
An environment is basically a dictionary that maps variable names to values. A binding is an
entry in an environment, storage space for a variable.

Destructive operations

Destructive operations (methods, functions) modify their parameters or their receivers. For
example, push() modifies its receiver arr:

> const arr = ['a', 'b'];

> arr.push('c')

3

> arr

[ 'a', 'b', 'c' ]

In contrast, concat() creates a new Array and does not change its receiver arr:

> const arr = ['a', 'b'];

> arr.concat(['c'])

[ 'a', 'b', 'c' ]

> arr

[ 'a', 'b' ]

Conventions

Documenting classes

The API of a class C is usually documented as follows:

• C constructor
• Static C methods
• C.prototype methods



What you need to know about this book vii

Capitalization

In English, I capitalize JavaScript terms as follows:

• The names of primitive entities are not capitalized: a boolean value, a number value,
a symbol, a string. One reason why I’m doing this is because TypeScript and Flow
distinguish:

– The type String: its members are objects, instances of String.
– The type string: its members are primitive values, strings.

• The data structureMap is capitalized. Rationale: distinguish from the Arraymethod map().
• The data structure Set is capitalized. Rationale: distinguish from the verb set.
• Array and Promise are capitalized. Rationale: easy to confuse with English words.
• Not capitalized (for now): object, generator, proxy.

Demo code on GitHub

Several repositories on GitHub contain code shown in this book:

• async-examples⁹
• babel-on-node¹⁰
• demo_promise¹¹
• generator-examples¹²
• node-es6-demo¹³
• promise-examples¹⁴
• webpack-es6-demo¹⁵

Sidebars

Sidebars are boxes of text marked with icons. They complement the normal content.

Tips for reading
Gives you tips for reading (what content to skip etc.).

Code on GitHub
Tells you where you can download demo code shown in this book.

⁹https://github.com/rauschma/async-examples
¹⁰https://github.com/rauschma/babel-on-node
¹¹https://github.com/rauschma/demo_promise
¹²https://github.com/rauschma/generator-examples
¹³https://github.com/rauschma/node-es6-demo
¹⁴https://github.com/rauschma/promise-examples
¹⁵https://github.com/rauschma/webpack-es6-demo

https://github.com/rauschma/async-examples
https://github.com/rauschma/babel-on-node
https://github.com/rauschma/demo_promise
https://github.com/rauschma/generator-examples
https://github.com/rauschma/node-es6-demo
https://github.com/rauschma/promise-examples
https://github.com/rauschma/webpack-es6-demo
https://github.com/rauschma/async-examples
https://github.com/rauschma/babel-on-node
https://github.com/rauschma/demo_promise
https://github.com/rauschma/generator-examples
https://github.com/rauschma/node-es6-demo
https://github.com/rauschma/promise-examples
https://github.com/rauschma/webpack-es6-demo


What you need to know about this book viii

Information
General information.

Question
Asks and answers a question, in FAQ style.

Warning
Things you need to be careful about.

External material
Points to related material hosted somewhere on the web.

Related parts of the spec
Explains where in the ES6 spec you can find the feature that is currently being
explained.

Footnotes

Occasionally, I refer to (publicly available) external material via footnotes. Two sources are
marked with a prefix in square brackets:

• [Spec] refers to content in the HTML version of the ES6 spec.
• [Speaking JS] refers to content in the HTML version of “Speaking JavaScript”.



Foreword
Edge cases! My life as the project editor of the ES6 specification has been all about edge cases.
Like most software, the design of a programming language feature is typically driven by specific
use cases. But programmers can and often do use language features in novel ways that are
well outside the scope of those original use cases. In addition, no language feature stands alone.
Every feature potentially interacts with every other feature. Those unexpected uses and feature
interactions are the realm of edge cases.

For example, consider a function that has a parameter default value initialization expression that
uses the eval function to first declare a local variable that has the same name as a local variable
declared in the function body and then returns, as the parameter value, an arrow function that
references that name. What happens if code in the function body accesses the parameter value
and calls the arrow function?Which variable is accessed? Is there an error that should be detected
and reported? It’s edge cases like this that kept me up at night while ES6 was being designed.

A good language design must at least consider such edge cases. The specification of a massively
popular language that will have multiple implementations must pin down what happens for
all the edge cases. Otherwise, different implementation of the language will handle edge cases
differently and programs won’t work the same everywhere.

If you really want to understand ES6, you have to understand how each feature works, evenwhen
you’re dealing with unusual situations and edge cases. What sets Axel Rauschmayer’s Exploring
ES6 apart from other books is that it really cares about the inner workings of ECMAScript. It
doesn’t just describe the common use cases that you probably already understand. It digs deep
into the semantics and, where necessary, wallows in the edge cases. It explains why features
work the way that they work and how they are used in realistic code. Assimilate the material in
this book and you will be an ES6 expert.

Allen Wirfs-Brock
ECMAScript 2015 (ES6) Specification Editor



Preface
You are reading a book about ECMAScript 6 (ES6), a new version of JavaScript. It’s great that
we can finally use that version, which had a long and eventful past: It was first conceived as
ECMAScript 4, a successor to ECMAScript 3 (whose release was in December 1999). In July
2008, plans changed and the next versions of JavaScript were to be first a small incremental
release (which became ES5) and then a larger, more powerful release. The latter had the code
name Harmony and part of it became ES6.

ECMAScript 5 was standardized in December 2009. I first heard and blogged¹⁶ about ECMAScript
6 in January 2011, when it was still called Harmony. The original plan was to finish ES6 in 2013,
but things took longer and it was standardized in June 2015. (A more detailed account of ES6’s
history is given in the next chapter.)

With a fewminor exceptions, I am happy how ECMAScript 6 turned out. This book describes my
experiences with, and my research of, its features. Similarly to ES6, it took a long time to finish
– in a way, I started writing it in early 2011. Like my previous book “Speaking JavaScript¹⁷”, I
wrote most of it as a series of blog posts. I like the discussion and feedback that this open process
enables, which is why this book is available for free online.

This book can be read online for free. If you find it useful, please support it by buying a copy¹⁸.
You’ll get DRM-free PDF, EPUB, MOBI files.

I hope that reading the book conveys some of the fun I had investigating and playing with ES6.

Axel Rauschmayer

¹⁶http://www.2ality.com/2011/01/brendan-eichs-dream-for-next-version-of.html
¹⁷http://speakingjs.com/
¹⁸https://leanpub.com/exploring-es6/

http://www.2ality.com/2011/01/brendan-eichs-dream-for-next-version-of.html
http://speakingjs.com/
https://leanpub.com/exploring-es6/
http://www.2ality.com/2011/01/brendan-eichs-dream-for-next-version-of.html
http://speakingjs.com/
https://leanpub.com/exploring-es6/


Acknowledgements
I owe thanks to the many people who have – directly or indirectly – contributed to this book;
by answering questions, pointing out bugs in blog posts, etc.:

Jake Archibald, André Bargull, Guy Bedford, James Burke, Mathias Bynens, Raymond Camden,
Domenic Denicola, Brendan Eich, Eric Elliott, Michael Ficarra, Aaron Frost, AndreaGiammarchi,
Jaydson Gomes, Jordan Harband, David Herman, James Kyle, Russell Leggett, Dmitri Lomov,
Sebastian McKenzie, Calvin Metcalf, Mark S. Miller, Alan Norbauer, Mariusz Novak, Addy
Osmani, Claude Pache, John K. Paul, Philip Roberts, Mike Samuel, Tom Schuster, Kyle Simpson
(getify), Kevin Smith, Dmitry Soshnikov, Ingvar Stepanyan, Tom Van Cutsem, Šime Vidas, Rick
Waldron, AllenWirfs-Brock, Nicholas C. Zakas, Ondřej Žára, Juriy Zaytsev (kangax). And many
more!

Special thanks go to Benjamin Gruenbaum for his thorough review of the book.



About the author
Dr. Axel Rauschmayer has been programming since 1985 and developing web applications since
1995. In 1999, he was technical manager at a German Internet startup that later expanded
internationally. In 2006, he held his first talk on Ajax.

Axel specializes in JavaScript, as blogger, book author and trainer. He has done extensive research
into programming language design and has followed the state of JavaScript since its creation. He
started blogging about ECMAScript 6 in early 2011.



I Background

Feel free to skip this part, you won’t miss anything that is essential w.r.t. the features
of ES6.



1. About ECMAScript 6 (ES6)
It took a long time to finish it, but ECMAScript 6, the next version of JavaScript, is finally a
reality:

• It became a standard on 17 June 2015¹.
• Most of its features are already widely available (as documented in kangax’ ES6 compati-
bility table²).

• Transpilers (such as Babel³) let you compile ES6 to ES5.

The next sections explain concepts that are important in the world of ES6.

1.1 TC39 (Ecma Technical Committee 39)

TC39 (Ecma Technical Committee 39)⁴ is the committee that evolves JavaScript. Its members are
companies (among others, all major browser vendors). TC39 meets regularly⁵, its meetings are
attended by delegates that members send and by invited experts. Minutes of the meetings are
available online⁶ and give you a good idea of how TC39 works.

1.2 How ECMAScript 6 was designed

The ECMAScript 6 design process centers on proposals for features. Proposals are often triggered
by suggestions from the developer community. To avoid design by committee, proposals are
maintained by champions (1–2 committee delegates).

A proposal goes through the following steps before it becomes a standard:

• Sketch (informally: “strawman proposal”): A first description of the proposed feature.
• Proposal: If TC39 agrees that a feature is important, it gets promoted to official proposal
status. That does not guarantee it will become a standard, but it considerably increases
its chances. The deadline for ES6 proposals was May 2011. No major new proposals were
considered after that.

• Implementations: Proposed features must be implemented. Ideally in two JavaScript
engines. Implementations and feedback from the community shape the proposal as it
evolves.

¹http://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.htm
²http://kangax.github.io/compat-table/es6/
³https://babeljs.io/
⁴http://www.ecma-international.org/memento/TC39.htm
⁵http://www.ecma-international.org/memento/TC39-M.htm
⁶https://github.com/tc39/tc39-notes

http://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.htm
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
https://babeljs.io/
http://www.ecma-international.org/memento/TC39.htm
http://www.ecma-international.org/memento/TC39-M.htm
https://github.com/tc39/tc39-notes
http://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.htm
http://kangax.github.io/compat-table/es6/
https://babeljs.io/
http://www.ecma-international.org/memento/TC39.htm
http://www.ecma-international.org/memento/TC39-M.htm
https://github.com/tc39/tc39-notes


About ECMAScript 6 (ES6) 3

• Standard: If the proposal continues to prove itself and is accepted by TC39, it will
eventually be included in an edition of the ECMAScript standard. At this point, it is a
standard feature.

[Source of this section: “The Harmony Process⁷” by David Herman.]

1.2.1 The design process after ES6

Starting with ECMAScript 2016 (ES7), TC39 will time-box releases. A new version of EC-
MAScript will be released every year, with whatever features are ready at that time. That means
that from now on, ECMAScript versions will be relatively small upgrades. For more information
on the new process, including finished and upcoming feature proposals, consult the GitHub
repository ecma262⁸.

1.3 JavaScript versus ECMAScript

JavaScript is what everyone calls the language, but that name is trademarked (by Oracle, which
inherited the trademark from Sun). Therefore, the official name of JavaScript isECMAScript. That
name comes from the standards organization Ecma, whichmanages the language standard. Since
ECMAScript’s inception, the name of the organization has changed from the acronym “ECMA”
to the proper name “Ecma”.

Versions of JavaScript are defined by specifications that carry the official name of the language.
Hence, the first standard version of JavaScript is ECMAScript 1 which is short for “ECMAScript
Language Specification, Edition 1”. ECMAScript x is often abbreviated ESx.

1.4 Upgrading to ES6

The stake holders on the web are:

• Implementors of JavaScript engines
• Developers of web applications
• Users

These groups have remarkably little control over each other. That’s why upgrading a web
language is so challenging.

On one hand, upgrading engines is challenging, because they are confronted with all kinds of
code on the web, some of which is very old. You also want engine upgrades to be automatic and
unnoticeable for users. Therefore, ES6 is a superset of ES5, nothing is removed⁹. ES6 upgrades the

⁷http://tc39wiki.calculist.org/about/harmony/
⁸https://github.com/tc39/ecma262
⁹This is not completely true: there are a few minor breaking changes that don’t affect code on the web. These are detailed in section D.1

and section E.1 of the ES6 specification.

http://tc39wiki.calculist.org/about/harmony/
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262
http://tc39wiki.calculist.org/about/harmony/
https://github.com/tc39/ecma262
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-corrections-and-clarifications-with-possible-compatibility-impact
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-additions-and-changes-that-introduce-incompatibilities-with-prior-editions


About ECMAScript 6 (ES6) 4

language without introducing versions or modes. It even manages to make strict mode the de-
facto default (viamodules), without increasing the rift between it and sloppymode. The approach
that was taken is called “One JavaScript” and explained in a separate chapter.

On the other hand, upgrading code is challenging, because your code must run on all JavaScript
engines that are used by your target audience. Therefore, if you want to use ES6 in your code,
you only have two choices: You can either wait until no one in your target audience uses a non-
ES6 engine, anymore. That will take years; mainstream audiences were at that point w.r.t. ES5
when ES6 became a standard in June 2015. And ES5 was standardized in December 2009! Or you
can compile ES6 to ES5 and use it now. More information on how to do that is given in the book
“Setting up ES6¹⁰”, which is free to read online.

Goals and requirements clash in the design of ES6:

• Goals are fixing JavaScript’s pitfalls and adding new features.
• Requirements are that both need to be done without breaking existing code and without
changing the lightweight nature of the language.

1.5 Goals for ES6

The original project page for Harmony/ES6¹¹ mentions several goals. In the following subsec-
tions, I’m taking a look at some of them.

1.5.1 Goal: Be a better language

The goal is: Be a better language for writing:

i. complex applications;
ii. libraries (possibly including the DOM) shared by those applications;
iii. code generators targeting the new edition.

Sub-goal (i) acknowledges that applications written in JavaScript have grown huge. A key ES6
feature fulfilling this goal is built-in modules.

Modules are also an answer to goal (ii). As an aside, the DOM is notoriously difficult to implement
in JavaScript. ES6 Proxies should help here.

Several features were mainly added to make it easier to compile to JavaScript. Two examples are:

• Math.fround() – rounding Numbers to 32 bit floats
• Math.imul() – multiplying two 32 bit ints

They are both useful for, e.g., compiling C/C++ to JavaScript via Emscripten¹².

¹⁰https://leanpub.com/setting-up-es6
¹¹http://wiki.ecmascript.org/doku.php?id=harmony:harmony
¹²https://github.com/kripken/emscripten

https://leanpub.com/setting-up-es6
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
https://github.com/kripken/emscripten
https://leanpub.com/setting-up-es6
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
https://github.com/kripken/emscripten


About ECMAScript 6 (ES6) 5

1.5.2 Goal: Improve interoperation

The goal is: Improve interoperation, adopting de facto standards where possible.

Examples are:

• Classes: are based on how constructor functions are currently used.
• Modules: picked up design ideas from the CommonJS module format.
• Arrow functions: have syntax that is borrowed from CoffeeScript.
• Named function parameters: There is no built-in support for named parameters. Instead,
the existing practice of naming parameters via object literals is supported via destructuring
in parameter definitions.

1.5.3 Goal: Versioning

The goal is: Keep versioning as simple and linear as possible.

As mentioned previously, ES6 avoids versioning via “One JavaScript”: In an ES6 code base,
everything is ES6, there are no parts that are ES5-specific.

1.6 Categories of ES6 features

The introduction of the ES6 specification lists all new features:

Some of [ECMAScript 6’s] major enhancements include modules, class declara-
tions, lexical block scoping, iterators and generators, promises for asynchronous
programming, destructuring patterns, and proper tail calls. The ECMAScript library
of built-ins has been expanded to support additional data abstractions including
maps, sets, and arrays of binary numeric values as well as additional support for
Unicode supplemental characters in strings and regular expressions. The built-ins
are now extensible via subclassing.

There are three major categories of features:

• Better syntax for features that already exist (e.g. via libraries). For example:
– Classes
– Modules

• New functionality in the standard library. For example:
– New methods for strings and Arrays
– Promises
– Maps, Sets

• Completely new features. For example:
– Generators
– Proxies
– WeakMaps



About ECMAScript 6 (ES6) 6

1.7 A brief history of ECMAScript

This section describes what happened on the road to ECMAScript 6.

1.7.1 The early years: ECMAScript 1–3

• ECMAScript 1 (June 1997) was the first version of the JavaScript language standard.
• ECMAScript 2 (June 1998) contained minor changes, to keep the spec in sync with a
separate ISO standard for JavaScript.

• ECMAScript 3 (December 1999) introduced many features that have become popular
parts of the language, as described in the introduction of the ES6 specification: “[…] regular
expressions, better string handling, new control statements, try/catch exception handling,
tighter definition of errors, formatting for numeric output and other enhancements.”

1.7.2 ECMAScript 4 (abandoned in July 2008)

Work on ES4 started after the release of ES3 in 1999. In 2003, an interim report was released
after which work on ES4 paused. Subsets of the language described in the interim report were
implemented by Adobe (in ActionScript) and by Microsoft (in JScript.NET).

In February 2005, Jesse James Garrett observed that a combination of techniques had become
popular for implementing dynamic frontend apps in JavaScript. He called those techniques
Ajax¹³. Ajax enabled a completely new class of web apps and led to a surge of interest in
JavaScript.

That may have contributed to TC39 resuming work on ES4 in fall 2005. They based ES4 on ES3,
the interim ES4 report and experiences with ActionScript and JScript.NET.

There were now two groups working on future ECMAScript versions:

• ECMAScript 4 was designed by Adobe, Mozilla, Opera, and Google and was a massive
upgrade. Its planned feature sets included:

– Programming in the large (classes, interfaces, namespaces, packages, program units,
optional type annotations, and optional static type checking and verification)

– Evolutionary programming and scripting (structural types, duck typing, type defini-
tions, and multimethods)

– Data structure construction (parameterized types, getters and setters, and meta-level
methods)

– Control abstractions (proper tail calls, iterators, and generators)
– Introspection (type meta-objects and stack marks)

• ECMAScript 3.1 was designed by Microsoft and Yahoo. It was planned as a subset of ES4
and an incremental upgrade of ECMAScript 3, with bug fixes and minor new features.
ECMAScript 3.1 eventually became ECMAScript 5.

¹³http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/


About ECMAScript 6 (ES6) 7

The two groups disagreed on the future of JavaScript and tensions between them continued to
increase.

Sources of this section:

• “Proposed ECMAScript 4th Edition – Language Overview¹⁴”. 2007-10-23
• “ECMAScript Harmony¹⁵” by John Resig. 2008-08-13

1.7.3 ECMAScript Harmony

At the end of July 2008, there was a TC39 meeting in Oslo, whose outcome was described¹⁶ as
follows by Brendan Eich:

It’s no secret that the JavaScript standards body, Ecma’s Technical Committee 39,
has been split for over a year, with some members favoring ES4 […] and others
advocating ES3.1 […]. Now, I’m happy to report, the split is over.

The agreement that was worked out at the meeting consisted of four points:

1. Develop an incremental update of ECMAScript (which became ECMAScript 5).
2. Develop a major new release, which was to be more modest than ECMAScript 4, but

much larger in scope than the version after ECMAScript 3. This version was code-named
Harmony, due to the nature of the meeting in which it was conceived.

3. Features from ECMAScript 4 that would be dropped: packages, namespaces, early binding.
4. Other ideas were to be developed in consensus with all of TC39.

Thus: The ES4 group agreed to make Harmony less radical than ES4, the rest of TC39 agreed to
keep moving things forward.

The next versions of ECMAScript are:

• ECMAScript 5 (December 2009). This is the version of ECMAScript that most browsers
support today. It brings several enhancements to the standard library and updated
language semantics via a strict mode.

• ECMAScript 5.1 (June 2011). ES5 was submitted as an ISO standard. In the process, minor
corrections were made. ES5.1 contains those corrections. It is the same text as ISO/IEC
16262:2011.

• ECMAScript 6 (June 2015). This version went through several name changes:

¹⁴http://www.ecmascript.org/es4/spec/overview.pdf
¹⁵http://ejohn.org/blog/ecmascript-harmony/
¹⁶https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html

http://www.ecmascript.org/es4/spec/overview.pdf
http://ejohn.org/blog/ecmascript-harmony/
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html
http://www.ecmascript.org/es4/spec/overview.pdf
http://ejohn.org/blog/ecmascript-harmony/
https://mail.mozilla.org/pipermail/es-discuss/2008-August/006837.html


About ECMAScript 6 (ES6) 8

– ECMAScript Harmony: was the initial code name for JavaScript improvements after
ECMAScript 5.

– ECMAScript.next: It became apparent that the plans for Harmonywere too ambitious
for a single version, so its features were split into two groups: The first group of
features had highest priority and was to become the next version after ES5. The code
name of that version was ECMAScript.next, to avoid prematurely comitting to a
version number, which proved problematic with ES4. The second group of features
had time until after ECMAScript.next.

– ECMAScript 6: As ECMAScript.next matured, its code name was dropped and
everybody started to call it ECMAScript 6.

– ECMAScript 2015: In late 2014, TC39 decided to change the official name of EC-
MAScript 6 to ECMAScript 2015, in light of upcoming yearly spec releases. However,
given how established the name “ECMAScript 6” already is and how late TC39
changed their minds, I expect that that’s how everybody will continue to refer to
that version.

• ECMAScript 2016 was previously called ECMAScript 7. Starting with ES2016, the lan-
guage standard will see smaller yearly releases.



2. FAQ: ECMAScript 6
This chapter answers a few frequently asked questions about ECMAScript 6.

2.1 How can I use ES6 today?

Most of ES6 is already supported in current engines, consult Kangax’ ES6 compatibility table¹ to
find out what is supported where.

For other options (e.g. interactive ES6 command lines and transpiling ES6 to ES5 via Babel),
consult Chap. “Deploying ECMAScript 6²” in “Setting up ES6”.

2.2 Isn’t ECMAScript 6 now called ECMAScript 2015?

Yes and no. The official name is ECMAScript 2015, but ES6 is the name that everyone knows and
uses. That’s why I decided to use the latter for this book.

After ES6, ECMAScript editions are created via a new process³ and a yearly release cycle. That
seems like a good opportunity to switch to the new naming scheme. Therefore, I’ll use the name
“ECMAScript 2016” for the edition after ES6.

2.3 How do I migrate my ECMAScript 5 code to
ECMAScript 6?

There is nothing to do: ECMAScript 6 is a superset of ECMAScript 5. Therefore, all of your ES5
code is automatically ES6 code. That helps tremendously with incrementally adopting this new
version. How exactly ES6 stays completely backward-compatible is explained in the chapter on
“One JavaScript”.

2.4 Does it still make sense to learn ECMAScript 5?

ES6 is increasingly well supported everywhere. Does that mean that you shouldn’t learn
ECMAScript 5, anymore? It doesn’t, for several reasons:

• ECMAScript 6 is a superset of ECMAScript 5 – new JavaScript versions must never break
existing code. Thus, nothing you learn about ECMAScript 5 is learned in vain.

¹http://kangax.github.io/compat-table/es6/
²https://leanpub.com/setting-up-es6/read#ch_deploying-es6
³https://tc39.github.io/process-document/

http://kangax.github.io/compat-table/es6/
https://leanpub.com/setting-up-es6/read#ch_deploying-es6
https://tc39.github.io/process-document/
http://kangax.github.io/compat-table/es6/
https://leanpub.com/setting-up-es6/read#ch_deploying-es6
https://tc39.github.io/process-document/


FAQ: ECMAScript 6 10

• There are several ECMAScript 6 features that kind of replace ECMAScript 5 features, but
still use them as their foundations. It is important to understand those foundations. Two
examples: classes are internally translated to constructors and methods are still functions
(as they have always been).

• As long as ECMAScript 6 is compiled to ECMAScript 5, it is useful to understand the
output of the compilation process. And you’ll have to compile to ES5 for a while (probably
years), until you can rely on ES6 being available in all relevant browsers.

• It’s important to be able to understand legacy code.

2.5 Is ES6 bloated?

One occasionally comes across accusations of ES6 being bloated and introducing too much
useless syntactic sugar (more convenient syntax for something that already exists).

However, in many ways, JavaScript is just now catching up with languages such as Python and
Ruby. Both still have more features and come with a much richer standard library.

If someone complains about ES6 being too big, I suggest that they try it out for a while. Nobody
forces you to use any of the new features. You can start small (consult Chap. “Core ES6 features”
for suggestions) and then use more new features, as you grow more comfortable with ES6. So
far, the feedback I get from people who have actually programmed with ES6 (as opposed to read
about it) is overwhelmingly positive.

Furthermore, things that superficially look like syntactic sugar (such as classes and modules)
bring much-needed standardization to the language and serve as foundations for future features.

Lastly, several features were not created for normal programmers, but for library authors (e.g.
generators, iterators, proxies). “Normal programmers” only need to know them superficially if
at all.

2.6 Isn’t the ES6 specification very big?

The ECMAScript specification has indeed grown tremendously: The ECMAScript 5.1 PDF had
245 pages, the ES6 PDF has 593 pages. But, for comparison, the Java 8 language specification has
724 pages (excluding an index). Furthermore, the ES6 specification contains details that many
other language specifications omit as implementation-defined. It also specifies how its standard
library works⁴.

2.7 Does ES6 have array comprehensions?

Originally, ES6 was to have Array and generator comprehensions (similarly to Haskell and
Python). But they were not added, because TC39 wanted to explore two avenues:

• It may be possible to create comprehensions that work for arbitrary datatypes (think
Microsoft’s LINQ).

⁴Source: Tweet by Allen Wirfs-Brock. https://twitter.com/awbjs/status/574649464687734785



FAQ: ECMAScript 6 11

• It may also be possible that methods for iterators are a better way to achieve what
comprehensions do.

2.8 Is ES6 statically typed?

Static typing is not part of ES6. However, the following two technologies add static typing to
JavaScript. Similar features may eventually be standardized.

• Microsoft TypeScript: is basically ES6 plus optional type annotations. At the moment, it
is compiled to ES5 and throws away the type information while doing so. Optionally, it can
also make that information available at runtime, for type introspection and for runtime
type checks.

• Facebook Flow: is a type checker for ECMAScript 6 that is based on flow analysis. As
such, it only adds optional type annotations to the language and infers and checks types.
It does not help with compiling ES6 to ES5.

Two benefits of static typing are:

• It allows you to detect a certain category of errors earlier, because the code is analyzed
statically (during development, without running code). As such, static typing is comple-
mentary to testing and catches different errors.

• It helps IDEs with auto-completion.

Both TypeScript and Flow are using the same notation. Type annotations are optional, which
makes this approach relatively lightweight. Even without annotations, types can often be
inferred. Therefore, this kind of type checking is even useful for completely unannotated code,
as a consistency check.



3. One JavaScript: avoiding
versioning in ECMAScript 6

What is the best way to add new features to a language? This chapter describes the approach
taken by ECMAScript 6. It is called One JavaScript, because it avoids versioning.

3.1 Versioning

In principle, a new version of a language is a chance to clean it up, by removing outdated
features or by changing how features work. That means that new code doesn’t work in older
implementations of the language and that old code doesn’t work in a new implementation. Each
piece of code is linked to a specific version of the language. Two approaches are common for
dealing with versions being different.

First, you can take an “all or nothing” approach and demand that, if a code base wants to use the
new version, it must be upgraded completely. Python took that approach when upgrading from
Python 2 to Python 3. A problem with it is that it may not be feasible to migrate all of an existing
code base at once, especially if it is large. Furthermore, the approach is not an option for the web,
where you’ll always have old code and where JavaScript engines are updated automatically.

Second, you can permit a code base to contain code in multiple versions, by tagging code with
versions. On the web, you could tag ECMAScript 6 code via a dedicated Internet media type¹.
Such a media type can be associated with a file via an HTTP header:

Content-Type: application/ecmascript;version=6

It can also be associated via the type attribute of the <script> element (whose default value² is
text/javascript):

<script type="application/ecmascript;version=6">

···

</script>

This specifies the version out of band, externally to the actual content. Another option is to
specify the version inside the content (in-band). For example, by starting a file with the following
line:

¹http://en.wikipedia.org/wiki/Internet_media_type
²http://www.w3.org/TR/html5/scripting-1.html#attr-script-type

http://en.wikipedia.org/wiki/Internet_media_type
http://www.w3.org/TR/html5/scripting-1.html#attr-script-type
http://en.wikipedia.org/wiki/Internet_media_type
http://www.w3.org/TR/html5/scripting-1.html#attr-script-type


One JavaScript: avoiding versioning in ECMAScript 6 13

use version 6;

Both ways of tagging are problematic: out-of-band versions are brittle and can get lost, in-band
versions add clutter to code.

A more fundamental issue is that allowing multiple versions per code base effectively forks a
language into sub-languages that have to be maintained in parallel. This causes problems:

• Engines become bloated, because they need to implement the semantics of all versions.
The same applies to tools analyzing the language (e.g. style checkers such as JSLint).

• Programmers need to remember how the versions differ.
• Code becomes harder to refactor, because you need to take versions into consideration
when you move pieces of code.

Therefore, versioning is something to avoid, especially for JavaScript and the web.

3.1.1 Evolution without versioning

But how can we get rid of versioning? By always being backward-compatible. That means we
must give up some of our ambitions w.r.t. cleaning up JavaScript: We can’t introduce breaking
changes. Being backward-compatible means not removing features and not changing features.
The slogan for this principle is: “don’t break the web”.

We can, however, add new features and make existing features more powerful.

As a consequence, no versions are needed for new engines, because they can still run all old
code. David Herman calls this approach to avoiding versioningOne JavaScript (1JS) [1], because
it avoids splitting up JavaScript into different versions or modes. As we shall see later, 1JS even
undoes some of a split that already exists, due to strict mode.

One JavaScript does not mean that you have to completely give up on cleaning up the language.
Instead of cleaning up existing features, you introduce new, clean, features. One example for
that is let, which declares block-scoped variables and is an improved version of var. It does not,
however, replace var. It exists alongside it, as the superior option.

One day, it may even be possible to eliminate features that nobody uses, anymore. Some of the
ES6 features were designed by surveying JavaScript code on the web. Two examples are:

• let-declarations are difficult to add to non-strict mode, because let is not a reserved word
in that mode. The only variant of let that looks like valid ES5 code is:

let[x] = arr;

Research yielded that no code on the web uses a variable let in non-strict mode in this
manner. That enabled TC39 to add let to non-strict mode. Details of how this was done
are described later in this chapter.

• Function declarations do occasionally appear in non-strict blocks, which is why the ES6
specification describes measures that web browsers can take to ensure that such code
doesn’t break. Details are explained later.



One JavaScript: avoiding versioning in ECMAScript 6 14

3.2 Strict mode and ECMAScript 6

Strict mode³ was introduced in ECMAScript 5 to clean up the language. It is switched on by
putting the following line first in a file or in a function:

'use strict';

Strict mode introduces three kinds of breaking changes:

• Syntactic changes: some previously legal syntax is forbidden in strict mode. For example:
– The with statement is forbidden. It lets users add arbitrary objects to the chain of
variable scopes, which slows down execution and makes it tricky to figure out what
a variable refers to.

– Deleting an unqualified identifier (a variable, not a property) is forbidden.
– Functions can only be declared at the top level of a scope.
– More identifiers are reserved⁴: implements interface let package private pro-

tected public static yield

• More errors. For example:
– Assigning to an undeclared variable causes a ReferenceError. In non-strict mode, a
global variable is created in this case.

– Changing read-only properties (such as the length of a string) causes a TypeError.
In non-strict mode, it simply has no effect.

• Different semantics: Some constructs behave differently in strict mode. For example:
– arguments doesn’t track the current values of parameters, anymore.
– this is undefined in non-method functions. In non-strict mode, it refers to the
global object (window), which meant that global variables were created if you called
a constructor without new.

Strict mode is a good example of why versioning is tricky: Even though it enables a cleaner
version of JavaScript, its adoption is still relatively low. The main reasons are that it breaks
some existing code, can slow down execution and is a hassle to add to files (let alone interactive
command lines). I love the idea of strict mode and don’t nearly use it often enough.

3.2.1 Supporting sloppy (non-strict) mode

One JavaScript means that we can’t give up on sloppy mode: it will continue to be around (e.g. in
HTML attributes). Therefore, we can’t build ECMAScript 6 on top of strict mode, we must add
its features to both strict mode and non-strict mode (a.k.a. sloppy mode). Otherwise, strict mode
would be a different version of the language and we’d be back to versioning. Unfortunately,
two ECMAScript 6 features are difficult to add to sloppy mode: let declarations and block-level
function declarations. Let’s examine why that is and how to add them, anyway.

³http://speakingjs.com/es5/ch07.html#strict_mode
⁴http://ecma-international.org/ecma-262/5.1/#sec-7.6.1.2

http://speakingjs.com/es5/ch07.html#strict_mode
http://ecma-international.org/ecma-262/5.1/#sec-7.6.1.2
http://speakingjs.com/es5/ch07.html#strict_mode
http://ecma-international.org/ecma-262/5.1/#sec-7.6.1.2


One JavaScript: avoiding versioning in ECMAScript 6 15

3.2.2 let declarations in sloppy mode

let enables you to declare block-scoped variables. It is difficult to add to sloppy mode, because
let is only a reserved word in strict mode. That is, the following two statements are legal ES5
sloppy code:

var let = [];

let[x] = 'abc';

In strict ECMAScript 6, you get an exception in line 1, because you are using the reserved word
let as a variable name. And the statement in line 2 is interpreted as a let variable declaration
(that uses destructuring).

In sloppy ECMAScript 6, the first line does not cause an exception, but the second line is still
interpreted as a let declaration. This way of using the identifier let is so rare on the web that ES6
can afford to make this interpretation. Other ways of writing let declarations can’t be mistaken
for sloppy ES5 syntax:

let foo = 123;

let {x,y} = computeCoordinates();

3.2.3 Block-level function declarations in sloppy mode

ECMAScript 5 strict mode forbids function declarations in blocks. The specification allowed them
in sloppy mode, but didn’t specify how they should behave. Hence, various implementations of
JavaScript support them, but handle them differently.

ECMAScript 6 wants a function declaration in a block to be local to that block. That is OK as an
extension of ES5 strict mode, but breaks some sloppy code. Therefore, ES6 provides “web legacy
compatibility semantics⁵” for browsers that lets function declarations in blocks exist at function
scope.

3.2.4 Other keywords

The identifiers yield and static are only reserved in ES5 strict mode. ECMAScript 6 uses
context-specific syntax rules to make them work in sloppy mode:

• In sloppy mode, yield is only a reserved word inside a generator function.
• static is currently only used inside class literals, which are implicitly strict (see below).

⁵http://www.ecma-international.org/ecma-262/6.0/#sec-block-level-function-declarations-web-legacy-compatibility-semantics

http://www.ecma-international.org/ecma-262/6.0/#sec-block-level-function-declarations-web-legacy-compatibility-semantics
http://www.ecma-international.org/ecma-262/6.0/#sec-block-level-function-declarations-web-legacy-compatibility-semantics
http://www.ecma-international.org/ecma-262/6.0/#sec-block-level-function-declarations-web-legacy-compatibility-semantics


One JavaScript: avoiding versioning in ECMAScript 6 16

3.2.5 Implicit strict mode

The bodies of modules and classes are implicitly in strict mode in ECMAScript 6 – there is no
need for the 'use strict' marker. Given that virtually all of our code will live in modules in
the future, ECMAScript 6 effectively upgrades the whole language to strict mode.

The bodies of other constructs (such as arrow functions and generator functions) could have
been made implicitly strict, too. But considering how small these constructs usually are, using
them in sloppy mode would have resulted in code that is fragmented between the two modes.
Classes and especially modules are large enough to make fragmentation less of an issue.

3.2.6 Things that can’t be fixed

The downside of One JavaScript is that you can’t fix existing quirks, especially the following
two.

First, typeof null should return the string 'null' and not 'object'. TC39 tried fixing it, but
it broke existing code. On the other hand, adding new results for new kinds of operands is OK,
because current JavaScript engines already occasionally return custom values for host objects.
One example are ECMAScript 6’s symbols:

> typeof Symbol.iterator

'symbol'

Second, the global object (window in browsers) shouldn’t be in the scope chain of variables. But
it is also much too late to change that now. At least, one won’t be in global scope in modules and
let never creates properties of the global object, not even when used in global scope.

3.3 Breaking changes in ES6

ECMAScript 6 does introduce a fewminor breaking changes (nothing you’re likely to encounter).
They are listed in two annexes:

• Annex D: Corrections and Clarifications in ECMAScript 2015 with Possible Compatibility
Impact⁶

• Annex E: Additions and Changes That Introduce Incompatibilities with Prior Editions⁷

3.4 Conclusion

One JavaScript means making ECMAScript 6 completely backward-compatible. It is great that
that succeeded. Especially appreciated is that modules (and thus most of our code) are implicitly
in strict mode.

⁶http://www.ecma-international.org/ecma-262/6.0/#sec-corrections-and-clarifications-in-ecmascript-2015-with-possible-compatibility-
impact

⁷http://www.ecma-international.org/ecma-262/6.0/#sec-additions-and-changes-that-introduce-incompatibilities-with-prior-editions

http://www.ecma-international.org/ecma-262/6.0/#sec-corrections-and-clarifications-in-ecmascript-2015-with-possible-compatibility-impact
http://www.ecma-international.org/ecma-262/6.0/#sec-corrections-and-clarifications-in-ecmascript-2015-with-possible-compatibility-impact
http://www.ecma-international.org/ecma-262/6.0/#sec-additions-and-changes-that-introduce-incompatibilities-with-prior-editions
http://www.ecma-international.org/ecma-262/6.0/#sec-corrections-and-clarifications-in-ecmascript-2015-with-possible-compatibility-impact
http://www.ecma-international.org/ecma-262/6.0/#sec-corrections-and-clarifications-in-ecmascript-2015-with-possible-compatibility-impact
http://www.ecma-international.org/ecma-262/6.0/#sec-additions-and-changes-that-introduce-incompatibilities-with-prior-editions


One JavaScript: avoiding versioning in ECMAScript 6 17

In the short term, adding ES6 constructs to both strict mode and sloppy mode is more work
when it comes to writing the language specification and to implementing it in engines. In the
long term, both the spec and engines profit from the language not being forked (less bloat etc.).
Programmers profit immediately from One JavaScript, because it makes it easier to get started
with ECMAScript 6.

3.5 Further reading

[1] The original 1JS proposal (warning: out of date): “ES6 doesn’t need opt-in⁸” by David Herman.

⁸http://esdiscuss.org/topic/es6-doesn-t-need-opt-in

http://esdiscuss.org/topic/es6-doesn-t-need-opt-in
http://esdiscuss.org/topic/es6-doesn-t-need-opt-in


4. Core ES6 features
This chapter describes the core ES6 features. These features are easy to adopt; the remaining
features are mainly of interest to library authors. I explain each feature via the corresponding
ES5 code.

4.1 From var to let/const

In ES5, you declare variables via var. Such variables are function-scoped, their scopes are the
innermost enclosing functions. The behavior of var is occasionally confusing. This is an example:

var x = 3;

function func(randomize) {

if (randomize) {

var x = Math.random(); // (A) scope: whole function

return x;

}

return x; // accesses the x from line A

}

func(false); // undefined

That func() returns undefined may be surprising. You can see why if you rewrite the code so
that it more closely reflects what is actually going on:

var x = 3;

function func(randomize) {

var x;

if (randomize) {

x = Math.random();

return x;

}

return x;

}

func(false); // undefined

In ES6, you can additionally declare variables via let and const. Such variables are block-scoped,
their scopes are the innermost enclosing blocks. let is roughly a block-scoped version of var.
const works like let, but creates variables whose values can’t be changed.

let and const behave more strictly and throw more exceptions (e.g. when you access their
variables inside their scope before they are declared). Block-scoping helps with keeping the



Core ES6 features 19

effects of code fragments more local (see the next section for a demonstration). And it’s
more mainstream than function-scoping, which eases moving between JavaScript and other
programming languages.

If you replace var with let in the initial version, you get different behavior:

let x = 3;

function func(randomize) {

if (randomize) {

let x = Math.random();

return x;

}

return x;

}

func(false); // 3

That means that you can’t blindly replace var with let or const in existing code; you have to
be careful during refactoring.

My advice is:

• Prefer const. You can use it for all variables whose values never change.
• Otherwise, use let – for variables whose values do change.
• Avoid var.

More information: chapter “Variables and scoping”.

4.2 From IIFEs to blocks

In ES5, you had to use a pattern called IIFE (Immediately-Invoked Function Expression) if you
wanted to restrict the scope of a variable tmp to a block:

(function () { // open IIFE

var tmp = ···;

···

}()); // close IIFE

console.log(tmp); // ReferenceError

In ECMAScript 6, you can simply use a block and a let declaration (or a const declaration):



Core ES6 features 20

{ // open block

let tmp = ···;

···

} // close block

console.log(tmp); // ReferenceError

More information: section “Avoid IIFEs in ES6”.

4.3 From concatenating strings to template literals

With ES6, JavaScript finally gets literals for string interpolation and multi-line strings.

4.3.1 String interpolation

In ES5, you put values into strings by concatenating those values and string fragments:

function printCoord(x, y) {

console.log('('+x+', '+y+')');

}

In ES6 you can use string interpolation via template literals:

function printCoord(x, y) {

console.log(`(${x}, ${y})`);

}

4.3.2 Multi-line strings

Template literals also help with representing multi-line strings.

For example, this is what you have to do to represent one in ES5:

var HTML5_SKELETON =

'<!doctype html>\n' +

'<html>\n' +

'<head>\n' +

' <meta charset="UTF-8">\n' +

' <title></title>\n' +

'</head>\n' +

'<body>\n' +

'</body>\n' +

'</html>\n';

If you escape the newlines via backslashes, things look a bit nicer (but you still have to explicitly
add newlines):



Core ES6 features 21

var HTML5_SKELETON = '\

<!doctype html>\n\

<html>\n\

<head>\n\

<meta charset="UTF-8">\n\

<title></title>\n\

</head>\n\

<body>\n\

</body>\n\

</html>';

ES6 template literals can span multiple lines:

const HTML5_SKELETON = `

<!doctype html>

<html>

<head>

<meta charset="UTF-8">

<title></title>

</head>

<body>

</body>

</html>`;

(The examples differ in how much whitespace is included, but that doesn’t matter in this case.)

More information: chapter “Template literals and tagged templates”.

4.4 From function expressions to arrow functions

In current ES5 code, you have to be careful with this whenever you are using function
expressions. In the following example, I create the helper variable _this (line A) so that the
this of UiComponent can be accessed in line B.

function UiComponent() {

var _this = this; // (A)

var button = document.getElementById('myButton');

button.addEventListener('click', function () {

console.log('CLICK');

_this.handleClick(); // (B)

});

}

UiComponent.prototype.handleClick = function () {

···

};

In ES6, you can use arrow functions, which don’t shadow this (line A):



Core ES6 features 22

function UiComponent() {

var button = document.getElementById('myButton');

button.addEventListener('click', () => {

console.log('CLICK');

this.handleClick(); // (A)

});

}

(In ES6, you also have the option of using a class instead of a constructor function. That is
explored later.)

Arrow functions are especially handy for short callbacks that only return results of expressions.

In ES5, such callbacks are relatively verbose:

var arr = [1, 2, 3];

var squares = arr.map(function (x) { return x * x });

In ES6, arrow functions are much more concise:

const arr = [1, 2, 3];

const squares = arr.map(x => x * x);

When defining parameters, you can even omit parentheses if the parameters are just a single
identifier. Thus: (x) => x * x and x => x * x are both allowed.

More information: chapter “Arrow functions”.

4.5 Handling multiple return values

Some functions or methods return multiple values via arrays or objects. In ES5, you always
need to create intermediate variables if you want to access those values. In ES6, you can avoid
intermediate variables via destructuring.

4.5.1 Multiple return values via arrays

exec() returns captured groups via an Array-like object. In ES5, you need an intermediate
variable (matchObj in the example below), even if you are only interested in the groups:



Core ES6 features 23

var matchObj =

/^(\d\d\d\d)-(\d\d)-(\d\d)$/

.exec('2999-12-31');

var year = matchObj[1];

var month = matchObj[2];

var day = matchObj[3];

In ES6, destructuring makes this code simpler:

const [, year, month, day] =

/^(\d\d\d\d)-(\d\d)-(\d\d)$/

.exec('2999-12-31');

The empty slot at the beginning of the Array pattern skips the Array element at index zero.

4.5.2 Multiple return values via objects

The method Object.getOwnPropertyDescriptor() returns a property descriptor, an object that
holds multiple values in its properties.

In ES5, even if you are only interested in the properties of an object, you still need an intermediate
variable (propDesc in the example below):

var obj = { foo: 123 };

var propDesc = Object.getOwnPropertyDescriptor(obj, 'foo');

var writable = propDesc.writable;

var configurable = propDesc.configurable;

console.log(writable, configurable); // true true

In ES6, you can use destructuring:

const obj = { foo: 123 };

const {writable, configurable} =

Object.getOwnPropertyDescriptor(obj, 'foo');

console.log(writable, configurable); // true true

{writable, configurable} is an abbreviation for:

{ writable: writable, configurable: configurable }

More information: chapter “Destructuring”.

4.6 From for to forEach() to for-of

Prior to ES5, you iterated over Arrays as follows:



Core ES6 features 24

var arr = ['a', 'b', 'c'];

for (var i=0; i<arr.length; i++) {

var elem = arr[i];

console.log(elem);

}

In ES5, you have the option of using the Array method forEach():

arr.forEach(function (elem) {

console.log(elem);

});

A for loop has the advantage that you can break from it, forEach() has the advantage of
conciseness.

In ES6, the for-of loop combines both advantages:

const arr = ['a', 'b', 'c'];

for (const elem of arr) {

console.log(elem);

}

If you want both index and value of each array element, for-of has got you covered, too, via
the new Array method entries() and destructuring:

for (const [index, elem] of arr.entries()) {

console.log(index+'. '+elem);

}

More information: Chap. “The for-of loop”.

4.7 Handling parameter default values

In ES5, you specify default values for parameters like this:

function foo(x, y) {

x = x || 0;

y = y || 0;

···

}

ES6 has nicer syntax:



Core ES6 features 25

function foo(x=0, y=0) {

···

}

An added benefit is that in ES6, a parameter default value is only triggered by undefined, while
it is triggered by any falsy value in the previous ES5 code.

More information: section “Parameter default values”.

4.8 Handling named parameters

A common way of naming parameters in JavaScript is via object literals (the so-called options
object pattern):

selectEntries({ start: 0, end: -1 });

Two advantages of this approach are: Code becomes more self-descriptive and it is easier to omit
arbitrary parameters.

In ES5, you can implement selectEntries() as follows:

function selectEntries(options) {

var start = options.start || 0;

var end = options.end || -1;

var step = options.step || 1;

···

}

In ES6, you can use destructuring in parameter definitions and the code becomes simpler:

function selectEntries({ start=0, end=-1, step=1 }) {

···

}

4.8.1 Making the parameter optional

To make the parameter options optional in ES5, you’d add line A to the code:



Core ES6 features 26

function selectEntries(options) {

options = options || {}; // (A)

var start = options.start || 0;

var end = options.end || -1;

var step = options.step || 1;

···

}

In ES6 you can specify {} as a parameter default value:

function selectEntries({ start=0, end=-1, step=1 } = {}) {

···

}

More information: section “Simulating named parameters”.

4.9 From arguments to rest parameters

In ES5, if you want a function (or method) to accept an arbitrary number of arguments, you must
use the special variable arguments:

function logAllArguments() {

for (var i=0; i < arguments.length; i++) {

console.log(arguments[i]);

}

}

In ES6, you can declare a rest parameter (args in the example below) via the ... operator:

function logAllArguments(...args) {

for (const arg of args) {

console.log(arg);

}

}

Rest parameters are even nicer if you are only interested in trailing parameters:

function format(pattern, ...args) {

···

}

Handling this case in ES5 is clumsy:



Core ES6 features 27

function format(pattern) {

var args = [].slice.call(arguments, 1);

···

}

Rest parameters make code easier to read: You can tell that a function has a variable number of
parameters just by looking at its parameter definitions.

More information: section “Rest parameters”.

4.10 From apply() to the spread operator (...)

In ES5, you turn arrays into parameters via apply(). ES6 has the spread operator for this purpose.

4.10.1 Math.max()

Math.max() returns the numerically greatest of its arguments. It works for an arbitrary number
of arguments, but not for Arrays.

ES5 – apply():

> Math.max.apply(Math, [-1, 5, 11, 3])

11

ES6 – spread operator:

> Math.max(...[-1, 5, 11, 3])

11

4.10.2 Array.prototype.push()

Array.prototype.push() appends all of its arguments as elements to its receiver. There is no
method that destructively appends an Array to another one.

ES5 – apply():

var arr1 = ['a', 'b'];

var arr2 = ['c', 'd'];

arr1.push.apply(arr1, arr2);

// arr1 is now ['a', 'b', 'c', 'd']

ES6 – spread operator:



Core ES6 features 28

const arr1 = ['a', 'b'];

const arr2 = ['c', 'd'];

arr1.push(...arr2);

// arr1 is now ['a', 'b', 'c', 'd']

More information: section “The spread operator (...)”.

4.11 From concat() to the spread operator (...)

The spread operator can also (non-destructively) turn the contents of its operand into Array
elements. That means that it becomes an alternative to the Array method concat().

ES5 – concat():

var arr1 = ['a', 'b'];

var arr2 = ['c'];

var arr3 = ['d', 'e'];

console.log(arr1.concat(arr2, arr3));

// [ 'a', 'b', 'c', 'd', 'e' ]

ES6 – spread operator:

const arr1 = ['a', 'b'];

const arr2 = ['c'];

const arr3 = ['d', 'e'];

console.log([...arr1, ...arr2, ...arr3]);

// [ 'a', 'b', 'c', 'd', 'e' ]

More information: section “The spread operator (...)”.

4.12 From function expressions in object literals to
method definitions

In JavaScript, methods are properties whose values are functions.

In ES5 object literals, methods are created like other properties. The property values are provided
via function expressions.



Core ES6 features 29

var obj = {

foo: function () {

···

},

bar: function () {

this.foo();

}, // trailing comma is legal in ES5

}

ES6 has method definitions, special syntax for creating methods:

const obj = {

foo() {

···

},

bar() {

this.foo();

},

}

More information: section “Method definitions”.

4.13 From constructors to classes

ES6 classes are mostly just more convenient syntax for constructor functions.

4.13.1 Base classes

In ES5, you implement constructor functions directly:

function Person(name) {

this.name = name;

}

Person.prototype.describe = function () {

return 'Person called '+this.name;

};

In ES6, classes provide slightly more convenient syntax for constructor functions:



Core ES6 features 30

class Person {

constructor(name) {

this.name = name;

}

describe() {

return 'Person called '+this.name;

}

}

Note the compact syntax for method definitions – no keyword function needed. Also note that
there are no commas between the parts of a class.

4.13.2 Derived classes

Subclassing is complicated in ES5, especially referring to super-constructors and super-proper-
ties. This is the canonical way of creating a sub-constructor Employee of Person:

function Employee(name, title) {

Person.call(this, name); // super(name)

this.title = title;

}

Employee.prototype = Object.create(Person.prototype);

Employee.prototype.constructor = Employee;

Employee.prototype.describe = function () {

return Person.prototype.describe.call(this) // super.describe()

+ ' (' + this.title + ')';

};

ES6 has built-in support for subclassing, via the extends clause:

class Employee extends Person {

constructor(name, title) {

super(name);

this.title = title;

}

describe() {

return super.describe() + ' (' + this.title + ')';

}

}

More information: chapter “Classes”.



Core ES6 features 31

4.14 From custom error constructors to subclasses
of Error

In ES5, it is impossible to subclass the built-in constructor for exceptions, Error. The following
code shows a work-around that gives the constructor MyError important features such as a stack
trace:

function MyError() {

// Use Error as a function

var superInstance = Error.apply(null, arguments);

copyOwnPropertiesFrom(this, superInstance);

}

MyError.prototype = Object.create(Error.prototype);

MyError.prototype.constructor = MyError;

function copyOwnPropertiesFrom(target, source) {

Object.getOwnPropertyNames(source)

.forEach(function(propKey) {

var desc = Object.getOwnPropertyDescriptor(source, propKey);

Object.defineProperty(target, propKey, desc);

});

return target;

};

In ES6, all built-in constructors can be subclassed, which is why the following code achieves
what the ES5 code can only simulate:

class MyError extends Error {

}

More information: section “Subclassing built-in constructors”.

4.15 From objects to Maps

Using the language construct object as a map from strings to arbitrary values (a data structure)
has always been a makeshift solution in JavaScript. The safest way to do so is by creating an
object whose prototype is null. Then you still have to ensure that no key is ever the string
'__proto__', because that property key triggers special functionality inmany JavaScript engines.

The following ES5 code contains the function countWords that uses the object dict as a map:



Core ES6 features 32

var dict = Object.create(null);

function countWords(word) {

var escapedWord = escapeKey(word);

if (escapedWord in dict) {

dict[escapedWord]++;

} else {

dict[escapedWord] = 1;

}

}

function escapeKey(key) {

if (key.indexOf('__proto__') === 0) {

return key+'%';

} else {

return key;

}

}

In ES6, you can use the built-in data structure Map and don’t have to escape keys. As a downside,
incrementing values inside Maps is less convenient.

const map = new Map();

function countWords(word) {

const count = map.get(word) || 0;

map.set(word, count + 1);

}

Another benefit of Maps is that you can use arbitrary values as keys, not just strings.

More information:

• Section “The dict Pattern: Objects Without Prototypes Are Better Maps¹” in “Speaking
JavaScript”

• Chapter “Maps and Sets”

4.16 New string methods

The ECMAScript 6 standard library provides several new methods for strings.

From indexOf to startsWith:

if (str.indexOf('x') === 0) {} // ES5

if (str.startsWith('x')) {} // ES6

From indexOf to endsWith:

¹http://speakingjs.com/es5/ch17.html#dict_pattern

http://speakingjs.com/es5/ch17.html#dict_pattern
http://speakingjs.com/es5/ch17.html#dict_pattern


Core ES6 features 33

function endsWith(str, suffix) { // ES5

var index = str.indexOf(suffix);

return index >= 0

&& index === str.length-suffix.length;

}

str.endsWith(suffix); // ES6

From indexOf to includes:

if (str.indexOf('x') >= 0) {} // ES5

if (str.includes('x')) {} // ES6

From join to repeat (the ES5 way of repeating a string is more of a hack):

new Array(3+1).join('#') // ES5

'#'.repeat(3) // ES6

More information: Chapter “New string features”

4.17 New Array methods

There are also several new Array methods in ES6.

4.17.1 From Array.prototype.indexOf to Array.prototype.findIndex

The latter can be used to find NaN, which the former can’t detect:

const arr = ['a', NaN];

arr.indexOf(NaN); // -1

arr.findIndex(x => Number.isNaN(x)); // 1

As an aside, the new Number.isNaN() provides a safe way to detect NaN (because it doesn’t coerce
non-numbers to numbers):

> isNaN('abc')

true

> Number.isNaN('abc')

false

4.17.2 From Array.prototype.slice() to Array.from() or the spread
operator

In ES5, Array.prototype.slice()was used to convert Array-like objects to Arrays. In ES6, you
have Array.from():



Core ES6 features 34

var arr1 = Array.prototype.slice.call(arguments); // ES5

const arr2 = Array.from(arguments); // ES6

If a value is iterable (as all Array-like DOM data structure are by now), you can also use the
spread operator (...) to convert it to an Array:

const arr1 = [...'abc'];

// ['a', 'b', 'c']

const arr2 = [...new Set().add('a').add('b')];

// ['a', 'b']

4.17.3 From apply() to Array.prototype.fill()

In ES5, you can use apply(), as a hack, to create in Array of arbitrary length that is filled with
undefined:

// Same as Array(undefined, undefined)

var arr1 = Array.apply(null, new Array(2));

// [undefined, undefined]

In ES6, fill() is a simpler alternative:

const arr2 = new Array(2).fill(undefined);

// [undefined, undefined]

fill() is even more convenient if you want to create an Array that is filled with an arbitrary
value:

// ES5

var arr3 = Array.apply(null, new Array(2))

.map(function (x) { return 'x' });

// ['x', 'x']

// ES6

const arr4 = new Array(2).fill('x');

// ['x', 'x']

fill() replaces all Array elements with the given value. Holes are treated as if they were
elements.

More information: Sect. “Creating Arrays filled with values”



Core ES6 features 35

4.18 From CommonJS modules to ES6 modules

Even in ES5, module systems based on either AMD syntax or CommonJS syntax have mostly
replaced hand-written solutions such as the revealing module pattern².

ES6 has built-in support for modules. Alas, no JavaScript engine supports them natively, yet. But
tools such as browserify, webpack or jspm let you use ES6 syntax to create modules, making the
code you write future-proof.

4.18.1 Multiple exports

4.18.1.1 Multiple exports in CommonJS

In CommonJS, you export multiple entities as follows:

//------ lib.js ------

var sqrt = Math.sqrt;

function square(x) {

return x * x;

}

function diag(x, y) {

return sqrt(square(x) + square(y));

}

module.exports = {

sqrt: sqrt,

square: square,

diag: diag,

};

//------ main1.js ------

var square = require('lib').square;

var diag = require('lib').diag;

console.log(square(11)); // 121

console.log(diag(4, 3)); // 5

Alternatively, you can import the whole module as an object and access square and diag via it:

//------ main2.js ------

var lib = require('lib');

console.log(lib.square(11)); // 121

console.log(lib.diag(4, 3)); // 5

4.18.1.2 Multiple exports in ES6

In ES6, multiple exports are called named exports and handled like this:

²http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/

http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/
http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/


Core ES6 features 36

//------ lib.js ------

export const sqrt = Math.sqrt;

export function square(x) {

return x * x;

}

export function diag(x, y) {

return sqrt(square(x) + square(y));

}

//------ main1.js ------

import { square, diag } from 'lib';

console.log(square(11)); // 121

console.log(diag(4, 3)); // 5

The syntax for importing modules as objects looks as follows (line A):

//------ main2.js ------

import * as lib from 'lib'; // (A)

console.log(lib.square(11)); // 121

console.log(lib.diag(4, 3)); // 5

4.18.2 Single exports

4.18.2.1 Single exports in CommonJS

Node.js extends CommonJS and lets you export single values frommodules, via module.exports:

//------ myFunc.js ------

module.exports = function () { ··· };

//------ main1.js ------

var myFunc = require('myFunc');

myFunc();

4.18.2.2 Single exports in ES6

In ES6, the same thing is done via a so-called default export (declared via export default):



Core ES6 features 37

//------ myFunc.js ------

export default function () { ··· } // no semicolon!

//------ main1.js ------

import myFunc from 'myFunc';

myFunc();

More information: chapter “Modules”.

4.19 What to do next

Now that you got a first taste of ES6, you can continue your exploration by browsing the chapters:
Each chapter covers a feature or a set of related features and starts with an overview. The last
chapter collects all of these overview sections in a single location.



II Data



5. New number and Math features
5.1 Overview

5.1.1 New integer literals

You can now specify integers in binary and octal notation:

> 0xFF // ES5: hexadecimal

255

> 0b11 // ES6: binary

3

> 0o10 // ES6: octal

8

5.1.2 New Number properties

The global object Number gained a few new properties:

• Number.EPSILON for comparing floating point numbers with a tolerance for rounding
errors.

• Number.isInteger(num) checks whether num is an integer (a number without a decimal
fraction):

> Number.isInteger(1.05)

false

> Number.isInteger(1)

true

> Number.isInteger(-3.1)

false

> Number.isInteger(-3)

true

• A method and constants for determining whether a JavaScript integer is safe (within the
signed 53 bit range in which there is no loss of precision):

– Number.isSafeInteger(number)

– Number.MIN_SAFE_INTEGER

– Number.MAX_SAFE_INTEGER

• Number.isNaN(num) checks whether num is the value NaN. In contrast to the global function
isNaN(), it doesn’t coerce its argument to a number and is therefore safer for non-numbers:



New number and Math features 40

> isNaN('???')

true

> Number.isNaN('???')

false

• Three additional methods of Number are mostly equivalent to the global functions with the
same names: Number.isFinite, Number.parseFloat, Number.parseInt.

5.1.3 New Math methods

The global object Math has new methods for numerical, trigonometric and bitwise operations.
Let’s look at four examples.

Math.sign() returns the sign of a number:

> Math.sign(-8)

-1

> Math.sign(0)

0

> Math.sign(3)

1

Math.trunc() removes the decimal fraction of a number:

> Math.trunc(3.1)

3

> Math.trunc(3.9)

3

> Math.trunc(-3.1)

-3

> Math.trunc(-3.9)

-3

Math.log10() computes the logarithm to base 10:

> Math.log10(100)

2

Math.hypot() Computes the square root of the sum of the squares of its arguments (Pythagoras’
theorem):

> Math.hypot(3, 4)

5

5.2 New integer literals

ECMAScript 5 already has literals for hexadecimal integers:



New number and Math features 41

> 0x9

9

> 0xA

10

> 0x10

16

> 0xFF

255

ECMAScript 6 brings two new kinds of integer literals:

• Binary literals have the prefix 0b or 0B:

> 0b11

3

> 0b100

4

• Octal literals have the prefix 0o or 0O (that’s a zero followed by the capital letter O; the
first variant is safer):

> 0o7

7

> 0o10

8

Remember that the Numbermethod toString(radix) can be used to see numbers in a base other
than 10:

> 255..toString(16)

'ff'

> 4..toString(2)

'100'

> 8..toString(8)

'10'

(The double dots are necessary so that the dot for property access isn’t confused with a decimal
dot.)

5.2.1 Use case for octal literals: Unix-style file permissions

In the Node.js file system module¹, several functions have the parameter mode. Its value is used
to specify file permissions, via an encoding that is a holdover from Unix:

¹https://nodejs.org/api/fs.html

https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html


New number and Math features 42

• Permissions are specified for three categories of users:
– User: the owner of the file
– Group: the members of the group associated with the file
– All: everyone

• Per category, the following permissions can be granted:
– r (read): the users in the category are allowed to read the file
– w (write): the users in the category are allowed to change the file
– x (execute): the users in the category are allowed to run the file

That means that permissions can be represented by 9 bits (3 categories with 3 permissions each):

User Group All

Permissions r, w, x r, w, x r, w, x
Bit 8, 7, 6 5, 4, 3 2, 1, 0

The permissions of a single category of users are stored in 3 bits:

Bits Permissions Octal digit

000 ––– 0
001 ––x 1
010 –w– 2
011 –wx 3
100 r–– 4
101 r–x 5
110 rw– 6
111 rwx 7

That means that octal numbers are a compact representation of all permissions, you only need
3 digits, one digit per category of users. Two examples:

• 755 = 111,101,101: I can change, read and execute; everyone else can only read and execute.
• 640 = 110,100,000: I can read and write; group members can read; everyone can’t access at
all.

5.2.2 Number.parseInt() and the new integer literals

Number.parseInt() (which does the same as the global function parseInt()) has the following
signature:

Number.parseInt(string, radix?)

5.2.2.1 Number.parseInt(): hexadecimal number literals

Number.parseInt() provides special support for the hexadecimal literal notation – the prefix 0x
(or 0X) of string is removed if:



New number and Math features 43

• radix is missing or 0. Then radix is set to 16. As a rule, you should never omit the radix.
• radix is 16.

For example:

> Number.parseInt('0xFF')

255

> Number.parseInt('0xFF', 0)

255

> Number.parseInt('0xFF', 16)

255

In all other cases, digits are only parsed until the first non-digit:

> Number.parseInt('0xFF', 10)

0

> Number.parseInt('0xFF', 17)

0

5.2.2.2 Number.parseInt(): binary and octal number literals

However, Number.parseInt() does not have special support for binary or octal literals!

> Number.parseInt('0b111')

0

> Number.parseInt('0b111', 2)

0

> Number.parseInt('111', 2)

7

> Number.parseInt('0o10')

0

> Number.parseInt('0o10', 8)

0

> Number.parseInt('10', 8)

8

If you want to parse these kinds of literals, you need to use Number():

> Number('0b111')

7

> Number('0o10')

8

Number.parseInt() works fine with numbers that have a different base, as long as there is no
special prefix and the parameter radix is provided:



New number and Math features 44

> Number.parseInt('111', 2)

7

> Number.parseInt('10', 8)

8

5.3 New static Number properties

This section describes new properties that the constructor Number has picked up in ECMAScript
6.

5.3.1 Previously global functions

Four number-related functions are already available as global functions and have been added to
Number, as methods: isFinite and isNaN, parseFloat and parseInt. All of them work almost
the same as their global counterparts, but isFinite and isNaN don’t coerce their arguments to
numbers, anymore, which is especially important for isNaN. The following subsections explain
all the details.

5.3.1.1 Number.isFinite(number)

Number.isFinite(number) determines whether number is an actual number (neither Infinity
nor -Infinity nor NaN):

> Number.isFinite(Infinity)

false

> Number.isFinite(-Infinity)

false

> Number.isFinite(NaN)

false

> Number.isFinite(123)

true

The advantage of this method is that it does not coerce its parameter to number (whereas the
global function does):

> Number.isFinite('123')

false

> isFinite('123')

true

5.3.1.2 Number.isNaN(number)

Number.isNaN(number) checks whether number is the value NaN.

One ES5 way of making this check is via !==:



New number and Math features 45

> const x = NaN;

> x !== x

true

A more descriptive way is via the global function isNaN():

> const x = NaN;

> isNaN(x)

true

However, this function coerces non-numbers to numbers and returns true if the result is NaN
(which is usually not what you want):

> isNaN('???')

true

The new method Number.isNaN() does not exhibit this problem, because it does not coerce its
arguments to numbers:

> Number.isNaN('???')

false

5.3.1.3 Number.parseFloat and Number.parseInt

The following two methods work exactly like the global functions with the same names. They
were added to Number for completeness sake; now all number-related functions are available
there.

• Number.parseFloat(string)²
• Number.parseInt(string, radix)³

5.3.2 Number.EPSILON

Especially with decimal fractions, rounding errors can become a problem in JavaScript⁴. For
example, 0.1 and 0.2 can’t be represented precisely, which you notice if you add them and
compare them to 0.3 (which can’t be represented precisely, either).

> 0.1 + 0.2 === 0.3

false

Number.EPSILON specifies a reasonable margin of error when comparing floating point numbers.
It provides a better way to compare floating point values, as demonstrated by the following
function.

²[Speaking JS] parseFloat() in (“Speaking JavaScript”).
³[Speaking JS] parseInt() in (“Speaking JavaScript”).
⁴[Speaking JS] The details of rounding errors are explained in “Speaking JavaScript”.

http://speakingjs.com/es5/ch11.html#parseFloat
http://speakingjs.com/es5/ch11.html#parseInt
http://speakingjs.com/es5/ch11.html#rounding_errors


New number and Math features 46

function epsEqu(x, y) {

return Math.abs(x - y) < Number.EPSILON;

}

console.log(epsEqu(0.1+0.2, 0.3)); // true

5.3.3 Number.isInteger(number)

JavaScript has only floating point numbers (doubles). Accordingly, integers are simply floating
point numbers without a decimal fraction.

Number.isInteger(number) returns true if number is a number and does not have a decimal
fraction.

> Number.isInteger(-17)

true

> Number.isInteger(33)

true

> Number.isInteger(33.1)

false

> Number.isInteger('33')

false

> Number.isInteger(NaN)

false

> Number.isInteger(Infinity)

false

5.3.4 Safe integers

JavaScript numbers have only enough storage space to represent 53 bit signed integers. That is,
integers i in the range −2⁵³ < i < 2⁵³ are safe. What exactly that means is explained momentarily.
The following properties help determine whether a JavaScript integer is safe:

• Number.isSafeInteger(number)

• Number.MIN_SAFE_INTEGER

• Number.MAX_SAFE_INTEGER

The notion of safe integers centers on how mathematical integers are represented in JavaScript.
In the range (−2⁵³, 2⁵³) (excluding the lower and upper bounds), JavaScript integers are safe: there
is a one-to-one mapping between them and the mathematical integers they represent.

Beyond this range, JavaScript integers are unsafe: two or more mathematical integers are
represented as the same JavaScript integer. For example, starting at 2⁵³, JavaScript can represent
only every second mathematical integer:



New number and Math features 47

> Math.pow(2, 53)

9007199254740992

> 9007199254740992

9007199254740992

> 9007199254740993

9007199254740992

> 9007199254740994

9007199254740994

> 9007199254740995

9007199254740996

> 9007199254740996

9007199254740996

> 9007199254740997

9007199254740996

Therefore, a safe JavaScript integer is one that unambiguously represents a single mathematical
integer.

5.3.4.1 Static Number properties related to safe integers

The two static Number properties specifying the lower and upper bound of safe integers could be
defined as follows:

Number.MAX_SAFE_INTEGER = Math.pow(2, 53)-1;

Number.MIN_SAFE_INTEGER = -Number.MAX_SAFE_INTEGER;

Number.isSafeInteger() determines whether a JavaScript number is a safe integer and could
be defined as follows:

Number.isSafeInteger = function (n) {

return (typeof n === 'number' &&

Math.round(n) === n &&

Number.MIN_SAFE_INTEGER <= n &&

n <= Number.MAX_SAFE_INTEGER);

}

For a given value n, this function first checks whether n is a number and an integer. If both
checks succeed, n is safe if it is greater than or equal to MIN_SAFE_INTEGER and less than or equal
to MAX_SAFE_INTEGER.

5.3.4.2 When are computations with integers correct?

How can we make sure that results of computations with integers are correct? For example, the
following result is clearly not correct:



New number and Math features 48

> 9007199254740990 + 3

9007199254740992

We have two safe operands, but an unsafe result:

> Number.isSafeInteger(9007199254740990)

true

> Number.isSafeInteger(3)

true

> Number.isSafeInteger(9007199254740992)

false

The following result is also incorrect:

> 9007199254740995 - 10

9007199254740986

This time, the result is safe, but one of the operands isn’t:

> Number.isSafeInteger(9007199254740995)

false

> Number.isSafeInteger(10)

true

> Number.isSafeInteger(9007199254740986)

true

Therefore, the result of applying an integer operator op is guaranteed to be correct only if all
operands and the result are safe. More formally:

isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)

implies that a op b is a correct result.

Source of this section
“Clarify integer and safe integer resolution⁵”, email by Mark S. Miller to the es-discuss
mailing list.

5.4 Math

The global object Math has several new methods in ECMAScript 6.

⁵https://mail.mozilla.org/pipermail/es-discuss/2013-August/032991.html

https://mail.mozilla.org/pipermail/es-discuss/2013-August/032991.html
https://mail.mozilla.org/pipermail/es-discuss/2013-August/032991.html


New number and Math features 49

5.4.1 Various numerical functionality

5.4.1.1 Math.sign(x)

Math.sign(x) returns:

• -1 if x is a negative number (including -Infinity).
• 0 if x is zero⁶.
• +1 if x is a positive number (including Infinity).
• NaN if x is NaN or not a number.

Examples:

> Math.sign(-8)

-1

> Math.sign(3)

1

> Math.sign(0)

0

> Math.sign(NaN)

NaN

> Math.sign(-Infinity)

-1

> Math.sign(Infinity)

1

5.4.1.2 Math.trunc(x)

Math.trunc(x) removes the decimal fraction of x. Complements the other rounding methods
Math.floor(), Math.ceil() and Math.round().

> Math.trunc(3.1)

3

> Math.trunc(3.9)

3

> Math.trunc(-3.1)

-3

> Math.trunc(-3.9)

-3

You could implement Math.trunc() like this:

⁶Internally, JavaScript has two zeros. Math.sign(-0) produces the result -0 and Math.sign(+0) produces the result +0.

http://speakingjs.com/es5/ch11.html#two_zeros


New number and Math features 50

function trunc(x) {

return Math.sign(x) * Math.floor(Math.abs(x));

}

5.4.1.3 Math.cbrt(x)

Math.cbrt(x) returns the cube root of x (∛x).

> Math.cbrt(8)

2

5.4.2 Using 0 instead of 1 with exponentiation and logarithm

A small fraction can be represented more precisely if it comes after zero. I’ll demonstrate this
with decimal fractions (JavaScript’s numbers are internally stored with base 2, but the same
reasoning applies).

Floating point numbers with base 10 are internally represented as mantissa × 10ˣⁿⁿ. The
mantissa has a single digit before the decimal dot and the exponent “moves” the dot as necessary.
That means if you convert a small fraction to the internal representation, a zero before the dot
leads to a smaller mantissa than a one before the dot. For example:

• (A) 0.000000234 = 2.34 × 10⁻⁷. Significant digits: 234
• (B) 1.000000234 = 1.000000234 × 10⁰. Significant digits: 1000000234

Precision-wise, the important quantity here is the capacity of the mantissa, as measured in
significant digits. That’s why (A) gives you higher precision than (B).

Additionally, JavaScript represents numbers close to zero (e.g. small fractions) with higher
precision.

5.4.2.1 Math.expm1(x)

Math.expm1(x) returns Math.exp(x)-1. The inverse of Math.log1p().

Therefore, this method provides higher precision whenever Math.exp() has results close to 1.
You can see the difference between the two in the following interaction:

> Math.expm1(1e-10)

1.00000000005e-10

> Math.exp(1e-10)-1

1.000000082740371e-10

The former is the better result, which you can verify by using a library (such as decimal.js⁷) for
floating point numbers with arbitrary precision (“bigfloats”):

⁷https://github.com/MikeMcl/decimal.js/

https://github.com/MikeMcl/decimal.js/
https://github.com/MikeMcl/decimal.js/


New number and Math features 51

> var Decimal = require('decimal.js').config({precision:50});

> new Decimal(1e-10).exp().minus(1).toString()

'1.000000000050000000001666666666708333333e-10'

5.4.2.2 Math.log1p(x)

Math.log1p(x) returns Math.log(1 + x). The inverse of Math.expm1().

Therefore, this method lets you specify parameters that are close to 1 with a higher precision.
The following examples demonstrate why that is.

The following two calls of log() produce the same result:

> Math.log(1 + 1e-16)

0

> Math.log(1 + 0)

0

In contrast, log1p() produces different results:

> Math.log1p(1e-16)

1e-16

> Math.log1p(0)

0

The reason for the higher precision of Math.log1p() is that the correct result for 1 + 1e-16 has
more significant digits than 1e-16:

> 1 + 1e-16 === 1

true

> 1e-16 === 0

false

5.4.3 Logarithms to base 2 and 10

5.4.3.1 Math.log2(x)

Math.log2(x) computes the logarithm to base 2.

> Math.log2(8)

3

5.4.3.2 Math.log10(x)

Math.log10(x) computes the logarithm to base 10.



New number and Math features 52

> Math.log10(100)

2

5.4.4 Support for compiling to JavaScript

Emscripten⁸ pioneered a coding style that was later picked up by asm.js⁹: The operations of a
virtual machine (think bytecode) are expressed in static subset of JavaScript. That subset can be
executed efficiently by JavaScript engines: If it is the result of a compilation from C++, it runs at
about 70% of native speed.

The following Math methods were mainly added to support asm.js and similar compilation
strategies, they are not that useful for other applications.

5.4.4.1 Math.fround(x)

Math.fround(x) rounds x to a 32 bit floating point value (float). Used by asm.js to tell an engine
to internally use a float value.

5.4.4.2 Math.imul(x, y)

Math.imul(x, y) multiplies the two 32 bit integers x and y and returns the lower 32 bits of the
result. This is the only 32 bit basic math operation that can’t be simulated by using a JavaScript
operator and coercing the result back to 32 bits. For example, idiv could be implemented as
follows:

function idiv(x, y) {

return (x / y) | 0;

}

In contrast, multiplying two large 32 bit integers may produce a double that is so large that lower
bits are lost.

5.4.5 Bitwise operations

• Math.clz32(x)

Counts the leading zero bits in the 32 bit integer x.

⁸https://github.com/kripken/emscripten
⁹http://asmjs.org/

https://github.com/kripken/emscripten
http://asmjs.org/
https://github.com/kripken/emscripten
http://asmjs.org/


New number and Math features 53

> Math.clz32(0b01000000000000000000000000000000)

1

> Math.clz32(0b00100000000000000000000000000000)

2

> Math.clz32(2)

30

> Math.clz32(1)

31

Why is this interesting? Quoting “Fast, Deterministic, and Portable Counting Leading Zeros¹⁰”
by Miro Samek:

Counting leading zeros in an integer number is a critical operation in many DSP
algorithms, such as normalization of samples in sound or video processing, as well
as in real-time schedulers to quickly find the highest-priority task ready-to-run.

5.4.6 Trigonometric methods

• Math.sinh(x)

Computes the hyperbolic sine of x.
• Math.cosh(x)

Computes the hyperbolic cosine of x.
• Math.tanh(x)

Computes the hyperbolic tangent of x.
• Math.asinh(x)

Computes the inverse hyperbolic sine of x.
• Math.acosh(x)

Computes the inverse hyperbolic cosine of x.
• Math.atanh(x)

Computes the inverse hyperbolic tangent of x.

• Math.hypot(...values)

Computes the square root of the sum of the squares of its arguments (Pythagoras’ theorem):

> Math.hypot(3, 4)

5

5.5 FAQ: numbers

5.5.1 How can I use integers beyond JavaScript’s 53 bit range?

JavaScript’s integers have a range of 53 bits. That is a problem whenever 64 bit integers are
needed. For example: In its JSON API, Twitter had to switch from integers to strings when tweet
IDs became too large.

¹⁰http://embeddedgurus.com/state-space/2014/09/fast-deterministic-and-portable-counting-leading-zeros/

http://embeddedgurus.com/state-space/2014/09/fast-deterministic-and-portable-counting-leading-zeros/
http://embeddedgurus.com/state-space/2014/09/fast-deterministic-and-portable-counting-leading-zeros/


New number and Math features 54

At the moment, the only way around that limitation is to use a library for higher-precision
numbers (bigints or bigfloats). One such library is decimal.js¹¹.

Plans to support larger integers in JavaScript exist, but may take a while to come to fruition.

¹¹https://github.com/MikeMcl/decimal.js/

https://github.com/MikeMcl/decimal.js/
https://github.com/MikeMcl/decimal.js/


6. New string features
6.1 Overview

New string methods:

> 'hello'.startsWith('hell')

true

> 'hello'.endsWith('ello')

true

> 'hello'.includes('ell')

true

> 'doo '.repeat(3)

'doo doo doo '

ES6 has a new kind of string literal, the template literal:

// String interpolation via template literals (in backticks)

const first = 'Jane';

const last = 'Doe';

console.log(`Hello ${first} ${last}!`);

// Hello Jane Doe!

// Template literals also let you create strings with multiple lines

const multiLine = `

This is

a string

with multiple

lines`;

6.2 Unicode code point escapes

In ECMAScript 6, there is a new kind of Unicode escape that lets you specify any code point
(even those beyond 16 bits):

console.log('\u{1F680}'); // ES6: single code point

console.log('\uD83D\uDE80'); // ES5: two code units

More information on escapes is given in the chapter on Unicode.



New string features 56

6.3 String interpolation, multi-line string literals and
raw string literals

Template literals are described in depth in their own chapter. They provide three interesting
features.

First, template literals support string interpolation:

const first = 'Jane';

const last = 'Doe';

console.log(`Hello ${first} ${last}!`);

// Hello Jane Doe!

Second, template literals can contain multiple lines:

const multiLine = `

This is

a string

with multiple

lines`;

Third, template literals are “raw” if you prefix them with the tag String.raw – the backslash is
not a special character and escapes such as \n are not interpreted:

const str = String.raw`Not a newline: \n`;

console.log(str === 'Not a newline: \\n'); // true

6.4 Iterating over strings

Strings are iterable, which means that you can use for-of to iterate over their characters:

for (const ch of 'abc') {

console.log(ch);

}

// Output:

// a

// b

// c

And you can use the spread operator (...) to turn strings into Arrays:



New string features 57

const chars = [...'abc'];

// ['a', 'b', 'c']

6.4.1 Iteration honors Unicode code points

The string iterator splits strings along code point boundaries, which means that the strings it
returns comprise one or two JavaScript characters:

for (const ch of 'x\uD83D\uDE80y') {

console.log(ch.length);

}

// Output:

// 1

// 2

// 1

6.4.2 Counting code points

Iteration gives you a quick way to count the Unicode code points in a string:

> [...'x\uD83D\uDE80y'].length

3

6.4.3 Reversing strings with non-BMP code points

Iteration also helps with reversing strings that contain non-BMP code points (which are larger
than 16 bit and encoded as two JavaScript characters):

const str = 'x\uD83D\uDE80y';

// ES5: \uD83D\uDE80 are (incorrectly) reversed

console.log(str.split('').reverse().join(''));

// 'y\uDE80\uD83Dx'

// ES6: order of \uD83D\uDE80 is preserved

console.log([...str].reverse().join(''));

// 'y\uD83D\uDE80x'

The two reversed strings in the Firefox console.



New string features 58

Remaining problem: combining marks
A combining mark is a sequence of two Unicode code points that is displayed as single
symbol. The ES6 approach to reversing a string that I have presented here works for
non-BMP code points, but not for combining marks. For those, you need a library, e.g.
Mathias Bynens’ Esrever¹.

6.5 Numeric values of code points

The new method codePointAt() returns the numeric value of a code point at a given index in a
string:

const str = 'x\uD83D\uDE80y';

console.log(str.codePointAt(0).toString(16)); // 78

console.log(str.codePointAt(1).toString(16)); // 1f680

console.log(str.codePointAt(3).toString(16)); // 79

This method works well when combined with iteration over strings:

for (const ch of 'x\uD83D\uDE80y') {

console.log(ch.codePointAt(0).toString(16));

}

// Output:

// 78

// 1f680

// 79

The opposite of codePointAt() is String.fromCodePoint():

> String.fromCodePoint(0x78, 0x1f680, 0x79) === 'x\uD83D\uDE80y'

true

6.6 Checking for inclusion

Three new methods check whether a string exists within another string:

¹https://github.com/mathiasbynens/esrever

https://github.com/mathiasbynens/esrever
https://github.com/mathiasbynens/esrever


New string features 59

> 'hello'.startsWith('hell')

true

> 'hello'.endsWith('ello')

true

> 'hello'.includes('ell')

true

Each of these methods has a position as an optional second parameter, which specifies where the
string to be searched starts or ends:

> 'hello'.startsWith('ello', 1)

true

> 'hello'.endsWith('hell', 4)

true

> 'hello'.includes('ell', 1)

true

> 'hello'.includes('ell', 2)

false

6.7 Repeating strings

The repeat() method repeats strings:

> 'doo '.repeat(3)

'doo doo doo '

6.8 String methods that delegate regular expression
work to their parameters

In ES6, the four string methods that accept regular expression parameters do relatively little.
They mainly call methods of their parameters:

• String.prototype.match(regexp) calls
regexp[Symbol.match](this).

• String.prototype.replace(searchValue, replaceValue) calls
searchValue[Symbol.replace](this, replaceValue).

• String.prototype.search(regexp) calls
regexp[Symbol.search](this).

• String.prototype.split(separator, limit) calls
separator[Symbol.split](this, limit).

The parameters don’t have to be regular expressions, anymore. Any objects with appropriate
methods will do.



New string features 60

6.9 Reference: the new string methods

Tagged templates:

• String.raw(callSite, ...substitutions) : string

Template tag for “raw” content (backslashes are not interpreted):

> String.raw`\n` === '\\n'

true

Consult the chapter on template literals for more information.

Unicode and code points:

• String.fromCodePoint(...codePoints : number[]) : string

Turns numbers denoting Unicode code points into a string.
• String.prototype.codePointAt(pos) : number

Returns the number of the code point starting at position pos (comprising one or two
JavaScript characters).

• String.prototype.normalize(form? : string) : string

Different combinations of code points may look the same. Unicode normalization² changes
them all to the same value(s), their so-called canonical representation. That helps with
comparing and searching for strings. The 'NFC' form is recommended for general text.

Finding strings:

• String.prototype.startsWith(searchString, position=0) : boolean

Does the receiver start with searchString? position lets you specify where the string to
be checked starts.

• String.prototype.endsWith(searchString, endPosition=searchString.length) : boolean

Does the receiver end with searchString? endPosition lets you specify where the string
to be checked ends.

• String.prototype.includes(searchString, position=0) : boolean

Does the receiver contain searchString? position lets you specify where the string to be
searched starts.

Repeating strings:

• String.prototype.repeat(count) : string

Returns the receiver, concatenated count times.

²http://unicode.org/faq/normalization.html

http://unicode.org/faq/normalization.html
http://unicode.org/faq/normalization.html


7. Symbols
7.1 Overview

Symbols are a new primitive type in ECMAScript 6. They are created via a factory function:

const mySymbol = Symbol('mySymbol');

Every time you call the factory function, a new and unique symbol is created. The optional
parameter is a descriptive string that is shownwhen printing the symbol (it has no other purpose):

> mySymbol

Symbol(mySymbol)

7.1.1 Use case 1: unique property keys

Symbols are mainly used as unique property keys – a symbol never clashes with any other
property key (symbol or string). For example, you can make an object iterable (usable via the
for-of loop and other language mechanisms), by using the symbol stored in Symbol.iterator

as the key of a method (more information on iterables is given in the chapter on iteration):

const iterableObject = {

[Symbol.iterator]() { // (A)

···

}

}

for (const x of iterableObject) {

console.log(x);

}

// Output:

// hello

// world

In line A, a symbol is used as the key of the method. This unique marker makes the object iterable
and enables us to use the for-of loop.

7.1.2 Use case 2: constants representing concepts

In ECMAScript 5, you may have used strings to represent concepts such as colors. In ES6, you
can use symbols and be sure that they are always unique:



Symbols 62

const COLOR_RED = Symbol('Red');

const COLOR_ORANGE = Symbol('Orange');

const COLOR_YELLOW = Symbol('Yellow');

const COLOR_GREEN = Symbol('Green');

const COLOR_BLUE = Symbol('Blue');

const COLOR_VIOLET = Symbol('Violet');

function getComplement(color) {

switch (color) {

case COLOR_RED:

return COLOR_GREEN;

case COLOR_ORANGE:

return COLOR_BLUE;

case COLOR_YELLOW:

return COLOR_VIOLET;

case COLOR_GREEN:

return COLOR_RED;

case COLOR_BLUE:

return COLOR_ORANGE;

case COLOR_VIOLET:

return COLOR_YELLOW;

default:

throw new Exception('Unknown color: '+color);

}

}

Every time you call Symbol('Red'), a new symbol is created. Therefore, COLOR_RED can never be
mistaken for another value. That would be different if it were the string 'Red'.

7.1.3 Pitfall: you can’t coerce symbols to strings

Coercing (implicitly converting) symbols to strings throws exceptions:

const sym = Symbol('desc');

const str1 = '' + sym; // TypeError

const str2 = `${sym}`; // TypeError

The only solution is to convert explicitly:

const str2 = String(sym); // 'Symbol(desc)'

const str3 = sym.toString(); // 'Symbol(desc)'

Forbidding coercion prevents some errors, but also makes working with symbols more compli-
cated.



Symbols 63

7.1.4 Which operations related to property keys are aware of
symbols?

The following operations are aware of symbols as property keys:

• Reflect.ownKeys()

• Property access via []
• Object.assign()

The following operations ignore symbols as property keys:

• Object.keys()

• Object.getOwnPropertyNames()

• for-in loop

7.2 A new primitive type

ECMAScript 6 introduces a new primitive type: symbols. They are tokens that serve as unique
IDs. You create symbols via the factory function Symbol() (which is loosely similar to String

returning strings if called as a function):

const symbol1 = Symbol();

Symbol() has an optional string-valued parameter that lets you give the newly created Symbol
a description. That description is used when the symbol is converted to a string (via toString()
or String()):

> const symbol2 = Symbol('symbol2');

> String(symbol2)

'Symbol(symbol2)'

Every symbol returned by Symbol() is unique, every symbol has its own identity:

> Symbol() === Symbol()

false

You can see that symbols are primitive if you apply the typeof operator to one of them – it will
return a new symbol-specific result:



Symbols 64

> typeof Symbol()

'symbol'

7.2.1 Symbols as property keys

Symbols can be used as property keys:

const MY_KEY = Symbol();

const obj = {};

obj[MY_KEY] = 123;

console.log(obj[MY_KEY]); // 123

Classes and object literals have a feature called computed property keys: You can specify the key
of a property via an expression, by putting it in square brackets. In the following object literal,
we use a computed property key to make the value of MY_KEY the key of a property.

const MY_KEY = Symbol();

const obj = {

[MY_KEY]: 123

};

A method definition can also have a computed key:

const FOO = Symbol();

const obj = {

[FOO]() {

return 'bar';

}

};

console.log(obj[FOO]()); // bar

7.2.2 Enumerating own property keys

Given that there is now a new kind of value that can become the key of a property, the following
terminology is used for ECMAScript 6:

• Property keys are either strings or symbols.
• String-valued property keys are called property names.
• Symbol-valued property keys are called property symbols.

Let’s examine the APIs for enumerating own property keys by first creating an object.



Symbols 65

const obj = {

[Symbol('my_key')]: 1,

enum: 2,

nonEnum: 3

};

Object.defineProperty(obj,

'nonEnum', { enumerable: false });

Object.getOwnPropertyNames() ignores symbol-valued property keys:

> Object.getOwnPropertyNames(obj)

['enum', 'nonEnum']

Object.getOwnPropertySymbols() ignores string-valued property keys:

> Object.getOwnPropertySymbols(obj)

[Symbol(my_key)]

Reflect.ownKeys() considers all kinds of keys:

> Reflect.ownKeys(obj)

[Symbol(my_key), 'enum', 'nonEnum']

Object.keys() only considers enumerable property keys that are strings:

> Object.keys(obj)

['enum']

The name Object.keys clashes with the new terminology (only string keys are listed). Ob-
ject.names or Object.getEnumerableOwnPropertyNames would be a better choice now.

7.3 Using symbols to represent concepts

In ECMAScript 5, one often represents concepts (think enum constants) via strings. For example:

var COLOR_RED = 'Red';

var COLOR_ORANGE = 'Orange';

var COLOR_YELLOW = 'Yellow';

var COLOR_GREEN = 'Green';

var COLOR_BLUE = 'Blue';

var COLOR_VIOLET = 'Violet';

However, strings are not as unique as we’d like them to be. To see why, let’s look at the following
function.



Symbols 66

function getComplement(color) {

switch (color) {

case COLOR_RED:

return COLOR_GREEN;

case COLOR_ORANGE:

return COLOR_BLUE;

case COLOR_YELLOW:

return COLOR_VIOLET;

case COLOR_GREEN:

return COLOR_RED;

case COLOR_BLUE:

return COLOR_ORANGE;

case COLOR_VIOLET:

return COLOR_YELLOW;

default:

throw new Exception('Unknown color: '+color);

}

}

It is noteworthy that you can use arbitrary expressions as switch cases, you are not limited in
any way. For example:

function isThree(x) {

switch (x) {

case 1 + 1 + 1:

return true;

default:

return false;

}

}

We use the flexibility that switch offers us and refer to the colors via our constants (COLOR_RED
etc.) instead of hard-coding them ('RED' etc.).

Interestingly, even though we do so, there can still be mix-ups. For example, someone may define
a constant for a mood:

var MOOD_BLUE = 'BLUE';

Now the value of BLUE is not unique anymore and MOOD_BLUE can be mistaken for it. If you use
it as a parameter for getComplement(), it returns 'ORANGE' where it should throw an exception.

Let’s use symbols to fix this example. Now we can also use the ES6 feature const, which lets us
declare actual constants (you can’t change what value is bound to a constant, but the value itself
may be mutable).



Symbols 67

const COLOR_RED = Symbol('Red');

const COLOR_ORANGE = Symbol('Orange');

const COLOR_YELLOW = Symbol('Yellow');

const COLOR_GREEN = Symbol('Green');

const COLOR_BLUE = Symbol('Blue');

const COLOR_VIOLET = Symbol('Violet');

Each value returned by Symbol is unique, which is why no other value can be mistaken for BLUE
now. Intriguingly, the code of getComplement() doesn’t change at all if we use symbols instead
of strings, which shows how similar they are.

7.4 Symbols as keys of properties

Being able to create properties whose keys never clash with other keys is useful in two situations:

• For non-public properties in inheritance hierarchies.
• To keep meta-level properties from clashing with base-level properties.

7.4.1 Symbols as keys of non-public properties

Whenever there are inheritance hierarchies in JavaScript (e.g. created via classes, mixins or a
purely prototypal approach), you have two kinds of properties:

• Public properties are seen by clients of the code.
• Private properties are used internally within the pieces (e.g. classes, mixins or objects) that
make up the inheritance hierarchy. (Protected properties are shared between several pieces
and face the same issues as private properties.)

For usability’s sake, public properties usually have string keys. But for private properties with
string keys, accidental name clashes can become a problem. Therefore, symbols are a good choice.
For example, in the following code, symbols are used for the private properties _counter and
_action.

const _counter = Symbol('counter');

const _action = Symbol('action');

class Countdown {

constructor(counter, action) {

this[_counter] = counter;

this[_action] = action;

}

dec() {

let counter = this[_counter];

if (counter < 1) return;



Symbols 68

counter--;

this[_counter] = counter;

if (counter === 0) {

this[_action]();

}

}

}

Note that symbols only protect you from name clashes, not from unauthorized access, be-
cause you can find out all own property keys – including symbols – of an object via Re-

flect.ownKeys(). If you want protection there, as well, you can use one of the approaches listed
in Sect. “Private data for classes”.

7.4.2 Symbols as keys of meta-level properties

Symbols having unique identities makes them ideal as keys of public properties that exist on a
different level than “normal” property keys, because meta-level keys and normal keys must not
clash. One example of meta-level properties aremethods that objects can implement to customize
how they are treated by a library. Using symbol keys protects the library from mistaking normal
methods as customization methods.

ES6 Iterability is one such customization. An object is iterable if it has a method whose key is
the symbol (stored in) Symbol.iterator. In the following code, obj is iterable.

const obj = {

data: [ 'hello', 'world' ],

[Symbol.iterator]() {

···

}

};

The iterability of obj enables you to use the for-of loop and similar JavaScript features:

for (const x of obj) {

console.log(x);

}

// Output:

// hello

// world

7.4.3 Examples of name clashes in JavaScript’s standard library

In case you think that name clashes don’t matter, here are three examples of where name clashes
caused problems in the evolution of the JavaScript standard library:



Symbols 69

• When the new method Array.prototype.values() was created, it broke existing code
where with was used with an Array and shadowed a variable values in an outer scope
(bug report 1¹, bug report 2²). Therefore, a mechanism was introduced to hide properties
from with (Symbol.unscopables).

• String.prototype.contains clashed with a method added by MooTools and had to be
renamed to String.prototype.includes (bug report³).

• The ES2016 method Array.prototype.contains also clashed with a method added by
MooTools and had to be renamed to Array.prototype.includes (bug report⁴).

In contrast, adding iterability to an object via the property key Symbol.iterator can’t cause
problems, because that key doesn’t clash with anything.

7.5 Converting symbols to other primitive types

The following table shows what happens if you explicitly or implicitly convert symbols to other
primitive types:

Conversion to Explicit conversion Coercion (implicit conversion)

boolean Boolean(sym) →OK !sym →OK
number Number(sym) → TypeError sym*2 → TypeError

string String(sym) →OK ''+sym → TypeError

sym.toString() →OK `${sym}` → TypeError

7.5.1 Pitfall: coercion to string

Coercion to string being forbidden can easily trip you up:

const sym = Symbol();

console.log('A symbol: '+sym); // TypeError

console.log(`A symbol: ${sym}`); // TypeError

To fix these problems, you need an explicit conversion to string:

console.log('A symbol: '+String(sym)); // OK

console.log(`A symbol: ${String(sym)}`); // OK

7.5.2 Making sense of the coercion rules

Coercion (implicit conversion) is often forbidden for symbols. This section explains why.

¹https://bugzilla.mozilla.org/show_bug.cgi?id=881782
²https://bugzilla.mozilla.org/show_bug.cgi?id=883914
³https://bugzilla.mozilla.org/show_bug.cgi?id=789036
⁴https://bugzilla.mozilla.org/show_bug.cgi?id=1075059

https://bugzilla.mozilla.org/show_bug.cgi?id=881782
https://bugzilla.mozilla.org/show_bug.cgi?id=883914
https://bugzilla.mozilla.org/show_bug.cgi?id=789036
https://bugzilla.mozilla.org/show_bug.cgi?id=1075059
https://bugzilla.mozilla.org/show_bug.cgi?id=881782
https://bugzilla.mozilla.org/show_bug.cgi?id=883914
https://bugzilla.mozilla.org/show_bug.cgi?id=789036
https://bugzilla.mozilla.org/show_bug.cgi?id=1075059


Symbols 70

7.5.2.1 Truthiness checks are allowed

Coercion to boolean is always allowed, mainly to enable truthiness checks in if statements and
other locations:

if (value) { ··· }

param = param || 0;

7.5.2.2 Accidentally turning symbols into property keys

Symbols are special property keys, which is why you want to avoid accidentally converting them
to strings, which are a different kind of property keys. This could happen if you use the addition
operator to compute the name of a property:

myObject['__' + value]

That’s why a TypeError is thrown if value is a symbol.

7.5.2.3 Accidentally turning symbols into Array indices

You also don’t want to accidentally turn symbols into Array indices. The following is code where
that could happen if value is a symbol:

myArray[1 + value]

That’s why the addition operator throws an error in this case.

7.5.3 Explicit and implicit conversion in the spec

7.5.3.1 Converting to boolean

To explicitly convert a symbol to boolean, you call Boolean()⁵, which returns true for symbols:

> const sym = Symbol('hello');

> Boolean(sym)

true

Boolean() computes its result via the internal operation ToBoolean()⁶, which returns true for
symbols and other truthy values.

Coercion also uses ToBoolean():

⁵http://www.ecma-international.org/ecma-262/6.0/#sec-boolean-constructor-boolean-value
⁶http://www.ecma-international.org/ecma-262/6.0/#sec-toboolean

http://www.ecma-international.org/ecma-262/6.0/#sec-boolean-constructor-boolean-value
http://www.ecma-international.org/ecma-262/6.0/#sec-toboolean
http://www.ecma-international.org/ecma-262/6.0/#sec-boolean-constructor-boolean-value
http://www.ecma-international.org/ecma-262/6.0/#sec-toboolean


Symbols 71

> !sym

false

7.5.3.2 Converting to number

To explicitly convert a symbol to number, you call Number()⁷:

> const sym = Symbol('hello');

> Number(sym)

TypeError: can't convert symbol to number

Number() computes its result via the internal operation ToNumber()⁸, which throws a TypeError
for symbols.

Coercion also uses ToNumber():

> +sym

TypeError: can't convert symbol to number

7.5.3.3 Converting to string

To explicitly convert a symbol to string, you call String()⁹:

> const sym = Symbol('hello');

> String(sym)

'Symbol(hello)'

If the parameter of String() is a symbol then it handles the conversion to string itself and
returns the string Symbol() wrapped around the description that was provided when creating
the symbol. If no description was given, the empty string is used:

> String(Symbol())

'Symbol()'

The toString()method returns the same string as String(), but neither of these two operations
calls the other one, they both call the same internal operation SymbolDescriptiveString()¹⁰.

> Symbol('hello').toString()

'Symbol(hello)'

Coercion is handled via the internal operation ToString()¹¹, which throws a TypeError for
symbols. One method that coerces its parameter to string is Number.parseInt():

⁷http://www.ecma-international.org/ecma-262/6.0/#sec-number-constructor-number-value
⁸http://www.ecma-international.org/ecma-262/6.0/#sec-tonumber
⁹http://www.ecma-international.org/ecma-262/6.0/#sec-string-constructor-string-value
¹⁰http://www.ecma-international.org/ecma-262/6.0/#sec-symboldescriptivestring
¹¹http://www.ecma-international.org/ecma-262/6.0/#sec-tostring

http://www.ecma-international.org/ecma-262/6.0/#sec-number-constructor-number-value
http://www.ecma-international.org/ecma-262/6.0/#sec-tonumber
http://www.ecma-international.org/ecma-262/6.0/#sec-string-constructor-string-value
http://www.ecma-international.org/ecma-262/6.0/#sec-symboldescriptivestring
http://www.ecma-international.org/ecma-262/6.0/#sec-tostring
http://www.ecma-international.org/ecma-262/6.0/#sec-number-constructor-number-value
http://www.ecma-international.org/ecma-262/6.0/#sec-tonumber
http://www.ecma-international.org/ecma-262/6.0/#sec-string-constructor-string-value
http://www.ecma-international.org/ecma-262/6.0/#sec-symboldescriptivestring
http://www.ecma-international.org/ecma-262/6.0/#sec-tostring


Symbols 72

> Number.parseInt(Symbol())

TypeError: can't convert symbol to string

7.5.3.4 Not allowed: converting via the binary addition operator (+)

The addition operator¹² works as follows:

• Convert both operands to primitives.
• If one of the operands is a string, coerce both operands to strings (via ToString()),
concatenate them and return the result.

• Otherwise, coerce both operands to numbers, add them and return the result.

Coercion to either string or number throws an exception, which means that you can’t (directly)
use the addition operator for symbols:

> '' + Symbol()

TypeError: can't convert symbol to string

> 1 + Symbol()

TypeError: can't convert symbol to number

7.6 Wrapper objects for symbols

While all other primitive values have literals, you need to create symbols by function-calling
Symbol. Thus, there is a risk of accidentally invoking Symbol as a constructor. That produces
instances of Symbol, which are not very useful. Therefore, an exception is thrown when you try
to do that:

> new Symbol()

TypeError: Symbol is not a constructor

There is still a way to create wrapper objects, instances of Symbol: Object, called as a function,
converts all values to objects, including symbols.

¹²http://www.ecma-international.org/ecma-262/6.0/#sec-addition-operator-plus

http://www.ecma-international.org/ecma-262/6.0/#sec-addition-operator-plus
http://www.ecma-international.org/ecma-262/6.0/#sec-addition-operator-plus


Symbols 73

> const sym = Symbol();

> typeof sym

'symbol'

> const wrapper = Object(sym);

> typeof wrapper

'object'

> wrapper instanceof Symbol

true

7.6.1 Accessing properties via [ ] and wrapped keys

The square bracket operator [ ] normally coerces its operand to string. There are now two
exceptions: symbol wrapper objects are unwrapped and symbols are used as they are. Let’s use
the following object to examine this phenomenon.

const sym = Symbol('yes');

const obj = {

[sym]: 'a',

str: 'b',

};

The square bracket operator unwraps wrapped symbols:

> const wrappedSymbol = Object(sym);

> typeof wrappedSymbol

'object'

> obj[wrappedSymbol]

'a'

Like any other value not related to symbols, a wrapped string is converted to a string by the
square bracket operator:

> const wrappedString = new String('str');

> typeof wrappedString

'object'

> obj[wrappedString]

'b'

7.6.1.1 Property access in the spec

The operator for getting and setting properties uses the internal operation ToPropertyKey()¹³,
which works as follows:

¹³http://www.ecma-international.org/ecma-262/6.0/#sec-topropertykey

http://www.ecma-international.org/ecma-262/6.0/#sec-topropertykey
http://www.ecma-international.org/ecma-262/6.0/#sec-topropertykey


Symbols 74

• Convert the operand to a primitive via ToPrimitive()¹⁴ with the preferred type String:
– A primitive value is returned as it is.
– Otherwise, the operand is an object. If it has a method [@@toPrimitive](), that
method is used to convert it to a primitive value. Symbols have such a method, which
returns the wrapped symbol.

– Otherwise, the operand is converted to a primitive via toString() – if it returns
a primitive value. Otherwise, valueOf() is used – if it returns a primitive value.
Otherwise, a TypeError is thrown. The preferred type String determines that
toString() is called first, valueOf() second.

• If the result of the conversion is a symbol, return it.
• Otherwise, coerce the result to string via ToString()¹⁵.

7.7 Crossing realms with symbols

This is an advanced topic.

A code realm (short: realm) is a context in which pieces of code exist. It includes global variables,
loadedmodules andmore. Even though code exists “inside” exactly one realm, it may have access
to code in other realms. For example, each frame in a browser has its own realm. And execution
can jump from one frame to another, as the following HTML demonstrates.

<head>

<script>

function test(arr) {

var iframe = frames[0];

// This code and the iframe’s code exist in

// different realms. Therefore, global variables

// such as Array are different:

console.log(Array === iframe.Array); // false

console.log(arr instanceof Array); // false

console.log(arr instanceof iframe.Array); // true

// But: symbols are the same

console.log(Symbol.iterator ===

iframe.Symbol.iterator); // true

}

</script>

</head>

<body>

<iframe srcdoc="<script>window.parent.test([])</script>">

¹⁴http://www.ecma-international.org/ecma-262/6.0/#sec-toprimitive
¹⁵http://www.ecma-international.org/ecma-262/6.0/#sec-tostring

http://www.ecma-international.org/ecma-262/6.0/#sec-toprimitive
http://www.ecma-international.org/ecma-262/6.0/#sec-tostring
http://www.ecma-international.org/ecma-262/6.0/#sec-toprimitive
http://www.ecma-international.org/ecma-262/6.0/#sec-tostring


Symbols 75

</iframe>

</body>

The problem is that each realm has its own global variables where each variable Array points to
a different object, even though they are all essentially the same object. Similarly, libraries and
user code are loaded once per realm and each realm has a different version of the same object.

Objects are compared by identity, but booleans, numbers and strings are compared by value.
Therefore, no matter in which realm a number 123 originated, it is indistinguishable from all
other 123s. That is similar to the number literal 123 always producing the same value.

Symbols have individual identities and thus don’t travel across realms as smoothly as other
primitive values. That is a problem for symbols such as Symbol.iterator that should work across
realms: If an object is iterable in one realm, it should be iterable in all realms. All built-in symbols
are managed by the JavaScript engine, which makes sure that, e.g., Symbol.iterator is the same
value in each realm. If a library wants to provide cross-realm symbols, it has to rely on extra
support, which comes in the form of the global symbol registry: This registry is global to all
realms and maps strings to symbols. For each symbol, the library needs to come up with a string
that is as unique as possible. To create the symbol, it doesn’t use Symbol(), it asks the registry
for the symbol that the string is mapped to. If the registry already has an entry for the string, the
associated symbol is returned. Otherwise, entry and symbol are created first.

You ask the registry for a symbol via Symbol.for() and retrieve the string associated with a
symbol (its key) via Symbol.keyFor():

> const sym = Symbol.for('Hello everybody!');

> Symbol.keyFor(sym)

'Hello everybody!'

Cross-realm symbols, such as Symbol.iterator, that are provided by the JavaScript engine, are
not in the registry:

> Symbol.keyFor(Symbol.iterator)

undefined

7.8 FAQ: symbols

7.8.1 Can I use symbols to define private properties?

The original plan was for symbols to support private properties (there would have been public
and private symbols). But that feature was dropped, because using “get” and “set” (two meta-
object protocol operations) for managing private data does not interact well with proxies:

• On one hand, you want a proxy to be able to completely isolate its target (for membranes)
and to intercept all MOP operations applied to its target.



Symbols 76

• On the other hand, proxies should not be able to extract private data from an object; private
data should remain private.

These two goals are at odds. The chapter on classes explains your options for managing private
data. Symbols is one of these options, but you don’t get the same amount of safety that you’d get
from private symbols, because it’s possible to determine the symbols used as an object’s property
keys, via Object.getOwnPropertySymbols() and Reflect.ownKeys().

7.8.2 Are symbols primitives or objects?

In some ways, symbols are like primitive values, in other ways, they are like objects:

• Symbols are like strings (primitive values) w.r.t. what they are used for: as representations
of concepts and as property keys.

• Symbols are like objects in that each symbol has its own identity.

What are symbols then – primitive values or objects? In the end, theywere turned into primitives,
for two reasons.

First, symbols are more like strings than like objects: They are a fundamental value of the
language, they are immutable and they can be used as property keys. Symbols having unique
identities doesn’t necessarily contradict them being like strings: UUID algorithms produce strings
that are quasi-unique.

Second, symbols aremost often used as property keys, so it makes sense to optimize the JavaScript
specification and implementations for that use case. Then symbols don’t need many abilities of
objects:

• Objects can become prototypes of other objects.
• Wrapping an object with a proxy must not affect what it can be used for.
• Objects can be examined: via instanceof, Object.keys(), etc.

Symbols not having these abilitiesmakes life easier for the specification and the implementations.
The V8 team has also said that when it comes to property keys, it is easier to make a primitive
type a special case than certain objects.

7.8.3 Do we really need symbols? Aren’t strings enough?

In contrast to strings, symbols are unique and prevent name clashes. That is nice to have for
tokens such as colors, but it is essential for supporting meta-level methods such as the one whose
key is Symbol.iterator. Python uses the special name __iter__ to avoid clashes. You can reserve
double underscore names for programming language mechanisms, but what is a library to do?
With symbols, we have an extensibility mechanism that works for everyone. As you can see later,
in the section on public symbols, JavaScript itself already makes ample use of this mechanism.

There is one hypothetical alternative to symbols when it comes to clash-free property keys: using
a naming convention. For example, strings with URLs (e.g. 'http://example.com/iterator').
But that would introduce a second category of property keys (versus “normal” property names
that are usually valid identifiers and don’t contain colons, slashes, dots, etc.), which is basically
what symbols are, anyway. Then we may just as well introduce a new kind of value.



Symbols 77

7.8.4 Are JavaScript’s symbols like Ruby’s symbols?

No, they are not.

Ruby’s symbols are basically literals for creating values. Mentioning the same symbol twice
produces the same value twice:

:foo == :foo

The JavaScript function Symbol() is a factory for symbols – each value it returns is unique:

Symbol('foo') !== Symbol('foo')

7.9 The spelling of well-known symbols: why
Symbol.iterator and not Symbol.ITERATOR (etc.)?

Well-known symbols are stored in properties whose names start with lowercase characters and
are camel-cased. In a way, these properties are constants and it is customary for constants to
have all-caps names (Math.PI etc.). But the reasoning for their spelling is different: Well-known
symbols are used instead of normal property keys, which is why their “names” follow the rules
for property keys, not the rules for constants.

7.10 The symbol API

This section gives an overview of the ECMAScript 6 API for symbols.

7.10.1 The function Symbol

Symbol(description?) : symbol

Creates a new symbol. The optional parameter description allows you to give the symbol a
description. The only way to access the description is to convert the symbol to a string (via
toString() or String()). The result of such a conversion is 'Symbol('+description+')':

> const sym = Symbol('hello');

> String(sym)

'Symbol(hello)'

Symbol is can’t be used as a constructor – an exception is thrown if you invoke it via new.

7.10.2 Methods of symbols

The only useful method that symbols have is toString() (via Symbol.prototype.toString()).

7.10.3 Converting symbols to other values



Symbols 78

Conversion to Explicit conversion Coercion (implicit conversion)

boolean Boolean(sym) →OK !sym →OK
number Number(sym) → TypeError sym*2 → TypeError

string String(sym) →OK ''+sym → TypeError

sym.toString() →OK `${sym}` → TypeError

object Object(sym) →OK Object.keys(sym) →OK

7.10.4 Well-known symbols

The global object Symbol has several properties that serve as constants for so-called well-known
symbols. These symbols let you configure how ES6 treats an object, by using them as property
keys. This is a list of all well-known symbols¹⁶:

• Customizing basic language operations (explained in Chap. “New OOP features besides
classes”):

– Symbol.hasInstance (method)
Lets an object C customize the behavior of x instanceof C.

– Symbol.toPrimitive (method)
Lets an object customize how it is converted to a primitive value. This is the first step
whenever something is coerced to a primitive type (via operators etc.).

– Symbol.toStringTag (string)
Called by Object.prototype.toString() to compute the default string description
of an object obj: ‘[object ‘+obj[Symbol.toStringTag]+’]’.

– Symbol.unscopables (Object)
Lets an object hide some properties from the with statement.

• Iteration (explained in the chapter on iteration):
– Symbol.iterator (method)
A method with this key makes an object iterable (its contents can be iterated over
by language constructs such as the for-of loop and the spread operator (...)). The
method returns an iterator. Details: chapter “Iterables and iterators”.

• Forwarding string methods: The following string methods are forwarded to methods of
their parameters (usually regular expressions).

– String.prototype.match(x, ···) is forwarded to x[Symbol.match](···).
– String.prototype.replace(x, ···) is forwarded to x[Symbol.replace](···).
– String.prototype.search(x, ···) is forwarded to x[Symbol.search](···).
– String.prototype.split(x, ···) is forwarded to x[Symbol.split](···).

The details are explained in Sect. “String methods that delegate regular expression work
to their parameters” in the chapter on strings.

• Miscellaneous:
– Symbol.species (method)
Configures how built-in methods (such as Array.prototype.map()) create objects
that are similar to this. The details are explained in the chapter on classes.

¹⁶http://www.ecma-international.org/ecma-262/6.0/#sec-well-known-symbols

http://www.ecma-international.org/ecma-262/6.0/#sec-well-known-symbols
http://www.ecma-international.org/ecma-262/6.0/#sec-well-known-symbols


Symbols 79

– Symbol.isConcatSpreadable (boolean)
Configures whether Array.prototype.concat() adds the indexed elements of an
object to its result (“spreading”) or the object as a single element (details are explained
in the chapter on Arrays).

7.10.5 Global symbol registry

If you want a symbol to be the same in all realms, you need to use the global symbol registry,
via the following two methods:

• Symbol.for(str) : symbol

Returns the symbol whose key is the string str in the registry. If str isn’t in the registry
yet, a new symbol is created and filed in the registry under the key str.

• Symbol.keyFor(sym) : string

returns the string that is associated with the symbol sym in the registry. If sym isn’t in the
registry, this method returns undefined. This method can be used to serialize symbols (e.g.
to JSON).



8. Template literals
8.1 Overview

ES6 has two new kinds of literals: template literals and tagged template literals. These two literals
have similar names and look similar, but they are quite different. It is therefore important to
distinguish:

• Template literals (code): multi-line string literals that support interpolation
• Tagged template literals (code): function calls
• Web templates (data): HTML with blanks to be filled in

Template literals are string literals that can stretch across multiple lines and include interpolated
expressions (inserted via ${···}):

const firstName = 'Jane';

console.log(`Hello ${firstName}!

How are you

today?`);

// Output:

// Hello Jane!

// How are you

// today?

Tagged template literals (short: tagged templates) are created by mentioning a function before a
template literal:

> String.raw`A \tagged\ template`

'A \\tagged\\ template'

Tagged templates are function calls. In the previous example, the method String.raw is called
to produce the result of the tagged template.

8.2 Introduction

Literals are syntactic constructs that produce values. Examples include string literals (which
produce strings) and regular expression literals (which produce regular expression objects).
ECMAScript 6 has two new literals:



Template literals 81

• Template literals are string literals with support for interpolation and multiple lines.
• Tagged template literals (short: tagged templates): are function calls whose parameters are
provided via template literals.

It is important to keep in mind that the names of template literals and tagged templates are
slightly misleading. They have nothing to do with templates, as often used in web development:
text files with blanks that can be filled in via (e.g.) JSON data.

8.2.1 Template literals

A template literal is a new kind of string literal that can span multiple lines and interpolate
expressions (include their results). For example:

const firstName = 'Jane';

console.log(`Hello ${firstName}!

How are you

today?`);

// Output:

// Hello Jane!

// How are you

// today?

The literal itself is delimited by backticks (`), the interpolated expressions inside the literal are
delimited by ${ and }. Template literals always produce strings.

8.2.2 Escaping in template literals

The backslash is used for escaping inside template literals.

It enables you to mention backticks and ${ inside template literals:

> `\``

'`'

> `$` // OK

'$'

> `${`

SyntaxError

> `\${`

'${'

> `\${}`

'${}'

Other than that, the backslash works like in string literals:



Template literals 82

> `\\`

'\\'

> `\n`

'\n'

> `\u{58}`

'X'

8.2.3 Line terminators in template literals are always LF (\n)

Common ways of terminating lines are:

• Line feed (LF, \n, U+000A): used by Unix (incl. current macOS)
• Carriage return (CR, \r, U+000D): used by the old Mac OS.
• CRLF (\r\n): used by Windows.

All of these line terminators are normalized to LF in template literals. That is, the following code
logs true on all platforms:

const str = `BEFORE

AFTER`;

console.log(str === 'BEFORE\nAFTER'); // true

Spec: line terminators in template literals
In the ECMAScript specification, Sect. “Static Semantics: TV and TRV¹” defines how
line terminators are to be interpreted in template literals:

• The TRV of LineTerminatorSequence :: <LF> is the code unit value 0x000A.
• The TRV of LineTerminatorSequence :: <CR> is the code unit value 0x000A.
• The TRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of
the code unit value 0x000A.

8.2.4 Tagged template literals

The following is a tagged template literal (short: tagged template):

tagFunction`Hello ${firstName} ${lastName}!`

Putting a template literal after an expression triggers a function call, similar to how a parameter
list (comma-separated values in parentheses) triggers a function call. The previous code is
equivalent to the following function call (in reality, first parameter is more than just an Array,
but that is explained later).

¹http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv

http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv


Template literals 83

tagFunction(['Hello ', ' ', '!'], firstName, lastName)

Thus, the name before the content in backticks is the name of a function to call, the tag function.
The tag function receives two different kinds of data:

• Template strings such as 'Hello '.
• Substitutions such as firstName (delimited by ${}). A substitution can be any expression.

Template strings are known statically (at compile time), substitutions are only known at runtime.
The tag function can do with its parameters as it pleases: It can completely ignore the template
strings, return values of any type, etc.

Additionally, tag functions get two versions of each template string:

• A “raw” version in which backslashes are not interpreted (`\n` becomes '\\n', a string
of length 2)

• A “cooked” version in which backslashes are special (`\n` becomes a string with just a
newline in it).

That allows String.raw (which is explained later) to do its work:

> String.raw`\n` === '\\n'

true

8.3 Examples of using tagged template literals

Tagged template literals allow you to implement custom embedded sub-languages (which are
sometimes called domain-specific languages) with little effort, because JavaScript does much of
the parsing for you. You only have to write a function that receives the results.

Let’s look at examples. Some of them are inspired by the original proposal² for template literals,
which refers to them via their old name, quasi-literals.

8.3.1 Raw strings

ES6 includes the tag function String.raw for raw strings, where backslashes have no special
meaning:

²http://wiki.ecmascript.org/doku.php?id=harmony:quasis

http://wiki.ecmascript.org/doku.php?id=harmony:quasis
http://wiki.ecmascript.org/doku.php?id=harmony:quasis


Template literals 84

const str = String.raw`This is a text

with multiple lines.

Escapes are not interpreted,

\n is not a newline.`;

This is useful whenever you need to create strings that have backslashes in them. For example:

function createNumberRegExp(english) {

const PERIOD = english ? String.raw`\.` : ','; // (A)

return new RegExp(`[0-9]+(${PERIOD}[0-9]+)?`);

}

In line A, String.raw enables us to write the backslash as we would in a regular expression
literal. With normal string literals, we have to escape twice: First, we need to escape the dot for
the regular expression. Second, we need to escape the backslash for the string literal.

8.3.2 Shell commands

const proc = sh`ps ax | grep ${pid}`;

(Source: David Herman³)

8.3.3 Byte strings

const buffer = bytes`455336465457210a`;

(Source: David Herman⁴)

8.3.4 HTTP requests

POST`http://foo.org/bar?a=${a}&b=${b}

Content-Type: application/json

X-Credentials: ${credentials}

{ "foo": ${foo},

"bar": ${bar}}

`

(myOnReadyStateChangeHandler);

(Source: Luke Hoban⁵)

³https://gist.github.com/dherman/6165867
⁴https://gist.github.com/dherman/6165867
⁵https://github.com/lukehoban/es6features#template-strings

https://gist.github.com/dherman/6165867
https://gist.github.com/dherman/6165867
https://github.com/lukehoban/es6features#template-strings
https://gist.github.com/dherman/6165867
https://gist.github.com/dherman/6165867
https://github.com/lukehoban/es6features#template-strings


Template literals 85

8.3.5 More powerful regular expressions

Steven Levithan has given an example⁶ of how tagged template literals could be used for his
regular expression library XRegExp⁷.

XRegExp is highly recommended if you are working with regular expressions. You
get many advanced features, but there is only a small performance penalty – once at
creation time – because XRegExp compiles its input to native regular expressions.

Without tagged templates, you write code such as the following:

var parts = '/2015/10/Page.html'.match(XRegExp(

'^ # match at start of string only \n' +

'/ (?<year> [^/]+ ) # capture top dir name as year \n' +

'/ (?<month> [^/]+ ) # capture subdir name as month \n' +

'/ (?<title> [^/]+ ) # capture base name as title \n' +

'\\.html? $ # .htm or .html file ext at end of path ', 'x'

));

console.log(parts.year); // 2015

We can see that XRegExp gives us named groups (year, month, title) and the x flag. With that
flag, most whitespace is ignored and comments can be inserted.

There are two reasons that string literals don’t work well here. First, we have to type every
regular expression backslash twice, to escape it for the string literal. Second, it is cumbersome to
enter multiple lines.

Instead of adding strings, you can also continue a string literal in the next line if you end the
current line with a backslash. But that still involves much visual clutter, especially because you
still need the explicit newline via \n at the end of each line.

var parts = '/2015/10/Page.html'.match(XRegExp(

'^ # match at start of string only \n\

/ (?<year> [^/]+ ) # capture top dir name as year \n\

/ (?<month> [^/]+ ) # capture subdir name as month \n\

/ (?<title> [^/]+ ) # capture base name as title \n\

\\.html? $ # .htm or .html file ext at end of path ', 'x'

));

Problems with backslashes and multiple lines go away with tagged templates:

⁶https://gist.github.com/4222600
⁷http://xregexp.com

https://gist.github.com/4222600
http://xregexp.com/
https://gist.github.com/4222600
http://xregexp.com/


Template literals 86

var parts = '/2015/10/Page.html'.match(XRegExp.rx`

^ # match at start of string only

/ (?<year> [^/]+ ) # capture top dir name as year

/ (?<month> [^/]+ ) # capture subdir name as month

/ (?<title> [^/]+ ) # capture base name as title

\.html? $ # .htm or .html file ext at end of path

`);

Additionally, tagged templates let you insert values v via ${v}. I’d expect a regular expression
library to escape strings and to insert regular expressions verbatim. For example:

var str = 'really?';

var regex = XRegExp.rx`(${str})*`;

This would be equivalent to

var regex = XRegExp.rx`(really\?)*`;

8.3.6 Query languages

Example:

$`a.${className}[href*='//${domain}/']`

This is a DOM query that looks for all <a> tags whose CSS class is className and whose target
is a URL with the given domain. The tag function $ ensures that the arguments are correctly
escaped, making this approach safer than manual string concatenation.

8.3.7 React JSX via tagged templates

Facebook React⁸ is “a JavaScript library for building user interfaces”. It has the optional language
extension JSX that enables you to build virtual DOM trees for user interfaces. This extension
makes your code more concise, but it is also non-standard and breaks compatibility with the rest
of the JavaScript ecosystem.

The library t7.js provides an alternative to JSX and uses templates tagged with t7:

⁸https://facebook.github.io/react/

https://facebook.github.io/react/
https://facebook.github.io/react/


Template literals 87

t7.module(function(t7) {

function MyWidget(props) {

return t7`

<div>

<span>I'm a widget ${ props.welcome }</span>

</div>

`;

}

t7.assign('Widget', MyWidget);

t7`

<div>

<header>

<Widget welcome="Hello world" />

</header>

</div>

`;

});

In “Why not Template Literals?⁹”, the React team explains why they opted not to use template
literals. One challenge is accessing components inside tagged templates. For example, MyWidget
is accessed from the second tagged template in the previous example. One verbose way of doing
so would be:

<${MyWidget} welcome="Hello world" />

Instead, t7.js uses a registry which is filled via t7.assign(). That requires extra configuration,
but the template literals look nicer; especially if there is both an opening and a closing tag.

8.3.8 Facebook GraphQL

Facebook Relay¹⁰ is a “JavaScript framework for building data-driven React applications”. One
of its parts is the query language GraphQL whose queries can be created via templates tagged
with Relay.QL. For example (borrowed from the Relay homepage¹¹):

⁹https://facebook.github.io/jsx/#why-not-template-literals
¹⁰https://facebook.github.io/relay/
¹¹https://facebook.github.io/relay/

https://facebook.github.io/jsx/#why-not-template-literals
https://facebook.github.io/relay/
https://facebook.github.io/relay/
https://facebook.github.io/jsx/#why-not-template-literals
https://facebook.github.io/relay/
https://facebook.github.io/relay/


Template literals 88

class Tea extends React.Component {

render() {

var {name, steepingTime} = this.props.tea;

return (

<li key={name}>

{name} (<em>{steepingTime} min</em>)

</li>

);

}

}

Tea = Relay.createContainer(Tea, {

fragments: { // (A)

tea: () => Relay.QL`

fragment on Tea {

name,

steepingTime,

}

`,

},

});

class TeaStore extends React.Component {

render() {

return <ul>

{this.props.store.teas.map(

tea => <Tea tea={tea} />

)}

</ul>;

}

}

TeaStore = Relay.createContainer(TeaStore, {

fragments: { // (B)

store: () => Relay.QL`

fragment on Store {

teas { ${Tea.getFragment('tea')} },

}

`,

},

});

The objects starting in line A and line B define fragments, which are defined via callbacks that
return queries. The result of fragment tea is put into this.props.tea. The result of fragment
store is put into this.props.store.

This is the data that the queries operates on:



Template literals 89

const STORE = {

teas: [

{name: 'Earl Grey Blue Star', steepingTime: 5},

···

],

};

This data is wrapped in an instance of GraphQLSchema, where it gets the name Store (as
mentioned in fragment on Store).

8.3.9 Text localization (L10N)

This section describes a simple approach to text localization that supports different languages
and different locales (how to format numbers, time, etc.). Given the following message.

alert(msg`Welcome to ${siteName}, you are visitor

number ${visitorNumber}:d!`);

The tag function msg would work as follows.

First, The literal parts are concatenated to form a string that can be used to look up a translation
in a table. The lookup string for the previous example is:

'Welcome to {0}, you are visitor number {1}!'

This lookup string could, for example, be mapped to a German translation::

'Besucher Nr. {1}, willkommen bei {0}!'

The English “translation” would be the same as the lookup string.

Second, the result from the lookup is used to display the substitutions. Because a lookup result
includes indices, it can rearrange the order of the substitutions. That has been done in German,
where the visitor number comes before the site name. How the substitutions are formatted can
be influenced via annotations such as :d. This annotation means that a locale-specific decimal
separator should be used for visitorNumber. Thus, a possible English result is:

Welcome to ACME Corp., you are visitor number 1,300!

In German, we have results such as:

Besucher Nr. 1.300, willkommen bei ACME Corp.!

8.3.10 Text templating via untagged template literals

Let’s say we want to create HTML that displays the following data in a table:



Template literals 90

const data = [

{ first: '<Jane>', last: 'Bond' },

{ first: 'Lars', last: '<Croft>' },

];

As explained previously, template literals are not templates:

• A template literal is code that is executed immediately.
• A template is text with holes that you can fill with data.

A template is basically a function: data in, text out. And that description gives us a clue how we
can turn a template literal into an actual template. Let’s implement a template tmpl as a function
that maps an Array addrs to a string:

const tmpl = addrs => `

<table>

${addrs.map(addr => `

<tr><td>${addr.first}</td></tr>

<tr><td>${addr.last}</td></tr>

`).join('')}

</table>

`;

console.log(tmpl(data));

// Output:

// <table>

//

// <tr><td><Jane></td></tr>

// <tr><td>Bond</td></tr>

//

// <tr><td>Lars</td></tr>

// <tr><td><Croft></td></tr>

//

// </table>

The outer template literal provides the bracketing <table> and </table>. Inside, we are
embedding JavaScript code that produces a string by joining an Array of strings. The Array
is created by mapping each address to two table rows. Note that the plain text pieces <Jane> and
<Croft> are not properly escaped. How to do that via a tagged template is explained in the next
section.

8.3.10.1 Should I use this technique in production code?

This is a useful quick solution for smaller templating tasks. For larger tasks, you may want more
powerful solutions such as the templating engine Handlebars.js¹² or the JSX syntax used in React.

Acknowledgement: This approach to text templating is based on an idea¹³ by Claus Reinke.

¹²http://handlebarsjs.com/
¹³https://mail.mozilla.org/pipermail/es-discuss/2012-August/024328.html

http://handlebarsjs.com/
https://mail.mozilla.org/pipermail/es-discuss/2012-August/024328.html
http://handlebarsjs.com/
https://mail.mozilla.org/pipermail/es-discuss/2012-August/024328.html


Template literals 91

8.3.11 A tag function for HTML templating

Compared to using untagged templates for HTML templating, like we did in the previous section,
tagged templates bring two advantages:

• They can escape characters for us if we prefix ${} with an exclamation mark. That is
needed for the names, which contain characters that need to be escaped (<Jane>).

• They can automatically join() Arrays for us, so that we don’t have to call that method
ourselves.

Then the code for the template looks as follows. The name of the tag function is html:

const tmpl = addrs => html`

<table>

${addrs.map(addr => html`

<tr><td>!${addr.first}</td></tr>

<tr><td>!${addr.last}</td></tr>

`)}

</table>

`;

const data = [

{ first: '<Jane>', last: 'Bond' },

{ first: 'Lars', last: '<Croft>' },

];

console.log(tmpl(data));

// Output:

// <table>

//

// <tr><td>&lt;Jane&gt;</td></tr>

// <tr><td>Bond</td></tr>

//

// <tr><td>Lars</td></tr>

// <tr><td>&lt;Croft&gt;</td></tr>

//

// </table>

Note that the angle brackets around Jane and Croft are escaped, whereas those around tr and
td aren’t.

If you prefix a substitution with an exclamation mark (!${addr.first}) then it will be HTML-
escaped. The tag function checks the text preceding a substitution in order to determine whether
to escape or not.

An implementation of html is shown later.

8.4 Implementing tag functions

The following is a tagged template literal:



Template literals 92

tagFunction`lit1\n${subst1} lit2 ${subst2}`

This literal triggers (roughly) the following function call:

tagFunction(['lit1\n', ' lit2 ', ''], subst1, subst2)

The exact function call looks more like this:

// Globally: add template object to per-realm template map

{

// “Cooked” template strings: backslash is interpreted

const templateObject = ['lit1\n', ' lit2 ', ''];

// “Raw” template strings: backslash is verbatim

templateObject.raw = ['lit1\\n', ' lit2 ', ''];

// The Arrays with template strings are frozen

Object.freeze(templateObject.raw);

Object.freeze(templateObject);

__templateMap__[716] = templateObject;

}

// In-place: invocation of tag function

tagFunction(__templateMap__[716], subst1, subst2)

There are two kinds of input that the tag function receives:

1. Template strings (first parameter): the static parts of tagged templates that don’t change
(e.g. ' lit2 '). A template object stores two versions of the template strings:

• Cooked: with escapes such as \n interpreted. Stored in templateObject[0] etc.
• Raw: with uninterpreted escapes. Stored in templateObject.raw[0] etc.

2. Substitutions (remaining parameters): the values that are embedded inside template literals
via ${} (e.g. subst1). Substitutions are dynamic, they can change with each invocation.

The idea behind a global template object is that the same tagged template might be executed
multiple times (e.g. in a loop or a function). The template object enables the tag function to
cache data from previous invocations: It can put data it derived from input kind #1 (template
strings) into the object, to avoid recomputing it. Caching happens per realm (think frame in a
browser). That is, there is one template object per call site and realm.

Tagged template literals in the spec
A section on tagged template literals¹⁴ explains how they are interpreted as function
calls. A separate section¹⁵ explains how a template literal is turned into a list of
arguments: the template object and the substitutions.

¹⁴http://www.ecma-international.org/ecma-262/6.0/#sec-tagged-templates
¹⁵http://www.ecma-international.org/ecma-262/6.0/#sec-template-literals-runtime-semantics-argumentlistevaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-tagged-templates
http://www.ecma-international.org/ecma-262/6.0/#sec-template-literals-runtime-semantics-argumentlistevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-tagged-templates
http://www.ecma-international.org/ecma-262/6.0/#sec-template-literals-runtime-semantics-argumentlistevaluation


Template literals 93

8.4.1 Number of template strings versus number of
substitutions

Let’s use the following tag function to explore how many template strings there are compared
to substitutions.

function tagFunc(templateObject, ...substs) {

return { templateObject, substs };

}

The number of template strings is always one plus the number of substitutions. In other words:
every substitution is always surrounded by two template strings.

templateObject.length === substs.length + 1

If a substitution is first in a literal, it is prefixed by an empty template string:

> tagFunc`${'subst'}xyz`

{ templateObject: [ '', 'xyz' ], substs: [ 'subst' ] }

If a substitution is last in a literal, it is suffixed by an empty template string:

> tagFunc`abc${'subst'}`

{ templateObject: [ 'abc', '' ], substs: [ 'subst' ] }

An empty template literal produces one template string and no substitutions:

> tagFunc``

{ templateObject: [ '' ], substs: [] }

8.4.2 Escaping in tagged template literals: cooked versus raw

Template strings are available in two interpretations – cooked and raw. These interpretations
influence escaping:

• In both cooked and raw interpretation, a backslash (\) in front of ${ prevents it from being
interpreted as starting a substitution.

• In both cooked and raw interpretation, backticks are also escaped via backslashes.
• However, every single backslash is mentioned in the raw interpretation, even the ones that
escape substitutions and backticks.

The tag function describe allows us to explore what that means.



Template literals 94

function describe(tmplObj, ...substs) {

return {

Cooked: merge(tmplObj, substs),

Raw: merge(tmplObj.raw, substs),

};

}

function merge(tmplStrs, substs) {

// There is always at least one element in tmplStrs

let result = tmplStrs[0];

substs.forEach((subst, i) => {

result += String(subst);

result += tmplStrs[i+1];

});

return result;

}

Let’s use this tag function:

> describe`${3+3}`

{ Cooked: '6', Raw: '6' }

> describe`\${3+3}`

{ Cooked: '${3+3}', Raw: '\\${3+3}' }

> describe`\\${3+3}`

{ Cooked: '\\6', Raw: '\\\\6' }

> describe`\``

{ Cooked: '`', Raw: '\\`' }

As you can see, whenever the cooked interpretation has a substitution or a backtick then so does
the raw interpretation. However, all backslashes from the literal appear in the raw interpretation.

Other occurrences of the backslash are interpreted as follows:

• In cooked mode, the backslash is handled like in string literals.
• In raw mode, the backslash is used verbatim.

For example:



Template literals 95

> describe`\\`

{ Cooked: '\\', Raw: '\\\\' }

> describe`\n`

{ Cooked: '\n', Raw: '\\n' }

> describe`\u{58}`

{ Cooked: 'X', Raw: '\\u{58}' }

To summarize: The only effect the backslash has in raw mode is that it escapes substitutions and
backticks.

Escaping in tagged template literals in the
spec
In the grammar for template literals¹⁶, you can see that, within a template literal, there
must be no open curly brace ({) after a dollar sign ($). However, an escaped dollar sign
(\$) can be followed by an open curly brace. The rules for interpreting the characters
of a template literal are explained in a separate section¹⁷.

8.4.3 Example: String.raw

The following is how you’d implement String.raw:

function raw(strs, ...substs) {

let result = strs.raw[0];

for (const [i,subst] of substs.entries()) {

result += subst;

result += strs.raw[i+1];

}

return result;

}

8.4.4 Example: implementing a tag function for HTML
templating

I previously demonstrated the tag function html for HTML templating:

¹⁶http://www.ecma-international.org/ecma-262/6.0/#sec-template-literal-lexical-components
¹⁷http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv

http://www.ecma-international.org/ecma-262/6.0/#sec-template-literal-lexical-components
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv
http://www.ecma-international.org/ecma-262/6.0/#sec-template-literal-lexical-components
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv


Template literals 96

const tmpl = addrs => html`

<table>

${addrs.map(addr => html`

<tr><td>!${addr.first}</td></tr>

<tr><td>!${addr.last}</td></tr>

`)}

</table>

`;

const data = [

{ first: '<Jane>', last: 'Bond' },

{ first: 'Lars', last: '<Croft>' },

];

console.log(tmpl(data));

// Output:

// <table>

//

// <tr><td>&lt;Jane&gt;</td></tr>

// <tr><td>Bond</td></tr>

//

// <tr><td>Lars</td></tr>

// <tr><td>&lt;Croft&gt;</td></tr>

//

// </table>

If you precede a substitution with an exclamation mark (!${addr.first}), it will be HTML-
escaped. The tag function checks the text preceding a substitution in order to determine whether
to escape or not.

This is an implementation of html:

function html(templateObject, ...substs) {

// Use raw template strings: we don’t want

// backslashes (\n etc.) to be interpreted

const raw = templateObject.raw;

let result = '';

substs.forEach((subst, i) => {

// Retrieve the template string preceding

// the current substitution

let lit = raw[i];

// In the example, map() returns an Array:

// If `subst` is an Array (and not a string),

// we turn it into a string

if (Array.isArray(subst)) {



Template literals 97

subst = subst.join('');

}

// If the substitution is preceded by an exclamation

// mark, we escape special characters in it

if (lit.endsWith('!')) {

subst = htmlEscape(subst);

lit = lit.slice(0, -1);

}

result += lit;

result += subst;

});

// Take care of last template string

result += raw[raw.length-1]; // (A)

return result;

}

There is always one more template string than substitutions, which is why we need to append
the last template string in line A.

The following is a simple implementation of htmlEscape().

function htmlEscape(str) {

return str.replace(/&/g, '&amp;') // first!

.replace(/>/g, '&gt;')

.replace(/</g, '&lt;')

.replace(/"/g, '&quot;')

.replace(/'/g, '&#39;')

.replace(/`/g, '&#96;');

}

8.4.4.1 More ideas

There are more things you can do with this approach to templating:

• This approach isn’t limited to HTML, it would work just as well for other kinds of text.
Obviously, escaping would have to be adapted.

• if-then-else inside the template can be done via the ternary operator (cond?then:else) or
via the logical Or operator (||):

!${addr.first ? addr.first : '(No first name)'}

!${addr.first || '(No first name)'}

• Dedenting: Some of the leading whitespace in each line can be removed if the first non-
whitespace character defines in which column the text starts. For example:



Template literals 98

const theHtml = html`

<div>

Hello!

</div>`;

The first non-whitespace characters are <div>, which means that the text starts in column
4 (the leftmost column is column 0). The tag function html could automatically remove all
preceding columns. Then the previous tagged template would be equivalent to:

const theHtml =

html`<div>

Hello!

</div>`;

• You can use destructuring to extract data from parameters of functions:

// Without destructuring

${addrs.map((person) => html`

<tr><td>!${person.first}</td></tr>

<tr><td>!${person.last}</td></tr>

`)}

// With destructuring

${addrs.map(({first,last}) => html`

<tr><td>!${first}</td></tr>

<tr><td>!${last}</td></tr>

`)}

8.4.5 Example: assembling regular expressions

There are two ways of creating regular expression instances.

• Statically (at compile time), via a regular expression literal: /ˆabc$/i
• Dynamically (at runtime), via the RegExp constructor: new RegExp('ˆabc$', 'i')

If you use the latter, it is because you have to wait until runtime so that all necessary ingredients
are available. You are creating the regular expression by concatenating three kinds of pieces:

1. Static text
2. Dynamic regular expressions
3. Dynamic text

For #3, special characters (dots, square brackets, etc.) have to be escaped, while #1 and #2 can be
used verbatim. A regular expression tag function regex can help with this task:



Template literals 99

const INTEGER = /\d+/;

const decimalPoint = '.'; // locale-specific! E.g. ',' in Germany

const NUMBER = regex`${INTEGER}(${decimalPoint}${INTEGER})?`;

regex looks like this:

function regex(tmplObj, ...substs) {

// Static text: verbatim

let regexText = tmplObj.raw[0];

for ([i, subst] of substs.entries()) {

if (subst instanceof RegExp) {

// Dynamic regular expressions: verbatim

regexText += String(subst);

} else {

// Other dynamic data: escaped

regexText += quoteText(String(subst));

}

// Static text: verbatim

regexText += tmplObj.raw[i+1];

}

return new RegExp(regexText);

}

function quoteText(text) {

return text.replace(/[\\^$.*+?()[\]{}|=!<>:-]/g, '\\$&');

}

8.5 FAQ: template literals and tagged template
literals

8.5.1 Where do template literals and tagged template literals
come from?

Template literals and tagged template literals were borrowed from the language E, which calls
this feature quasi literals¹⁸.

8.5.2 What is the difference between macros and tagged
template literals?

Macros allow you to implement language constructs that have custom syntax. It’s difficult
to provide macros for a programming language whose syntax is as complex as JavaScript’s.
Research in this area is ongoing (see Mozilla’s sweet.js¹⁹).

¹⁸http://www.erights.org/elang/grammar/quasi-overview.html
¹⁹http://sweetjs.org/

http://www.erights.org/elang/grammar/quasi-overview.html
http://sweetjs.org/
http://www.erights.org/elang/grammar/quasi-overview.html
http://sweetjs.org/


Template literals 100

While macros are much more powerful for implementing sub-languages than tagged templates,
they depend on the tokenization of the language. Therefore, tagged templates are complementary,
because they specialize on text content.

8.5.3 Can I load a template literal from an external source?

What if I want to load a template literal such as `Hello ${name}!` from an external source (e.g.,
a file)?

You are abusing template literals if you do so. Given that a template literal can contain arbitrary
expressions and is a literal, loading it from somewhere else is similar to loading an expression or
a string literal – you have to use eval() or something similar.

8.5.4 Why are backticks the delimiters for template literals?

The backtick was one of the fewASCII characters that were still unused in JavaScript. The syntax
${} for interpolation is very common (Unix shells, etc.).

8.5.5 Weren’t template literals once called template strings?

The template literal terminology changed relatively late during the creation of the ES6 spec. The
following are the old terms:

• Template string (literal): the old name for template literal.
• Tagged template string (literal): the old name for tagged template literal.
• Template handler: the old name for tag function.
• Literal section: the old name for template string (the term substitution remains the same).



9. Variables and scoping
9.1 Overview

ES6 provides two new ways of declaring variables: let and const, which mostly replace the ES5
way of declaring variables, var.

9.1.1 let

let works similarly to var, but the variable it declares is block-scoped, it only exists within the
current block. var is function-scoped.

In the following code, you can see that the let-declared variable tmp only exists inside the block
that starts in line A:

function order(x, y) {

if (x > y) { // (A)

let tmp = x;

x = y;

y = tmp;

}

console.log(tmp===x); // ReferenceError: tmp is not defined

return [x, y];

}

9.1.2 const

const works like let, but the variable you declare must be immediately initialized, with a value
that can’t be changed afterwards.

const foo;

// SyntaxError: missing = in const declaration

const bar = 123;

bar = 456;

// TypeError: `bar` is read-only

Since for-of creates one binding (storage space for a variable) per loop iteration, it is OK to
const-declare the loop variable:



Variables and scoping 102

for (const x of ['a', 'b']) {

console.log(x);

}

// Output:

// a

// b

9.1.3 Ways of declaring variables

The following table gives an overview of six ways in which variables can be declared in ES6
(inspired by a table by kangax¹):

Hoisting Scope Creates global properties

var Declaration Function Yes
let Temporal dead zone Block No
const Temporal dead zone Block No
function Complete Block Yes
class No Block No
import Complete Module-global No

9.2 Block scoping via let and const

Both let and const create variables that are block-scoped – they only exist within the innermost
block that surrounds them. The following code demonstrates that the const-declared variable
tmp only exists inside the block of the if statement:

function func() {

if (true) {

const tmp = 123;

}

console.log(tmp); // ReferenceError: tmp is not defined

}

In contrast, var-declared variables are function-scoped:

function func() {

if (true) {

var tmp = 123;

}

console.log(tmp); // 123

}

Block scoping means that you can shadow variables within a function:

¹https://twitter.com/kangax/status/567330097603284992

https://twitter.com/kangax/status/567330097603284992
https://twitter.com/kangax/status/567330097603284992


Variables and scoping 103

function func() {

const foo = 5;

if (···) {

const foo = 10; // shadows outer `foo`

console.log(foo); // 10

}

console.log(foo); // 5

}

9.3 const creates immutable variables

Variables created by let are mutable:

let foo = 'abc';

foo = 'def';

console.log(foo); // def

Constants, variables created by const, are immutable – you can’t assign different values to them:

const foo = 'abc';

foo = 'def'; // TypeError

Spec detail: changing a const variable always
throws a TypeError
Normally, changing an immutable binding only causes an exception in strict mode, as
per SetMutableBinding()². But const-declared variables always produce strict bind-
ings – see FunctionDeclarationInstantiation(func, argumentsList)³, step 35.b.i.1.

9.3.1 Pitfall: const does not make the value immutable

const only means that a variable always has the same value, but it does not mean that the value
itself is or becomes immutable. For example, obj is a constant, but the value it points to is mutable
– we can add a property to it:

const obj = {};

obj.prop = 123;

console.log(obj.prop); // 123

We cannot, however, assign a different value to obj:

²http://www.ecma-international.org/ecma-262/6.0/#sec-declarative-environment-records-setmutablebinding-n-v-s
³http://www.ecma-international.org/ecma-262/6.0/#sec-functiondeclarationinstantiation

http://www.ecma-international.org/ecma-262/6.0/#sec-declarative-environment-records-setmutablebinding-n-v-s
http://www.ecma-international.org/ecma-262/6.0/#sec-functiondeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-declarative-environment-records-setmutablebinding-n-v-s
http://www.ecma-international.org/ecma-262/6.0/#sec-functiondeclarationinstantiation


Variables and scoping 104

obj = {}; // TypeError

If you want the value of obj to be immutable, you have to take care of it, yourself. For example,
by freezing it⁴:

const obj = Object.freeze({});

obj.prop = 123; // TypeError

9.3.1.1 Pitfall: Object.freeze() is shallow

Keep in mind that Object.freeze() is shallow, it only freezes the properties of its argument, not
the objects stored in its properties. For example, the object obj is frozen:

> const obj = Object.freeze({ foo: {} });

> obj.bar = 123

TypeError: Can't add property bar, object is not extensible

> obj.foo = {}

TypeError: Cannot assign to read only property 'foo' of #<Object>

But the object obj.foo is not.

> obj.foo.qux = 'abc';

> obj.foo.qux

'abc'

9.3.2 const in loop bodies

Once a const variable has been created, it can’t be changed. But that doesn’t mean that you can’t
re-enter its scope and start fresh, with a new value. For example, via a loop:

function logArgs(...args) {

for (const [index, elem] of args.entries()) { // (A)

const message = index + '. ' + elem; // (B)

console.log(message);

}

}

logArgs('Hello', 'everyone');

// Output:

// 0. Hello

// 1. everyone

There are two const declarations in this code, in line A and in line B. And during each loop
iteration, their constants have different values.

⁴http://speakingjs.com/es5/ch17.html#freezing_objects

http://speakingjs.com/es5/ch17.html#freezing_objects
http://speakingjs.com/es5/ch17.html#freezing_objects


Variables and scoping 105

9.4 The temporal dead zone

A variable declared by let or const has a so-called temporal dead zone (TDZ): When entering its
scope, it can’t be accessed (got or set) until execution reaches the declaration. Let’s compare the
life cycles of var-declared variables (which don’t have TDZs) and let-declared variables (which
have TDZs).

9.4.1 The life cycle of var-declared variables

var variables don’t have temporal dead zones. Their life cycle comprises the following steps:

• When the scope (its surrounding function) of a var variable is entered, storage space (a
binding) is created for it. The variable is immediately initialized, by setting it to undefined.

• When the execution within the scope reaches the declaration, the variable is set to the
value specified by the initializer (an assignment) – if there is one. If there isn’t, the value
of the variable remains undefined.

9.4.2 The life cycle of let-declared variables

Variables declared via let have temporal dead zones and their life cycle looks like this:

• When the scope (its surrounding block) of a let variable is entered, storage space (a
binding) is created for it. The variable remains uninitialized.

• Getting or setting an uninitialized variable causes a ReferenceError.
• When the execution within the scope reaches the declaration, the variable is set to the
value specified by the initializer (an assignment) – if there is one. If there isn’t then the
value of the variable is set to undefined.

const variables work similarly to let variables, but they must have an initializer (i.e., be set to
a value immediately) and can’t be changed.

9.4.3 Examples

Within a TDZ, an exception is thrown if a variable is got or set:



Variables and scoping 106

let tmp = true;

if (true) { // enter new scope, TDZ starts

// Uninitialized binding for `tmp` is created

console.log(tmp); // ReferenceError

let tmp; // TDZ ends, `tmp` is initialized with `undefined`

console.log(tmp); // undefined

tmp = 123;

console.log(tmp); // 123

}

console.log(tmp); // true

If there is an initializer then the TDZ ends after the initializer was evaluated and the result was
assigned to the variable:

let foo = console.log(foo); // ReferenceError

The following code demonstrates that the dead zone is really temporal (based on time) and not
spatial (based on location):

if (true) { // enter new scope, TDZ starts

const func = function () {

console.log(myVar); // OK!

};

// Here we are within the TDZ and

// accessing `myVar` would cause a `ReferenceError`

let myVar = 3; // TDZ ends

func(); // called outside TDZ

}

9.4.4 typeof throws a ReferenceError for a variable in the TDZ

If you access a variable in the temporal dead zone via typeof, you get an exception:

if (true) {

console.log(typeof foo); // ReferenceError (TDZ)

console.log(typeof aVariableThatDoesntExist); // 'undefined'

let foo;

}

Why? The rationale is as follows: foo is not undeclared, it is uninitialized. You should be aware
of its existence, but aren’t. Therefore, being warned seems desirable.

Furthermore, this kind of check is only useful for conditionally creating global variables. That is
something that you don’t need to do in normal programs.



Variables and scoping 107

9.4.4.1 Conditionally creating variables

When it comes to conditionally creating variables, you have two options.

Option 1 – typeof and var:

if (typeof someGlobal === 'undefined') {

var someGlobal = { ··· };

}

This option only works in global scope (and therefore not inside ES6 modules).

Option 2 – window:

if (!('someGlobal' in window)) {

window.someGlobal = { ··· };

}

9.4.5 Why is there a temporal dead zone?

There are several reasons why const and let have temporal dead zones:

• To catch programming errors: Being able to access a variable before its declaration is
strange. If you do so, it is normally by accident and you should be warned about it.

• For const: Making constwork properly is difficult. Quoting Allen Wirfs-Brock⁵: “TDZs …
provide a rational semantics for const. There was significant technical discussion of that
topic and TDZs emerged as the best solution.” let also has a temporal dead zone so that
switching between let and const doesn’t change behavior in unexpected ways.

• Future-proofing for guards: JavaScript may eventually have guards, a mechanism for
enforcing at runtime that a variable has the correct value (think runtime type check). If the
value of a variable is undefined before its declaration then that value may be in conflict
with the guarantee given by its guard.

9.4.6 Further reading

Sources of this section:

• “Performance concern with let/const⁶”
• “Bug 3009 – typeof on TDZ variable⁷”

⁵https://mail.mozilla.org/pipermail/es-discuss/2012-September/024996.html
⁶https://esdiscuss.org/topic/performance-concern-with-let-const
⁷https://bugs.ecmascript.org/show_bug.cgi?id=3009

https://mail.mozilla.org/pipermail/es-discuss/2012-September/024996.html
https://esdiscuss.org/topic/performance-concern-with-let-const
https://bugs.ecmascript.org/show_bug.cgi?id=3009
https://mail.mozilla.org/pipermail/es-discuss/2012-September/024996.html
https://esdiscuss.org/topic/performance-concern-with-let-const
https://bugs.ecmascript.org/show_bug.cgi?id=3009


Variables and scoping 108

9.5 let and const in loop heads

The following loops allow you to declare variables in their heads:

• for

• for-in

• for-of

To make a declaration, you can use either var, let or const. Each of them has a different effect,
as I’ll explain next.

9.5.1 for loop

var-declaring a variable in the head of a for loop creates a single binding (storage space) for
that variable:

const arr = [];

for (var i=0; i < 3; i++) {

arr.push(() => i);

}

arr.map(x => x()); // [3,3,3]

Every i in the bodies of the three arrow functions refers to the same binding, which is why they
all return the same value.

If you let-declare a variable, a new binding is created for each loop iteration:

const arr = [];

for (let i=0; i < 3; i++) {

arr.push(() => i);

}

arr.map(x => x()); // [0,1,2]

This time, each i refers to the binding of one specific iteration and preserves the value that was
current at that time. Therefore, each arrow function returns a different value.

const works like var, but you can’t change the initial value of a const-declared variable:

// TypeError: Assignment to constant variable

// (due to i++)

for (const i=0; i<3; i++) {

console.log(i);

}



Variables and scoping 109

Getting a fresh binding for each iteration may seem strange at first, but it is very useful whenever
you use loops to create functions that refer to loop variables, as explained in a later section.

for loop: per-iteration bindings in the spec
The evaluation of the for loop⁸ handles var as the second case and let/const as
the third case. Only let-declared variables are added to the list perIterationLets
(step 9), which is passed to ForBodyEvaluation()⁹ as the second-to-last parameter,
perIterationBindings.

9.5.2 for-of loop and for-in loop

In a for-of loop, var creates a single binding:

const arr = [];

for (var i of [0, 1, 2]) {

arr.push(() => i);

}

arr.map(x => x()); // [2,2,2]

const creates one immutable binding per iteration:

const arr = [];

for (const i of [0, 1, 2]) {

arr.push(() => i);

}

arr.map(x => x()); // [0,1,2]

let also creates one binding per iteration, but the bindings it creates are mutable.

The for-in loop works similarly to the for-of loop.

⁸http://www.ecma-international.org/ecma-262/6.0/#sec-for-statement-runtime-semantics-labelledevaluation
⁹http://www.ecma-international.org/ecma-262/6.0/#sec-forbodyevaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-for-statement-runtime-semantics-labelledevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-forbodyevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-for-statement-runtime-semantics-labelledevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-forbodyevaluation


Variables and scoping 110

for-of loop: per-iteration bindings in the
spec
Per-iteration bindings in for-of are handled by ForIn/OfBodyEvaluation¹⁰. In step 5.b,
a new environment is created and bindings are added to it via BindingInstantiation¹¹
(mutable for let, immutable for const). The current iteration value is stored in the
variable nextValue and used to initialize the bindings in either one of two ways:

• Declaration of single variable (step 5.h.i): is handled via
InitializeReferencedBinding¹²

• Destructuring (step 5.i.iii): is handled via one case of BindingInitialization¹³
(ForDeclaration), which invokes another case of BindingInitialization¹⁴
(BindingPattern).

9.5.3 Why are per-iteration bindings useful?

The following is an HTML page that displays three links:

1. If you click on “yes”, it is translated to “ja”.
2. If you click on “no”, it is translated to “nein”.
3. If you click on “perhaps”, it is translated to “vielleicht”.

<!doctype html>

<html>

<head>

<meta charset="UTF-8">

</head>

<body>

<div id="content"></div>

<script>

const entries = [

['yes', 'ja'],

['no', 'nein'],

['perhaps', 'vielleicht'],

];

const content = document.getElementById('content');

for (const [source, target] of entries) { // (A)

¹⁰http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-
labelset

¹¹http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-bindinginstantiation
¹²http://www.ecma-international.org/ecma-262/6.0/#sec-initializereferencedbinding
¹³http://www.ecma-international.org/ecma-262/6.0/#sec-for-in-and-for-of-statements-runtime-semantics-bindinginitialization
¹⁴http://www.ecma-international.org/ecma-262/6.0/#sec-destructuring-binding-patterns-runtime-semantics-bindinginitialization

http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-bindinginstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-initializereferencedbinding
http://www.ecma-international.org/ecma-262/6.0/#sec-for-in-and-for-of-statements-runtime-semantics-bindinginitialization
http://www.ecma-international.org/ecma-262/6.0/#sec-destructuring-binding-patterns-runtime-semantics-bindinginitialization
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-bindinginstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-initializereferencedbinding
http://www.ecma-international.org/ecma-262/6.0/#sec-for-in-and-for-of-statements-runtime-semantics-bindinginitialization
http://www.ecma-international.org/ecma-262/6.0/#sec-destructuring-binding-patterns-runtime-semantics-bindinginitialization


Variables and scoping 111

content.insertAdjacentHTML('beforeend',

`<div><a id="${source}" href="">${source}</a></div>`);

document.getElementById(source).addEventListener(

'click', (event) => {

event.preventDefault();

alert(target); // (B)

});

}

</script>

</body>

</html>

What is displayed depends on the variable target (line B). If we had used var instead of const
in line A, there would be a single binding for the whole loop and target would have the value
'vielleicht', afterwards. Therefore, no matter what link you click on, you would always get
the translation 'vielleicht'.

Thankfully, with const, we get one binding per loop iteration and the translations are displayed
correctly.

9.6 Parameters

9.6.1 Parameters versus local variables

If you let-declare a variable that has the same name as a parameter, you get a static (load-time)
error:

function func(arg) {

let arg; // static error: duplicate declaration of `arg`

}

Doing the same inside a block shadows the parameter:

function func(arg) {

{

let arg; // shadows parameter `arg`

}

}

In contrast, var-declaring a variable that has the same name as a parameter does nothing, just
like re-declaring a var variable within the same scope does nothing.



Variables and scoping 112

function func(arg) {

var arg; // does nothing

}

function func(arg) {

{

// We are still in same `var` scope as `arg`

var arg; // does nothing

}

}

9.6.2 Parameter default values and the temporal dead zone

If parameters have default values, they are treated like a sequence of let statements and are
subject to temporal dead zones:

// OK: `y` accesses `x` after it has been declared

function foo(x=1, y=x) {

return [x, y];

}

foo(); // [1,1]

// Exception: `x` tries to access `y` within TDZ

function bar(x=y, y=2) {

return [x, y];

}

bar(); // ReferenceError

9.6.3 Parameter default values don’t see the scope of the body

The scope of parameter default values is separate from the scope of the body (the former
surrounds the latter). That means that methods or functions defined “inside” parameter default
values don’t see the local variables of the body:

const foo = 'outer';

function bar(func = x => foo) {

const foo = 'inner';

console.log(func()); // outer

}

bar();



Variables and scoping 113

9.7 The global object

JavaScript’s global object¹⁵ (window in web browsers, global in Node.js) is more a bug than a
feature, especially with regard to performance. That’s why it makes sense that ES6 introduces a
distinction:

• All properties of the global object are global variables. In global scope, the following
declarations create such properties:

– var declarations
– Function declarations

• But there are now also global variables that are not properties of the global object. In global
scope, the following declarations create such variables:

– let declarations
– const declarations
– Class declarations

Note that the bodies of modules are not executed in global scope, only scripts are. Therefore, the
environments for various variables form the following chain.

9.8 Function declarations and class declarations

Function declarations…

• are block-scoped, like let.
• create properties in the global object (while in global scope), like var.
• are hoisted: independently of where a function declaration is mentioned in its scope, it is
always created at the beginning of the scope.

The following code demonstrates the hoisting of function declarations:

¹⁵http://speakingjs.com/es5/ch16.html#global_object

http://speakingjs.com/es5/ch16.html#global_object
http://speakingjs.com/es5/ch16.html#global_object


Variables and scoping 114

{ // Enter a new scope

console.log(foo()); // OK, due to hoisting

function foo() {

return 'hello';

}

}

Class declarations…

• are block-scoped.
• don’t create properties on the global object.
• are not hoisted.

Classes not being hoisted may be surprising, because, under the hood, they create functions. The
rationale for this behavior is that the values of their extends clauses are defined via expressions
and those expressions have to be executed at the appropriate times.

{ // Enter a new scope

const identity = x => x;

// Here we are in the temporal dead zone of `MyClass`

const inst = new MyClass(); // ReferenceError

// Note the expression in the `extends` clause

class MyClass extends identity(Object) {

}

}

9.9 Coding style: const versus let versus var

I recommend to always use either let or const:

1. Prefer const. You can use it whenever a variable never changes its value. In other words:
the variable should never be the left-hand side of an assignment or the operand of ++ or
--. Changing an object that a const variable refers to is allowed:

const foo = {};

foo.prop = 123; // OK

You can even use const in a for-of loop, because one (immutable) binding is created per
loop iteration:



Variables and scoping 115

for (const x of ['a', 'b']) {

console.log(x);

}

// Output:

// a

// b

Inside the body of the for-of loop, x can’t be changed.
2. Otherwise, use let – when the initial value of a variable changes later on.

let counter = 0; // initial value

counter++; // change

let obj = {}; // initial value

obj = { foo: 123 }; // change

3. Avoid var.

If you follow these rules, var will only appear in legacy code, as a signal that careful refactoring
is required.

var does one thing that let and const don’t: variables declared via it become properties of the
global object. However, that’s generally not a good thing. You can achieve the same effect by
assigning to window (in browsers) or global (in Node.js).

9.9.1 An alternative approach

An alternative to the just mentioned style rules is to use const only for things that are completely
immutable (primitive values and frozen objects). Then we have two approaches:

1. Prefer const: const marks immutable bindings.
2. Prefer let: const marks immutable values.

I lean slightly in favor of #1, but #2 is fine, too.



10. Destructuring
10.1 Overview

Destructuring is a convenient way of extracting multiple values from data stored in (possibly
nested) objects and Arrays. It can be used in locations that receive data (such as the left-hand
side of an assignment). How to extract the values is specified via patterns (read on for examples).

10.1.1 Object destructuring

Destructuring objects:

const obj = { first: 'Jane', last: 'Doe' };

const {first: f, last: l} = obj;

// f = 'Jane'; l = 'Doe'

// {prop} is short for {prop: prop}

const {first, last} = obj;

// first = 'Jane'; last = 'Doe'

Destructuring helps with processing return values:

const obj = { foo: 123 };

const {writable, configurable} =

Object.getOwnPropertyDescriptor(obj, 'foo');

console.log(writable, configurable); // true true

10.1.2 Array destructuring

Array destructuring (works for all iterable values):

const iterable = ['a', 'b'];

const [x, y] = iterable;

// x = 'a'; y = 'b'

Destructuring helps with processing return values:



Destructuring 117

const [all, year, month, day] =

/^(\d\d\d\d)-(\d\d)-(\d\d)$/

.exec('2999-12-31');

10.1.3 Where can destructuring be used?

Destructuring can be used in the following locations (I’m showingArray patterns to demonstrate;
object patterns work just as well):

// Variable declarations:

const [x] = ['a'];

let [x] = ['a'];

var [x] = ['a'];

// Assignments:

[x] = ['a'];

// Parameter definitions:

function f([x]) { ··· }

f(['a']);

You can also destructure in a for-of loop:

const arr = ['a', 'b'];

for (const [index, element] of arr.entries()) {

console.log(index, element);

}

// Output:

// 0 a

// 1 b

10.2 Background: Constructing data versus
extracting data

To fully understand what destructuring is, let’s first examine its broader context.

JavaScript has operations for constructing data, one property at a time:

const obj = {};

obj.first = 'Jane';

obj.last = 'Doe';

The same syntax can be used to extract data. Again, one property at a time:



Destructuring 118

const f = obj.first;

const l = obj.last;

Additionally, there is syntax to construct multiple properties at the same time, via an object
literal:

const obj = { first: 'Jane', last: 'Doe' };

Before ES6, there was no corresponding mechanism for extracting data. That’s what destructur-
ing is – it lets you extract multiple properties from an object via an object pattern. For example,
on the left-hand side of an assignment:

const { first: f, last: l } = obj;

You can also destructure Arrays via patterns:

const [x, y] = ['a', 'b']; // x = 'a'; y = 'b'

10.3 Patterns

The following two parties are involved in destructuring:

• Destructuring source: the data to be destructured. For example, the right-hand side of a
destructuring assignment.

• Destructuring target: the pattern used for destructuring. For example, the left-hand side
of a destructuring assignment.

The destructuring target is either one of three patterns:

• Assignment target. For example: x
– An assignment target is usually a variable. But in destructuring assignment, you have
more options, as I’ll explain later.

• Object pattern. For example: { first: «pattern», last: «pattern» }

– The parts of an object pattern are properties, the property values are again patterns
(recursively).

• Array pattern. For example: [ «pattern», «pattern» ]

– The parts of an Array pattern are elements, the elements are again patterns (recur-
sively).

That means that you can nest patterns, arbitrarily deeply:



Destructuring 119

const obj = { a: [{ foo: 123, bar: 'abc' }, {}], b: true };

const { a: [{foo: f}] } = obj; // f = 123

10.3.1 Pick what you need

If you destructure an object, you mention only those properties that you are interested in:

const { x: x } = { x: 7, y: 3 }; // x = 7

If you destructure an Array, you can choose to only extract a prefix:

const [x,y] = ['a', 'b', 'c']; // x='a'; y='b';

10.4 How do patterns access the innards of values?

In an assignment pattern = someValue, how does the pattern access what’s inside someValue?

10.4.1 Object patterns coerce values to objects

The object pattern coerces destructuring sources to objects before accessing properties. That
means that it works with primitive values:

const {length : len} = 'abc'; // len = 3

const {toString: s} = 123; // s = Number.prototype.toString

10.4.1.1 Failing to object-destructure a value

The coercion to object is not performed via Object(), but via the internal operation ToObject()¹.
The two operations handle undefined and null differently.

Object() converts primitive values to wrapper objects and leaves objects untouched:

> typeof Object('abc')

'object'

> var obj = {};

> Object(obj) === obj

true

It also converts undefined and null to empty objects:

¹http://www.ecma-international.org/ecma-262/6.0/#sec-toobject

http://www.ecma-international.org/ecma-262/6.0/#sec-toobject
http://www.ecma-international.org/ecma-262/6.0/#sec-toobject


Destructuring 120

> Object(undefined)

{}

> Object(null)

{}

In contrast, ToObject() throws a TypeError if it encounters undefined or null. Therefore, the
following destructurings fail, even before destructuring accesses any properties:

const { prop: x } = undefined; // TypeError

const { prop: y } = null; // TypeError

As a consequence, you can use the empty object pattern {} to check whether a value is coercible
to an object. As we have seen, only undefined and null aren’t:

({} = [true, false]); // OK, Arrays are coercible to objects

({} = 'abc'); // OK, strings are coercible to objects

({} = undefined); // TypeError

({} = null); // TypeError

The parentheses around the expressions are necessary because statements must not begin with
curly braces in JavaScript (details are explained later).

10.4.2 Array patterns work with iterables

Array destructuring uses an iterator to get to the elements of a source. Therefore, you can Array-
destructure any value that is iterable. Let’s look at examples of iterable values.

Strings are iterable:

const [x,...y] = 'abc'; // x='a'; y=['b', 'c']

Don’t forget that the iterator over strings returns code points (“Unicode characters”, 21 bits),
not code units (“JavaScript characters”, 16 bits). (For more information on Unicode, consult the
chapter “Chapter 24. Unicode and JavaScript²” in “Speaking JavaScript”.) For example:

const [x,y,z] = 'a\uD83D\uDCA9c'; // x='a'; y='\uD83D\uDCA9'; z='c'

You can’t access the elements of a Set via indices, but you can do so via an iterator. Therefore,
Array destructuring works for Sets:

²http://speakingjs.com/es5/ch24.html

http://speakingjs.com/es5/ch24.html
http://speakingjs.com/es5/ch24.html


Destructuring 121

const [x,y] = new Set(['a', 'b']); // x='a'; y='b’;

The Set iterator always returns elements in the order in which they were inserted, which is why
the result of the previous destructuring is always the same.

10.4.2.1 Failing to Array-destructure a value

A value is iterable if it has a method whose key is Symbol.iterator that returns an object.
Array-destructuring throws a TypeError if the value to be destructured isn’t iterable:

let x;

[x] = [true, false]; // OK, Arrays are iterable

[x] = 'abc'; // OK, strings are iterable

[x] = { * [Symbol.iterator]() { yield 1 } }; // OK, iterable

[x] = {}; // TypeError, empty objects are not iterable

[x] = undefined; // TypeError, not iterable

[x] = null; // TypeError, not iterable

The TypeError is thrown even before accessing elements of the iterable, which means that you
can use the empty Array pattern [] to check whether a value is iterable:

[] = {}; // TypeError, empty objects are not iterable

[] = undefined; // TypeError, not iterable

[] = null; // TypeError, not iterable

10.5 Default values

Default values are an optional feature of patterns. They provide a fallback if nothing is found in
the source. If a part (an object property or an Array element) has no match in the source, it is
matched against:

• its default value (if specified; it’s optional)
• undefined (otherwise)

Let’s look at an example. In the following destructuring, the element at index 0 has no match on
the right-hand side. Therefore, destructuring continues by matching x against 3, which leads to
x being set to 3.

const [x=3, y] = []; // x = 3; y = undefined

You can also use default values in object patterns:



Destructuring 122

const {foo: x=3, bar: y} = {}; // x = 3; y = undefined

10.5.1 undefined triggers default values

Default values are also used if a part does have a match and that match is undefined:

const [x=1] = [undefined]; // x = 1

const {prop: y=2} = {prop: undefined}; // y = 2

The rationale for this behavior is explained in the next chapter, in the section on parameter
default values.

10.5.2 Default values are computed on demand

The default values themselves are only computed when they are needed. In other words, this
destructuring:

const {prop: y=someFunc()} = someValue;

is equivalent to:

let y;

if (someValue.prop === undefined) {

y = someFunc();

} else {

y = someValue.prop;

}

You can observe that if you use console.log():

> function log(x) { console.log(x); return 'YES' }

> const [a=log('hello')] = [];

> a

'YES'

> const [b=log('hello')] = [123];

> b

123

In the second destructuring, the default value is not triggered and log() is not called.

10.5.3 Default values can refer to other variables in the pattern

A default value can refer to any variable, including other variables in the same pattern:



Destructuring 123

const [x=3, y=x] = []; // x=3; y=3

const [x=3, y=x] = [7]; // x=7; y=7

const [x=3, y=x] = [7, 2]; // x=7; y=2

However, order matters: the variables x and y are declared from left to right and produce a
ReferenceError if they are accessed before their declarations:

const [x=y, y=3] = []; // ReferenceError

10.5.4 Default values for patterns

So far we have only seen default values for variables, but you can also associate them with
patterns:

const [{ prop: x } = {}] = [];

What does this mean? Recall the rule for default values: If a part has no match in the source,
destructuring continues with the default value.

The element at index 0 has no match, which is why destructuring continues with:

const { prop: x } = {}; // x = undefined

You can more easily see why things work this way if you replace the pattern { prop: x } with
the variable pattern:

const [pattern = {}] = [];

10.5.5 More complex default values

Let’s further explore default values for patterns. In the following example, we assign a value to
x via the default value { prop: 123 }:

const [{ prop: x } = { prop: 123 }] = [];

Because the Array element at index 0 has no match on the right-hand side, destructuring
continues as follows and x is set to 123.

const { prop: x } = { prop: 123 }; // x = 123

However, x is not assigned a value in this manner if the right-hand side has an element at index
0, because then the default value isn’t triggered.



Destructuring 124

const [{ prop: x } = { prop: 123 }] = [{}];

In this case, destructuring continues with:

const { prop: x } = {}; // x = undefined

Thus, if you want x to be 123 if either the object or the property is missing, you need to specify
a default value for x itself:

const [{ prop: x=123 } = {}] = [{}];

Here, destructuring continues as follows, independently of whether the right-hand side is [{}]
or [].

const { prop: x=123 } = {}; // x = 123

Still confused?
A later section explains destructuring from a different angle, as an algorithm. That may
give you additional insight.

10.6 More object destructuring features

10.6.1 Property value shorthands

Property value shorthands are a feature of object literals: If the property value is a variable that
has the same name as the property key then you can omit the key. This works for destructuring,
too:

const { x, y } = { x: 11, y: 8 }; // x = 11; y = 8

// Same as:

const { x: x, y: y } = { x: 11, y: 8 };

You can also combine property value shorthands with default values:

const { x, y = 1 } = {}; // x = undefined; y = 1

10.6.2 Computed property keys

Computed property keys are another object literal feature that also works for destructuring. You
can specify the key of a property via an expression, if you put it in square brackets:



Destructuring 125

const FOO = 'foo';

const { [FOO]: f } = { foo: 123 }; // f = 123

Computed property keys allow you to destructure properties whose keys are symbols:

// Create and destructure a property whose key is a symbol

const KEY = Symbol();

const obj = { [KEY]: 'abc' };

const { [KEY]: x } = obj; // x = 'abc'

// Extract Array.prototype[Symbol.iterator]

const { [Symbol.iterator]: func } = [];

console.log(typeof func); // function

10.7 More Array destructuring features

10.7.1 Elision

Elision lets you use the syntax of Array “holes” to skip elements during destructuring:

const [,, x, y] = ['a', 'b', 'c', 'd']; // x = 'c'; y = 'd'

10.7.2 Rest operator (...)

The rest operator lets you extract the remaining elements of an iterable into an Array. If this
operator is used inside an Array pattern, it must come last:

const [x, ...y] = ['a', 'b', 'c']; // x='a'; y=['b', 'c']

The spread operator has exactly the same syntax as the rest operator – three dots.
But they are different: the former contributes data to Array literals and function calls,
whereas the latter is used for destructuring and extracts data.

If the operator can’t find any elements, it matches its operand against the empty Array. That is,
it never produces undefined or null. For example:

const [x, y, ...z] = ['a']; // x='a'; y=undefined; z=[]

The operand of the rest operator doesn’t have to be a variable, you can use patterns, too:



Destructuring 126

const [x, ...[y, z]] = ['a', 'b', 'c'];

// x = 'a'; y = 'b'; z = 'c'

The rest operator triggers the following destructuring:

[y, z] = ['b', 'c']

10.8 You can assign to more than just variables

If you assign via destructuring, each assignment target can be everything that is allowed on the
left-hand side of a normal assignment.

For example, a reference to a property (obj.prop):

const obj = {};

({ foo: obj.prop } = { foo: 123 });

console.log(obj); // {prop:123}

Or a reference to an Array element (arr[0]):

const arr = [];

({ bar: arr[0] } = { bar: true });

console.log(arr); // [true]

You can also assign to object properties and Array elements via the rest operator (...):

const obj = {};

[first, ...obj.prop] = ['a', 'b', 'c'];

// first = 'a'; obj.prop = ['b', 'c']

If you declare variables or define parameters via destructuring then you must use simple
identifiers, you can’t refer to object properties and Array elements.

10.9 Pitfalls of destructuring

There are two things to be mindful of when using destructuring:

• You can’t start a statement with a curly brace.
• During destructuring, you can either declare variables or assign to them, but not both.

The next two sections contain the details.

10.9.1 Don’t start a statement with a curly brace

Because code blocks begin with a curly brace, statements must not begin with one. This is
unfortunate when using object destructuring in an assignment:



Destructuring 127

{ a, b } = someObject; // SyntaxError

The work-around is to put the complete expression in parentheses:

({ a, b } = someObject); // OK

The following syntax does not work:

({ a, b }) = someObject; // SyntaxError

With let, var and const, curly braces never cause problems:

const { a, b } = someObject; // OK

10.10 Examples of destructuring

Let’s start with a few smaller examples.

The for-of loop supports destructuring:

const map = new Map().set(false, 'no').set(true, 'yes');

for (const [key, value] of map) {

console.log(key + ' is ' + value);

}

You can use destructuring to swap values. That is something that engines could optimize, so that
no Array would be created.

[a, b] = [b, a];

You can use destructuring to split an Array:

const [first, ...rest] = ['a', 'b', 'c'];

// first = 'a'; rest = ['b', 'c']

10.10.1 Destructuring returned Arrays

Some built-in JavaScript operations return Arrays. Destructuring helps with processing them:



Destructuring 128

const [all, year, month, day] =

/^(\d\d\d\d)-(\d\d)-(\d\d)$/

.exec('2999-12-31');

If you are only interested in the groups (and not in the complete match, all), you can use elision
to skip the array element at index 0:

const [, year, month, day] =

/^(\d\d\d\d)-(\d\d)-(\d\d)$/

.exec('2999-12-31');

exec() returns null if the regular expression doesn’t match. Unfortunately, you can’t handle
null via default values, which is why you must use the Or operator (||) in this case:

const [, year, month, day] =

/^(\d\d\d\d)-(\d\d)-(\d\d)$/

.exec(someStr) || [];

Array.prototype.split() returns an Array. Therefore, destructuring is useful if you are
interested in the elements, not the Array:

const cells = 'Jane\tDoe\tCTO'

const [firstName, lastName, title] = cells.split('\t');

console.log(firstName, lastName, title);

10.10.2 Destructuring returned objects

Destructuring is also useful for extracting data from objects that are returned by functions or
methods. For example, the iterator method next() returns an object with two properties, done
and value. The following code logs all elements of Array arr via the iterator iter. Destructuring
is used in line A.

const arr = ['a', 'b'];

const iter = arr[Symbol.iterator]();

while (true) {

const {done,value} = iter.next(); // (A)

if (done) break;

console.log(value);

}

10.10.3 Array-destructuring iterable values

Array-destructuring works with any iterable value. That is occasionally useful:



Destructuring 129

const [x,y] = new Set().add('a').add('b');

// x = 'a'; y = 'b'

const [a,b] = 'foo';

// a = 'f'; b = 'o'

10.10.4 Multiple return values

To see the usefulness of multiple return values, let’s implement a function findElement(a, p)

that searches for the first element in the Array a for which the function p returns true. The
question is: what should findElement() return? Sometimes one is interested in the element itself,
sometimes in its index, sometimes in both. The following implementation returns both.

function findElement(array, predicate) {

for (const [index, element] of array.entries()) { // (A)

if (predicate(element, index, array)) {

// We found an element:

return { element, index };

// Same as (property value shorthands):

// { element: element, index: index }

}

}

// We couldn’t find anything; return failure values:

return { element: undefined, index: -1 };

}

The function iterates over all elements of array, via the Array method entries(), which
returns an iterable over [index,element] pairs (line A). The parts of the pairs are accessed via
destructuring.

Let’s use findElement():

const arr = [7, 8, 6];

const {element, index} = findElement(arr, x => x % 2 === 0);

// element = 8, index = 1

Several ECMAScript 6 features allowed us to write more concise code: The callback is an arrow
function; the return value is destructured via an object pattern with property value shorthands.

Due to index and element also referring to property keys, the order in which we mention them
doesn’t matter. We can swap them and nothing changes:

const {index, element} = findElement(···);

We have successfully handled the case of needing both index and element. What if we are only
interested in one of them? It turns out that, thanks to ECMAScript 6, our implementation can
take care of that, too. And the syntactic overhead compared to functions with single return values
is minimal.



Destructuring 130

const a = [7, 8, 6];

const {element} = findElement(a, x => x % 2 === 0);

// element = 8

const {index} = findElement(a, x => x % 2 === 0);

// index = 1

Each time, we only extract the value of the one property that we need.

10.11 The destructuring algorithm

This section looks at destructuring from a different angle: as a recursive pattern matching
algorithm.

This different angle should especially help with understanding default values. If you
feel you don’t fully understand them yet, read on.

At the end, I’ll use the algorithm to explain the difference between the following two function
declarations.

function move({x=0, y=0} = {}) { ··· }

function move({x, y} = { x: 0, y: 0 }) { ··· }

10.11.1 The algorithm

A destructuring assignment looks like this:

«pattern» = «value»

We want to use pattern to extract data from value. I’ll now describe an algorithm for doing
so, which is known in functional programming as pattern matching (short: matching). The
algorithm specifies the operator � (“match against”) for destructuring assignment that matches
a pattern against a value and assigns to variables while doing so:

«pattern» � «value»

The algorithm is specified via recursive rules that take apart both operands of the � operator.
The declarative notation may take some getting used to, but it makes the specification of the
algorithm more concise. Each rule has two parts:

• The head (first line) describes the condition that triggers the rule.
• The body (remaining lines) describes what happens if the rule is triggered.

Let’s look at an example:

• (2c) {key: «pattern», «properties»} � obj



Destructuring 131

«pattern» � obj.key

{«properties»} � obj

• (2e) {} � obj (no properties left)

// Nothing to do

In rule (2c), the head means that this rule is executed if there is an object pattern with at least one
property and zero or more remaining properties. That pattern is matched against a value obj.
The effect of this rule is that execution continues with the property value pattern being matched
against obj.key and the remaining properties being matched against obj.

In rule (2e), the head means that this rule is executed if the empty object pattern {} is matched
against a value obj. Then there is nothing to be done.

Whenever the algorithm is invoked, the rules are checked top to bottom and only the first rule
that is applicable is executed.

I only show the algorithm for destructuring assignment. Destructuring variable declarations and
destructuring parameter definitions work similarly.

I don’t cover advanced features (computed property keys; property value shorthands; object
properties and array elements as assignment targets), either. Only the basics.

10.11.1.1 Patterns

A pattern is either:

• A variable: x
• An object pattern: {«properties»}
• An Array pattern: [«elements»]

Each of the following sections describes one of these three cases.

The following three sections specify how to handle these three cases. Each section contains one
or more numbered rules.

10.11.1.2 Variable

• (1) x � value (including undefined and null)

x = value

10.11.1.3 Object pattern

• (2a) {«properties»} � undefined



Destructuring 132

throw new TypeError();

• (2b) {«properties»} � null

throw new TypeError();

• (2c) {key: «pattern», «properties»} � obj

«pattern» � obj.key

{«properties»} � obj

• (2d) {key: «pattern» = default_value, «properties»} � obj

const tmp = obj.key;

if (tmp !== undefined) {

«pattern» � tmp

} else {

«pattern» � default_value

}

{«properties»} � obj

• (2e) {} � obj (no properties left)

// Nothing to do

10.11.1.4 Array pattern

Array pattern and iterable. The algorithm for Array destructuring starts with an Array pattern
and an iterable:

• (3a) [«elements»] � non_iterable

assert(!isIterable(non_iterable))

throw new TypeError();

• (3b) [«elements»] � iterable

assert(isIterable(iterable))

const iterator = iterable[Symbol.iterator]();

«elements» � iterator

Helper function:



Destructuring 133

function isIterable(value) {

return (value !== null

&& typeof value === 'object'

&& typeof value[Symbol.iterator] === 'function');

}

Array elements and iterator. The algorithm continues with the elements of the pattern (left-
hand side of the arrow) and the iterator that was obtained from the iterable (right-hand side of
the arrow).

• (3c) «pattern», «elements» � iterator

«pattern» � getNext(iterator) // undefined after last item

«elements» � iterator

• (3d) «pattern» = default_value, «elements» � iterator

const tmp = getNext(iterator); // undefined after last item

if (tmp !== undefined) {

«pattern» � tmp

} else {

«pattern» � default_value

}

«elements» � iterator

• (3e) , «elements» � iterator (hole, elision)

getNext(iterator); // skip

«elements» � iterator

• (3f) ...«pattern» � iterator (always last part!)

const tmp = [];

for (const elem of iterator) {

tmp.push(elem);

}

«pattern» � tmp

• (3g) � iterator (no elements left)

// Nothing to do

Helper function:



Destructuring 134

function getNext(iterator) {

const {done,value} = iterator.next();

return (done ? undefined : value);

}

10.11.2 Applying the algorithm

In ECMAScript 6, you can simulate named parameters if the caller uses an object literal and
the callee uses destructuring. This simulation is explained in detail in the chapter on parameter
handling. The following code shows an example: function move1() has two named parameters,
x and y:

function move1({x=0, y=0} = {}) { // (A)

return [x, y];

}

move1({x: 3, y: 8}); // [3, 8]

move1({x: 3}); // [3, 0]

move1({}); // [0, 0]

move1(); // [0, 0]

There are three default values in line A:

• The first two default values allow you to omit x and y.
• The third default value allows you to call move1() without parameters (as in the last line).

But why would you define the parameters as in the previous code snippet? Why not as follows
– which is also completely legal ES6 code?

function move2({x, y} = { x: 0, y: 0 }) {

return [x, y];

}

To see why move1() is correct, let’s use both functions for two examples. Before we do that, let’s
see how the passing of parameters can be explained via matching.

10.11.2.1 Background: passing parameters via matching

For function calls, formal parameters (inside function definitions) are matched against actual
parameters (inside function calls). As an example, take the following function definition and the
following function call.



Destructuring 135

function func(a=0, b=0) { ··· }

func(1, 2);

The parameters a and b are set up similarly to the following destructuring.

[a=0, b=0] � [1, 2]

10.11.2.2 Using move2()

Let’s examine how destructuring works for move2().

Example 1. move2() leads to this destructuring:

[{x, y} = { x: 0, y: 0 }] � []

The single Array element on the left-hand side does not have a match on the right-hand side,
which is why {x,y} is matched against the default value and not against data from the right-hand
side (rules 3b, 3d):

{x, y} � { x: 0, y: 0 }

The left-hand side contains property value shorthands, it is an abbreviation for:

{x: x, y: y} � { x: 0, y: 0 }

This destructuring leads to the following two assignments (rules 2c, 1):

x = 0;

y = 0;

Example 2. Let’s examine the function call move2({z:3}) which leads to the following destruc-
turing:

[{x, y} = { x: 0, y: 0 }] � [{z:3}]

There is an Array element at index 0 on the right-hand side. Therefore, the default value is
ignored and the next step is (rule 3d):

{x, y} � { z: 3 }

That leads to both x and y being set to undefined, which is not what we want.

10.11.2.3 Using move1()

Let’s try move1().

Example 1: move1()



Destructuring 136

[{x=0, y=0} = {}] � []

We don’t have an Array element at index 0 on the right-hand side and use the default value (rule
3d):

{x=0, y=0} � {}

The left-hand side contains property value shorthands, which means that this destructuring is
equivalent to:

{x: x=0, y: y=0} � {}

Neither property x nor property y have a match on the right-hand side. Therefore, the default
values are used and the following destructurings are performed next (rule 2d):

x � 0

y � 0

That leads to the following assignments (rule 1):

x = 0

y = 0

Example 2: move1({z:3})

[{x=0, y=0} = {}] � [{z:3}]

The first element of the Array pattern has a match on the right-hand side and that match is used
to continue destructuring (rule 3d):

{x=0, y=0} � {z:3}

Like in example 1, there are no properties x and y on the right-hand side and the default values
are used:

x = 0

y = 0

10.11.2.4 Conclusion

The examples demonstrate that default values are a feature of pattern parts (object properties or
Array elements). If a part has no match or is matched against undefined then the default value
is used. That is, the pattern is matched against the default value, instead.



11. Parameter handling

For this chapter, it is useful to be familiar with destructuring (which is explained in the
previous chapter).

11.1 Overview

Parameter handling has been significantly upgraded in ECMAScript 6. It now supports parameter
default values, rest parameters (varargs) and destructuring.

Additionally, the spread operator helps with function/method/constructor calls and Array
literals.

11.1.1 Default parameter values

A default parameter value is specified for a parameter via an equals sign (=). If a caller doesn’t
provide a value for the parameter, the default value is used. In the following example, the default
parameter value of y is 0:

function func(x, y=0) {

return [x, y];

}

func(1, 2); // [1, 2]

func(1); // [1, 0]

func(); // [undefined, 0]

11.1.2 Rest parameters

If you prefix a parameter namewith the rest operator (...), that parameter receives all remaining
parameters via an Array:



Parameter handling 138

function format(pattern, ...params) {

return {pattern, params};

}

format(1, 2, 3);

// { pattern: 1, params: [ 2, 3 ] }

format();

// { pattern: undefined, params: [] }

11.1.3 Named parameters via destructuring

You can simulate named parameters if you destructure with an object pattern in the parameter
list:

function selectEntries({ start=0, end=-1, step=1 } = {}) { // (A)

// The object pattern is an abbreviation of:

// { start: start=0, end: end=-1, step: step=1 }

// Use the variables `start`, `end` and `step` here

···

}

selectEntries({ start: 10, end: 30, step: 2 });

selectEntries({ step: 3 });

selectEntries({});

selectEntries();

The = {} in line A enables you to call selectEntries() without paramters.

11.1.4 Spread operator (...)

In function and constructor calls, the spread operator turns iterable values into arguments:

> Math.max(-1, 5, 11, 3)

11

> Math.max(...[-1, 5, 11, 3])

11

> Math.max(-1, ...[-1, 5, 11], 3)

11

In Array literals, the spread operator turns iterable values into Array elements:

> [1, ...[2,3], 4]

[1, 2, 3, 4]

11.2 Parameter handling as destructuring

The ES6 way of handling parameters is equivalent to destructuring the actual parameters via the
formal parameters. That is, the following function call:



Parameter handling 139

function func(«FORMAL_PARAMETERS») {

«CODE»

}

func(«ACTUAL_PARAMETERS»);

is roughly equivalent to:

{

let [«FORMAL_PARAMETERS»] = [«ACTUAL_PARAMETERS»];

{

«CODE»

}

}

Example – the following function call:

function logSum(x=0, y=0) {

console.log(x + y);

}

logSum(7, 8);

becomes:

{

let [x=0, y=0] = [7, 8];

{

console.log(x + y);

}

}

Let’s look at specific features next.

11.3 Parameter default values

ECMAScript 6 lets you specify default values for parameters:

function f(x, y=0) {

return [x, y];

}

Omitting the second parameter triggers the default value:



Parameter handling 140

> f(1)

[1, 0]

> f()

[undefined, 0]

Watch out – undefined triggers the default value, too:

> f(undefined, undefined)

[undefined, 0]

The default value is computed on demand, only when it is actually needed:

> const log = console.log.bind(console);

> function g(x=log('x'), y=log('y')) {return 'DONE'}

> g()

x

y

'DONE'

> g(1)

y

'DONE'

> g(1, 2)

'DONE'

11.3.1 Why does undefined trigger default values?

It isn’t immediately obvious why undefined should be interpreted as a missing parameter or a
missing part of an object or Array. The rationale for doing so is that it enables you to delegate
the definition of default values. Let’s look at two examples.

In the first example (source: Rick Waldron’s TC39 meeting notes from 2012-07-24¹), we don’t
have to define a default value in setOptions(), we can delegate that task to setLevel().

function setLevel(newLevel = 0) {

light.intensity = newLevel;

}

function setOptions(options) {

// Missing prop returns undefined => use default

setLevel(options.dimmerLevel);

setMotorSpeed(options.speed);

···

}

setOptions({speed:5});

In the second example, square() doesn’t have to define a default for x, it can delegate that task
to multiply():

¹https://github.com/rwaldron/tc39-notes/blob/master/es6/2012-07/july-24.md#413-destructuring-issues

https://github.com/rwaldron/tc39-notes/blob/master/es6/2012-07/july-24.md#413-destructuring-issues
https://github.com/rwaldron/tc39-notes/blob/master/es6/2012-07/july-24.md#413-destructuring-issues


Parameter handling 141

function multiply(x=1, y=1) {

return x * y;

}

function square(x) {

return multiply(x, x);

}

Default values further entrench the role of undefined as indicating that something doesn’t exist,
versus null indicating emptiness.

11.3.2 Referring to other parameters in default values

Within a parameter default value, you can refer to any variable, including other parameters:

function foo(x=3, y=x) {}

foo(); // x=3; y=3

foo(7); // x=7; y=7

foo(7, 2); // x=7; y=2

However, order matters. Parameters are declared from left to right. “Inside” a default value, you
get a ReferenceError if you access a parameter that hasn’t been declared, yet:

function bar(x=y, y=4) {}

bar(3); // OK

bar(); // ReferenceError: y is not defined

11.3.3 Referring to “inner” variables in default values

Default values exist in their own scope, which is between the “outer” scope surrounding the
function and the “inner” scope of the function body. Therefore, you can’t access “inner” variables
from the default values:

const x = 'outer';

function foo(a = x) {

const x = 'inner';

console.log(a); // outer

}

If there were no outer x in the previous example, the default value x would produce a
ReferenceError (if triggered).

This restriction is probably most surprising if default values are closures:



Parameter handling 142

const QUX = 2;

function bar(callback = () => QUX) { // returns 2

const QUX = 3;

callback();

}

bar(); // ReferenceError

11.4 Rest parameters

Putting the rest operator (...) in front of the last formal parameter means that it will receive all
remaining actual parameters in an Array.

function f(x, ...y) {

···

}

f('a', 'b', 'c'); // x = 'a'; y = ['b', 'c']

If there are no remaining parameters, the rest parameter will be set to the empty Array:

f(); // x = undefined; y = []

The spread operator (...) looks exactly like the rest operator, but is used inside function
calls and Array literals (not inside destructuring patterns).

11.4.1 No more arguments!

Rest parameters can completely replace JavaScript’s infamous special variable arguments. They
have the advantage of always being Arrays:

// ECMAScript 5: arguments

function logAllArguments() {

for (var i=0; i < arguments.length; i++) {

console.log(arguments[i]);

}

}

// ECMAScript 6: rest parameter

function logAllArguments(...args) {

for (const arg of args) {

console.log(arg);

}

}



Parameter handling 143

11.4.1.1 Combining destructuring and access to the destructured value

One interesting feature of arguments is that you can have normal parameters and an Array of
all parameters at the same time:

function foo(x=0, y=0) {

console.log('Arity: '+arguments.length);

···

}

You can avoid arguments in such cases if you combine a rest parameter with Array destructuring.
The resulting code is longer, but more explicit:

function foo(...args) {

let [x=0, y=0] = args;

console.log('Arity: '+args.length);

···

}

The same technique works for named parameters (options objects):

function bar(options = {}) {

let { namedParam1, namedParam2 } = options;

···

if ('extra' in options) {

···

}

}

11.4.1.2 arguments is iterable

arguments is iterable² in ECMAScript 6, which means that you can use for-of and the spread
operator:

> (function () { return typeof arguments[Symbol.iterator] }())

'function'

> (function () { return Array.isArray([...arguments]) }())

true

11.5 Simulating named parameters

When calling a function (or method) in a programming language, you must map the actual
parameters (specified by the caller) to the formal parameters (of a function definition). There are
two common ways to do so:

• Positional parameters are mapped by position. The first actual parameter is mapped to the
first formal parameter, the second actual to the second formal, and so on:

²Iterables are explained in another chapter.



Parameter handling 144

selectEntries(3, 20, 2)

• Named parameters use names (labels) to perform the mapping. Formal parameters have
labels. In a function call, these labels determine which value belongs to which formal
parameter. It does not matter in which order named actual parameters appear, as long as
they are labeled correctly. Simulating named parameters in JavaScript looks as follows.

selectEntries({ start: 3, end: 20, step: 2 })

Named parameters have two main benefits: they provide descriptions for arguments in function
calls and they work well for optional parameters. I’ll first explain the benefits and then show
you how to simulate named parameters in JavaScript via object literals.

11.5.1 Named Parameters as Descriptions

As soon as a function has more than one parameter, you might get confused about what each
parameter is used for. For example, let’s say you have a function, selectEntries(), that returns
entries from a database. Given the function call:

selectEntries(3, 20, 2);

what do these three numbers mean? Python supports named parameters, and they make it easy
to figure out what is going on:

# Python syntax

selectEntries(start=3, end=20, step=2)

11.5.2 Optional Named Parameters

Optional positional parameters work well only if they are omitted at the end. Anywhere else, you
have to insert placeholders such as null so that the remaining parameters have correct positions.

With optional named parameters, that is not an issue. You can easily omit any of them. Here are
some examples:

# Python syntax

selectEntries(step=2)

selectEntries(end=20, start=3)

selectEntries()

11.5.3 Simulating Named Parameters in JavaScript

JavaScript does not have native support for named parameters, unlike Python and many other
languages. But there is a reasonably elegant simulation: Each actual parameter is a property in
an object literal whose result is passed as a single formal parameter to the callee. When you use
this technique, an invocation of selectEntries() looks as follows.



Parameter handling 145

selectEntries({ start: 3, end: 20, step: 2 });

The function receives an object with the properties start, end, and step. You can omit any of
them:

selectEntries({ step: 2 });

selectEntries({ end: 20, start: 3 });

selectEntries();

In ECMAScript 5, you’d implement selectEntries() as follows:

function selectEntries(options) {

options = options || {};

var start = options.start || 0;

var end = options.end || -1;

var step = options.step || 1;

···

}

In ECMAScript 6, you can use destructuring, which looks like this:

function selectEntries({ start=0, end=-1, step=1 }) {

···

}

If you call selectEntries() with zero arguments, the destructuring fails, because you can’t
match an object pattern against undefined. That can be fixed via a default value. In the following
code, the object pattern is matched against {} if the first parameter is missing.

function selectEntries({ start=0, end=-1, step=1 } = {}) {

···

}

You can also combine positional parameters with named parameters. It is customary for the latter
to come last:

someFunc(posArg1, { namedArg1: 7, namedArg2: true });

In principle, JavaScript engines could optimize this pattern so that no intermediate object is
created, because both the object literals at the call sites and the object patterns in the function
definitions are static.

In JavaScript, the pattern for named parameters shown here is sometimes called options
or option object (e.g., by the jQuery documentation).



Parameter handling 146

11.6 Examples of destructuring in parameter
handling

11.6.1 forEach() and destructuring

You will probably mostly use the for-of loop in ECMAScript 6, but the Array method forEach()
also profits from destructuring. Or rather, its callback does.

First example: destructuring the Arrays in an Array.

const items = [ ['foo', 3], ['bar', 9] ];

items.forEach(([word, count]) => {

console.log(word+' '+count);

});

Second example: destructuring the objects in an Array.

const items = [

{ word:'foo', count:3 },

{ word:'bar', count:9 },

];

items.forEach(({word, count}) => {

console.log(word+' '+count);

});

11.6.2 Transforming Maps

An ECMAScript 6 Map doesn’t have a method map() (like Arrays). Therefore, one has to:

• Step 1: Convert it to an Array of [key,value] pairs.
• Step 2: map() the Array.
• Step 3: Convert the result back to a Map.

This looks as follows.



Parameter handling 147

const map0 = new Map([

[1, 'a'],

[2, 'b'],

[3, 'c'],

]);

const map1 = new Map( // step 3

[...map0] // step 1

.map(([k, v]) => [k*2, '_'+v]) // step 2

);

// Resulting Map: {2 -> '_a', 4 -> '_b', 6 -> '_c'}

11.6.3 Handling an Array returned via a Promise

The tool method Promise.all() works as follows:

• Input: an iterable of Promises.
• Output: a Promise that is fulfilled with an Array as soon as the last input Promise is
fulfilled. That Array contains the fulfillments of the input Promises.

Destructuring helps with handling the Array that the result of Promise.all() is fulfilled with:

const urls = [

'http://example.com/foo.html',

'http://example.com/bar.html',

'http://example.com/baz.html',

];

Promise.all(urls.map(downloadUrl))

.then(([fooStr, barStr, bazStr]) => {

···

});

// This function returns a Promise that is fulfilled

// with a string (the text)

function downloadUrl(url) {

return fetch(url).then(request => request.text());

}

fetch() is a Promise-based version of XMLHttpRequest. It is part of the Fetch standard³.

11.7 Coding style tips

This section mentions a few tricks for descriptive parameter definitions. They are clever, but they
also have downsides: they add visual clutter and can make your code harder to understand.

³https://fetch.spec.whatwg.org/#fetch-api

https://fetch.spec.whatwg.org/#fetch-api
https://fetch.spec.whatwg.org/#fetch-api


Parameter handling 148

11.7.1 Optional parameters

Some parameters have no default values, but can be omitted. In that case, I occasionally use the
default value undefined to make it obvious that the parameter is optional. That is redundant,
but descriptive.

function foo(requiredParam, optionalParam = undefined) {

···

}

11.7.2 Required parameters

In ECMAScript 5, you have a few options for ensuring that a required parameter has been
provided, which are all quite clumsy:

function foo(mustBeProvided) {

if (arguments.length < 1) {

throw new Error();

}

if (! (0 in arguments)) {

throw new Error();

}

if (mustBeProvided === undefined) {

throw new Error();

}

···

}

In ECMAScript 6, you can (ab)use default parameter values to achieve more concise code (credit:
idea by Allen Wirfs-Brock):

/**

* Called if a parameter is missing and

* the default value is evaluated.

*/

function mandatory() {

throw new Error('Missing parameter');

}

function foo(mustBeProvided = mandatory()) {

return mustBeProvided;

}

Interaction:



Parameter handling 149

> foo()

Error: Missing parameter

> foo(123)

123

11.7.3 Enforcing a maximum arity

This section presents three approaches to enforcing a maximum arity. The running example is
a function f whose maximum arity is 2 – if a caller provides more than 2 parameters, an error
should be thrown.

The first approach is to collect all actual parameters in the formal rest parameter args and to
check its length.

function f(...args) {

if (args.length > 2) {

throw new Error();

}

// Extract the real parameters

let [x, y] = args;

}

The second approach relies on unwanted actual parameters appearing in the formal rest
parameter empty.

function f(x, y, ...empty) {

if (empty.length > 0) {

throw new Error();

}

}

The third approach uses a sentinel value that is gone if there is a third parameter. One caveat is
that the default value OK is also triggered if there is a third parameter whose value is undefined.

const OK = Symbol();

function f(x, y, arity=OK) {

if (arity !== OK) {

throw new Error();

}

}

Sadly, each one of these approaches introduces significant visual and conceptual clutter. I’m
tempted to recommend checking arguments.length, but I also want arguments to go away.



Parameter handling 150

function f(x, y) {

if (arguments.length > 2) {

throw new Error();

}

}

11.8 The spread operator (...)

The spread operator (...) looks exactly like the rest operator, but is its opposite:

• Rest operator: collects the remaining items of an iterable into an Array and is used for rest
parameters and destructuring.

• Spread operator: turns the items of an iterable into arguments of a function call or into
elements of an Array.

11.8.1 Spreading into function and method calls

Math.max() is a good example for demonstrating how the spread operator works in method calls.
Math.max(x1, x2, ···) returns the argument whose value is greatest. It accepts an arbitrary
number of arguments, but can’t be applied to Arrays. The spread operator fixes that:

> Math.max(-1, 5, 11, 3)

11

> Math.max(...[-1, 5, 11, 3])

11

In contrast to the rest operator, you can use the spread operator anywhere in a sequence of parts:

> Math.max(-1, ...[-1, 5, 11], 3)

11

Another example is JavaScript not having a way to destructively append the elements of one
Array to another one. However, Arrays do have the method push(x1, x2, ···), which appends
all of its arguments to its receiver. The following code shows how you can use push() to append
the elements of arr2 to arr1.

const arr1 = ['a', 'b'];

const arr2 = ['c', 'd'];

arr1.push(...arr2);

// arr1 is now ['a', 'b', 'c', 'd']

11.8.2 Spreading into constructors

In addition to function and method calls, the spread operator also works for constructor calls:



Parameter handling 151

new Date(...[1912, 11, 24]) // Christmas Eve 1912

That is something that is difficult to achieve in ECMAScript 5⁴.

11.8.3 Spreading into Arrays

The spread operator can also be used inside Array literals:

> [1, ...[2,3], 4]

[1, 2, 3, 4]

That gives you a convenient way to concatenate Arrays:

const x = ['a', 'b'];

const y = ['c'];

const z = ['d', 'e'];

const arr = [...x, ...y, ...z]; // ['a', 'b', 'c', 'd', 'e']

One advantage of the spread operator is that its operand can be any iterable value (in contrast
to the Array method concat(), which does not support iteration).

11.8.3.1 Converting iterable or Array-like objects to Arrays

The spread operator lets you convert any iterable value to an Array:

const arr = [...someIterableObject];

Let’s convert a Set to an Array:

const set = new Set([11, -1, 6]);

const arr = [...set]; // [11, -1, 6]

Your own iterable objects can be converted to Arrays in the same manner:

⁴http://speakingjs.com/es5/ch17.html#apply_constructors

http://speakingjs.com/es5/ch17.html#apply_constructors
http://speakingjs.com/es5/ch17.html#apply_constructors


Parameter handling 152

const obj = {

* [Symbol.iterator]() {

yield 'a';

yield 'b';

yield 'c';

}

};

const arr = [...obj]; // ['a', 'b', 'c']

Note that, just like the for-of loop, the spread operator only works for iterable values. All built-
in data structures are iterable: Arrays, Maps and Sets. All Array-like DOM data structures are
also iterable.

Should you ever encounter something that is not iterable, but Array-like (indexed elements plus
a property length), you can use Array.from()⁵ to convert it to an Array:

const arrayLike = {

'0': 'a',

'1': 'b',

'2': 'c',

length: 3

};

// ECMAScript 5:

var arr1 = [].slice.call(arrayLike); // ['a', 'b', 'c']

// ECMAScript 6:

const arr2 = Array.from(arrayLike); // ['a', 'b', 'c']

// TypeError: Cannot spread non-iterable value

const arr3 = [...arrayLike];

⁵Explained in the chapter on Arrays.



III Modularity



12. Callable entities in ECMAScript 6
This chapter gives advice on how to properly use entities you can call (via function calls, method
calls, etc.) in ES6.

Sections in this chapter:

• An overview of callable entities in ES6
• Ways of calling in ES6
• Recommendations for using callable entities
• ES6 callable entities in detail
• Dispatched and direct method calls in ES5 and ES6
• The name property of functions
• FAQ: callable entities

12.1 Overview

In ES5, a single construct, the (traditional) function, played three roles:

• Real (non-method) function
• Method
• Constructor

In ES6, there ismore specialization. The three duties are nowhandled as follows (a class definition
is either one of the two constructs for creating classes – a class declaration or a class expression):

• Real (non-method) function:
– Arrow functions (only have an expression form)
– Traditional functions (created via function expressions and function declarations)
– Generator functions (created via generator function expressions and generator
function declarations)

• Method:
– Methods (created by method definitions in object literals and class definitions)
– Generator methods (created by generator method definitions in object literals and
class definitions)

• Constructor:
– Classes (created via class definitions)

This list is a simplification. There are quite a few libraries that use this as an implicit parameter
for callbacks. Then you have to use traditional functions.

Note that I distinguish:



Callable entities in ECMAScript 6 155

• The entity: e.g. traditional function
• The syntax that creates the entity: e.g. function expression and function declaration

Even though their behaviors differ (as explained later), all of these entities are functions. For
example:

> typeof (() => {}) // arrow function

'function'

> typeof function* () {} // generator function

'function'

> typeof class {} // class

'function'

12.2 Ways of calling in ES6

Some calls can be made anywhere, others are restricted to specific locations.

12.2.1 Calls that can be made anywhere

Three kinds of calls can be made anywhere in ES6:

• Function calls: func(3, 1)

• Method calls: obj.method('abc')
• Constructor calls: new Constr(8)

For function calls, it is important to remember that most ES6 code will be contained in modules
and that module bodies are implicitly in strict mode.

12.2.2 Calls via super are restricted to specific locations

Two kinds of calls can be made via the super keyword; their use is restricted to specific locations:

• Super-method calls: super.method('abc')
Only available within method definitions inside either object literals or derived class
definitions.

• Super-constructor calls: super(8)
Only available inside the special method constructor() inside a derived class definition.

12.2.3 Non-method functions versus methods

The difference between non-method functions and methods is becoming more pronounced in
ECMAScript 6. There are now special entities for both and things that only they can do:

• Arrow functions are made for non-method functions. They pick up this (and other
variables) from their surrounding scopes (“lexical this”).

• Method definitions are made for methods. They provide support for super, to refer to
super-properties and to make super-method calls.



Callable entities in ECMAScript 6 156

12.3 Recommendations for using callable entities

This section gives tips for using callable entities: When it’s best to use which entity; etc.

12.3.1 Prefer arrow functions as callbacks

As callbacks, arrow functions have two advantages over traditional functions:

• this is lexical and therefore safer to use.
• Their syntax is more compact. That matters especially in functional programming, where
there are many higher-order functions and methods (functions and methods whose
parameters are functions).

For callbacks that spanmultiple lines, I find traditional function expressions acceptable,
too. But you have to be careful with this.

12.3.1.1 Problem: this as an implicit parameter

Alas, some JavaScript APIs use this as an implicit argument for their callbacks, which prevents
you from using arrow functions. For example: The this in line B is an implicit argument of the
function in line A.

beforeEach(function () { // (A)

this.addMatchers({ // (B)

toBeInRange: function (start, end) {

···

}

});

});

This pattern is less explicit and prevents you from using arrow functions.

12.3.1.2 Solution 1: change the API

This is easy to fix, but requires the API to change:



Callable entities in ECMAScript 6 157

beforeEach(api => {

api.addMatchers({

toBeInRange(start, end) {

···

}

});

});

We have turned the API from an implicit parameter this into an explicit parameter api. I like
this kind of explicitness.

12.3.1.3 Solution 2: access the value of this in some other way

In some APIs, there are alternate ways to get to the value of this. For example, the following
code uses this.

var $button = $('#myButton');

$button.on('click', function () {

this.classList.toggle('clicked');

});

But the target of the event can also be accessed via event.target:

var $button = $('#myButton');

$button.on('click', event => {

event.target.classList.toggle('clicked');

});

12.3.2 Prefer function declarations as stand-alone functions

As stand-alone functions (versus callbacks), I prefer function declarations:

function foo(arg1, arg2) {

···

}

The benefits are:

• Subjectively, I find they look nicer. In this case, the verbose keyword function is an
advantage – you want the construct to stand out.

• They look like generator function declarations, leading to more visual consistency of the
code.



Callable entities in ECMAScript 6 158

There is one caveat: Normally, you don’t need this in stand-alone functions. If you use it, you
want to access the this of the surrounding scope (e.g. a method which contains the stand-alone
function). Alas, function declarations don’t let you do that – they have their own this, which
shadows the this of the surrounding scope. Therefore, you may want to let a linter warn you
about this in function declarations.

Another option for stand-alone functions is assigning arrow functions to variables. Problems
with this are avoided, because it is lexical.

const foo = (arg1, arg2) => {

···

};

12.3.3 Prefer method definitions for methods

Method definitions are the only way to create methods that use super. They are the obvious
choice in object literals and classes (where they are the only way to define methods), but what
about adding a method to an existing object? For example:

MyClass.prototype.foo = function (arg1, arg2) {

···

};

The following is a quick way to do the same thing in ES6 (caveat: Object.assign() doesn’t move
methods with super properly).

Object.assign(MyClass.prototype, {

foo(arg1, arg2) {

···

}

});

For more information and caveats, consult the section on Object.assign().

12.3.4 Methods versus callbacks

There is a subtle difference between an object with methods and an object with callbacks.

12.3.4.1 An object whose properties are methods

The this of a method is the receiver of the method call (e.g. obj if the method call is obj.m(···)).

For example, you can use the WHATWG streams API¹ as follows:

¹https://streams.spec.whatwg.org/

https://streams.spec.whatwg.org/
https://streams.spec.whatwg.org/


Callable entities in ECMAScript 6 159

const surroundingObject = {

surroundingMethod() {

const obj = {

data: 'abc',

start(controller) {

···

console.log(this.data); // abc (*)

this.pull(); // (**)

···

},

pull() {

···

},

cancel() {

···

},

};

const stream = new ReadableStream(obj);

},

};

That is, obj is an object whose properties start, pull and cancel are methods. Accordingly,
these methods can use this to access object-local state (line *) and to call each other (line **).

12.3.4.2 An object whose properties are callbacks

The this of an arrow function is the this of the surrounding scope (lexical this). Arrow
functions make great callbacks, because that is the behavior you normally want for callbacks
(real, non-method functions). A callback shouldn’t have its own this that shadows the this of
the surrounding scope.

If the properties start, pull and cancel are arrow functions then they pick up the this of
surroundingMethod() (their surrounding scope):

const surroundingObject = {

surroundingData: 'xyz',

surroundingMethod() {

const obj = {

start: controller => {

···

console.log(this.surroundingData); // xyz (*)

···

},

pull: () => {

···



Callable entities in ECMAScript 6 160

},

cancel: () => {

···

},

};

const stream = new ReadableStream(obj);

},

};

const stream = new ReadableStream();

If the output in line * surprises you then consider the following code:

const obj = {

foo: 123,

bar() {

const f = () => console.log(this.foo); // 123

const o = {

p: () => console.log(this.foo), // 123

};

},

}

Inside method bar(), f and o.p work the same, because both arrow functions have the same
surrounding lexical scope, bar(). The latter arrow function being surrounded by an object literal
does not change that.

12.3.5 Avoid IIFEs in ES6

This section gives tips for avoiding IIFEs in ES6.

12.3.5.1 Replace an IIFE with a block

In ES5, you had to use an IIFE if you wanted to keep a variable local:

(function () { // open IIFE

var tmp = ···;

···

}()); // close IIFE

console.log(tmp); // ReferenceError

In ECMAScript 6, you can simply use a block and a let or const declaration:



Callable entities in ECMAScript 6 161

{ // open block

let tmp = ···;

···

} // close block

console.log(tmp); // ReferenceError

12.3.5.2 Replace an IIFE with a module

In ECMAScript 5 code that doesn’t use modules via libraries (such as RequireJS, browserify or
webpack), the revealing module pattern is popular, and based on an IIFE. Its advantage is that it
clearly separates between what is public and what is private:

var my_module = (function () {

// Module-private variable:

var countInvocations = 0;

function myFunc(x) {

countInvocations++;

···

}

// Exported by module:

return {

myFunc: myFunc

};

}());

This module pattern produces a global variable and is used as follows:

my_module.myFunc(33);

In ECMAScript 6, modules are built in, which is why the barrier to adopting them is low:

// my_module.js

// Module-private variable:

let countInvocations = 0;

export function myFunc(x) {

countInvocations++;

···

}

This module does not produce a global variable and is used as follows:



Callable entities in ECMAScript 6 162

import { myFunc } from 'my_module.js';

myFunc(33);

12.3.5.3 Immediately-invoked arrow functions

There is one use case where you still need an immediately-invoked function in ES6: Sometimes
you only can produce a result via a sequence of statements, not via a single expression. If you
want to inline those statements, you have to immediately invoke a function. In ES6, you can use
immediately-invoked arrow functions if you want to:

const SENTENCE = 'How are you?';

const REVERSED_SENTENCE = (() => {

// Iteration over the string gives us code points

// (better for reversal than characters)

const arr = [...SENTENCE];

arr.reverse();

return arr.join('');

})();

Note that you must parenthesize as shown (the parens are around the arrow function, not around
the complete function call). Details are explained in the chapter on arrow functions.

12.3.6 Use classes as constructors

In ES5, constructor functions where the mainstream way of creating factories for objects (but
there were also many other techniques, some arguably more elegant). In ES6, classes are the
mainstream way of implementing constructor functions. Several frameworks support them as
alternatives to their custom inheritance APIs.

12.4 ES6 callable entities in detail

This section starts with a cheat sheet, before describing each ES6 callable entity in detail.

12.4.1 Cheat sheet: callable entities

12.4.1.1 The behavior and structure of callable entities

Value:

Func decl/Func expr Arrow Class Method

Function-callable ✔ ✔ × ✔
Constructor-callable ✔ × ✔ ×
Prototype F.p F.p SC F.p

Property prototype ✔ × ✔ ×



Callable entities in ECMAScript 6 163

Whole construct:

Func decl Func expr Arrow Class Method

Hoisted ✔ ×
Creates window prop. (1) ✔ ×
Inner name (2) × ✔ ✔ ×

Body:

Func decl Func expr Arrow Class (3) Method

this ✔ ✔ lex ✔ ✔
new.target ✔ ✔ lex ✔ ✔
super.prop × × lex ✔ ✔
super() × × × ✔ ×

Abbreviations in cells:

• ✔ exists, allowed
• × does not exist, not allowed
• Empty cell: not applicable, not relevant
• lex: lexical, inherited from surrounding lexical scope
• F.p: Function.prototype
• SC: superclass for derived classes, Function.prototype for base classes. The details are
explained in the chapter on classes.

Notes:

• (1) The rules for what declarations create properties for the global object are explained in
the chapter on variables and scoping.

• (2) The inner names of named function expressions and classes are explained in the chapter
on classes.

• (3) This column is about the body of the class constructor.

What about generator functions and methods? Those work like their non-generator counter-
parts, with two exceptions:

• Generator functions and methods have the prototype (GeneratorFunction).prototype

((GeneratorFunction) is an internal object, see diagram in Sect. “Inheritance within the
iteration API (including generators)”).

• You can’t constructor-call generator functions.

12.4.1.2 The rules for this



Callable entities in ECMAScript 6 164

FC strict FC sloppy MC new

Traditional function undefined window receiver instance
Generator function undefined window receiver TypeError

Method undefined window receiver TypeError

Generator method undefined window receiver TypeError

Arrow function lexical lexical lexical TypeError

Class TypeError TypeError TypeError SC protocol

Abbreviations in column titles:

• FC: function call
• MC: method call

Abbreviations in cells:

• lexical: inherited from surrounding lexical scope
• SC protocol: subclassing protocol (new instance in base class, received from superclass in
derived class)

12.4.2 Traditional functions

These are the functions that you know from ES5. There are two ways to create them:

• Function expression:

const foo = function (x) { ··· };

• Function declaration:

function foo(x) { ··· }

Rules for this:

• Function calls: this is undefined in strict mode and the global object in sloppy mode.
• Method calls: this is the receiver of the method call (or the first argument of call/apply).
• Constructor calls: this is the newly created instance.

12.4.3 Generator functions

Generator functions are explained in the chapter on generators. Their syntax is similar to
traditional functions, but they have an extra asterisk:

• Generator function expression:



Callable entities in ECMAScript 6 165

const foo = function* (x) { ··· };

• Generator function declaration:

function* foo(x) { ··· }

The rules for this are as follows. Note that it never refers to the generator object.

• Function/method calls: this is handled like it is with traditional functions. The results of
such calls are generator objects.

• Constructor calls: You can’t constructor-call generator functions. A TypeError is thrown
if you do.

12.4.4 Method definitions

Method definitions can appear inside object literals:

const obj = {

add(x, y) {

return x + y;

}, // comma is required

sub(x, y) {

return x - y;

}, // comma is optional

};

And inside class definitions:

class AddSub {

add(x, y) {

return x + y;

} // no comma

sub(x, y) {

return x - y;

} // no comma

}

As you can see, you must separate method definitions in an object literal with commas, but there
are no separators between them in a class definition. The former is necessary to keep the syntax
consistent, especially with regard to getters and setters.

Method definitions are the only place where you can use super to refer to super-properties. Only
method definitions that use super produce functions that have the property [[HomeObject]],
which is required for that feature (details are explained in the chapter on classes).

Rules:



Callable entities in ECMAScript 6 166

• Function calls: If you extract a method and call it as a function, it behaves like a traditional
function.

• Method calls: work as with traditional functions, but additionally allow you to use super.
• Constructor calls: produce a TypeError.

Inside class definitions, methods whose name is constructor are special, as explained later.

12.4.5 Generator method definitions

Generator methods are explained in the chapter on generators. Their syntax is similar to method
definitions, but they have an extra asterisk:

const obj = {

* generatorMethod(···) {

···

},

};

class MyClass {

* generatorMethod(···) {

···

}

}

Rules:

• Calling a generator method returns a generator object.
• You can use this and super as you would in normal method definitions.

12.4.6 Arrow functions

Arrow functions are explained in their own chapter:

const squares = [1,2,3].map(x => x * x);

The following variables are lexical inside an arrow function (picked up from the surrounding
scope):

• arguments

• super

• this

• new.target

Rules:

• Function calls: lexical this etc.
• Method calls: You can use arrow functions as methods, but their this continues to be
lexical and does not refer to the receiver of a method call.

• Constructor calls: produce a TypeError.



Callable entities in ECMAScript 6 167

12.4.7 Classes

Classes are explained in their own chapter.

// Base class: no `extends`

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

toString() {

return `(${this.x}, ${this.y})`;

}

}

// This class is derived from `Point`

class ColorPoint extends Point {

constructor(x, y, color) {

super(x, y);

this.color = color;

}

toString() {

return super.toString() + ' in ' + this.color;

}

}

The Method constructor is special, because it “becomes” the class. That is, classes are very
similar to constructor functions:

> Point.prototype.constructor === Point

true

Rules:

• Function/method calls: Classes can’t be called as functions or methods (why is explained
in the chapter on classes).

• Constructor calls: follow a protocol that supports subclassing. In a base class, an instance
is created and this refers to it. A derived class receives its instance from its superclass,
which is why it needs to call super before it can access this.

12.5 Dispatched and direct method calls in ES5 and
ES6

There are two ways to call methods in JavaScript:



Callable entities in ECMAScript 6 168

• Via dispatch, e.g. obj.someMethod(arg0, arg1)

• Directly, e.g. someFunc.call(thisValue, arg0, arg1)

This section explains how these two work and why you will rarely call methods directly in
ECMAScript 6. Before we get started, I’ll refresh your knowledge w.r.t. to prototype chains.

12.5.1 Background: prototype chains

Remember that each object in JavaScript is actually a chain of one or more objects. The first
object inherits properties from the later objects. For example, the prototype chain of an Array
['a', 'b'] looks as follows:

1. The instance, holding the elements 'a' and 'b'

2. Array.prototype, the properties provided by the Array constructor
3. Object.prototype, the properties provided by the Object constructor
4. null (the end of the chain, so not really a member of it)

You can examine the chain via Object.getPrototypeOf():

> var arr = ['a', 'b'];

> var p = Object.getPrototypeOf;

> p(arr) === Array.prototype

true

> p(p(arr)) === Object.prototype

true

> p(p(p(arr)))

null

Properties in “earlier” objects override properties in “later” objects. For example, Array.prototype
provides anArray-specific version of the toString()method, overriding Object.prototype.toString().

> var arr = ['a', 'b'];

> Object.getOwnPropertyNames(Array.prototype)

[ 'toString', 'join', 'pop', ··· ]

> arr.toString()

'a,b'

12.5.2 Dispatched method calls

If you look at the method call arr.toString() you can see that it actually performs two steps:

1. Dispatch: In the prototype chain of arr, retrieve the value of the first property whose name
is toString.

2. Call: Call the value and set the implicit parameter this to the receiver arr of the method
invocation.

You can make the two steps explicit by using the call() method of functions:



Callable entities in ECMAScript 6 169

> var func = arr.toString; // dispatch

> func.call(arr) // direct call, providing a value for `this`

'a,b'

12.5.3 Direct method calls

There are two ways to make direct method calls in JavaScript:

• Function.prototype.call(thisValue, arg0?, arg1?, ···)

• Function.prototype.apply(thisValue, argArray)

Both method call and method apply are invoked on functions. They are different from normal
function calls in that you specify a value for this. call provides the arguments of the method
call via individual parameters, apply provides them via an Array.

With a dispatched method call, the receiver plays two roles: It is used to find the method and it
is an implicit parameter. A problem with the first role is that a method must be in the prototype
chain of an object if you want to invoke it. With a direct method call, the method can come
from anywhere. That allows you to borrow a method from another object. For example, you can
borrow Object.prototype.toString and thus apply the original, un-overridden implementation
of toString to an Array arr:

> const arr = ['a','b','c'];

> Object.prototype.toString.call(arr)

'[object Array]'

The Array version of toString() produces a different result:

> arr.toString() // dispatched

'a,b,c'

> Array.prototype.toString.call(arr); // direct

'a,b,c'

Methods that work with a variety of objects (not just with instances of “their” constructor) are
called generic. Speaking JavaScript has a list² of all methods that are generic. The list includes
most Array methods and all methods of Object.prototype (which have to work with all objects
and are thus implicitly generic).

12.5.4 Use cases for direct method calls

This section covers use cases for direct method calls. Each time, I’ll first describe the use case in
ES5 and then how it changes with ES6 (where you’ll rarely need direct method calls).

12.5.4.1 ES5: Provide parameters to a method via an Array

Some functions accept multiple values, but only one value per parameter. What if you want to
pass the values via an Array?

For example, push() lets you destructively append several values to an Array:

²http://speakingjs.com/es5/ch17.html#list_of_generic_methods

http://speakingjs.com/es5/ch17.html#list_of_generic_methods
http://speakingjs.com/es5/ch17.html#list_of_generic_methods


Callable entities in ECMAScript 6 170

> var arr = ['a', 'b'];

> arr.push('c', 'd')

4

> arr

[ 'a', 'b', 'c', 'd' ]

But you can’t destructively append a whole Array. You can work around that limitation by using
apply():

> var arr = ['a', 'b'];

> Array.prototype.push.apply(arr, ['c', 'd'])

4

> arr

[ 'a', 'b', 'c', 'd' ]

Similarly, Math.max() and Math.min() only work for single values:

> Math.max(-1, 7, 2)

7

With apply(), you can use them for Arrays:

> Math.max.apply(null, [-1, 7, 2])

7

12.5.4.2 ES6: The spread operator (...) mostly replaces apply()

Making a direct method call via apply() only because you want to turn an Array into arguments
is clumsy, which is why ECMAScript 6 has the spread operator (...) for this. It provides this
functionality even in dispatched method calls.

> Math.max(...[-1, 7, 2])

7

Another example:

> const arr = ['a', 'b'];

> arr.push(...['c', 'd'])

4

> arr

[ 'a', 'b', 'c', 'd' ]

As a bonus, spread also works with the new operator:



Callable entities in ECMAScript 6 171

> new Date(...[2011, 11, 24])

Sat Dec 24 2011 00:00:00 GMT+0100 (CET)

Note that apply() can’t be used with new – the above feat can only be achieved via a complicated
work-around³ in ECMAScript 5.

12.5.4.3 ES5: Convert an Array-like object to an Array

Some objects in JavaScript are Array-like, they are almost Arrays, but don’t have any of the
Array methods. Let’s look at two examples.

First, the special variable arguments of functions is Array-like. It has a length and indexed access
to elements.

> var args = function () { return arguments }('a', 'b');

> args.length

2

> args[0]

'a'

But arguments isn’t an instance of Array and does not have the method forEach().

> args instanceof Array

false

> args.forEach

undefined

Second, the DOM method document.querySelectorAll() returns an instance of NodeList.

> document.querySelectorAll('a[href]') instanceof NodeList

true

> document.querySelectorAll('a[href]').forEach // no Array methods!

undefined

Thus, for many complex operations, you need to convert Array-like objects to Arrays first. That
is achieved via Array.prototype.slice(). This method copies the elements of its receiver into
a new Array:

³http://speakingjs.com/es5/ch17.html#apply_constructors

http://speakingjs.com/es5/ch17.html#apply_constructors
http://speakingjs.com/es5/ch17.html#apply_constructors
http://speakingjs.com/es5/ch17.html#apply_constructors


Callable entities in ECMAScript 6 172

> var arr = ['a', 'b'];

> arr.slice()

[ 'a', 'b' ]

> arr.slice() === arr

false

If you call slice() directly, you can convert a NodeList to an Array:

var domLinks = document.querySelectorAll('a[href]');

var links = Array.prototype.slice.call(domLinks);

links.forEach(function (link) {

console.log(link);

});

And you can convert arguments to an Array:

function format(pattern) {

// params start at arguments[1], skipping `pattern`

var params = Array.prototype.slice.call(arguments, 1);

return params;

}

console.log(format('a', 'b', 'c')); // ['b', 'c']

12.5.4.4 ES6: Array-like objects are less burdensome

On one hand, ECMAScript 6 has Array.from(), a simpler way of converting Array-like objects
to Arrays:

const domLinks = document.querySelectorAll('a[href]');

const links = Array.from(domLinks);

links.forEach(function (link) {

console.log(link);

});

On the other hand, you won’t need the Array-like arguments, because ECMAScript 6 has rest
parameters (declared via a triple dot):

function format(pattern, ...params) {

return params;

}

console.log(format('a', 'b', 'c')); // ['b', 'c']

12.5.4.5 ES5: Using hasOwnProperty() safely

obj.hasOwnProperty('prop') tells you whether obj has the own (non-inherited) property prop.



Callable entities in ECMAScript 6 173

> var obj = { prop: 123 };

> obj.hasOwnProperty('prop')

true

> 'toString' in obj // inherited

true

> obj.hasOwnProperty('toString') // own

false

However, calling hasOwnProperty via dispatch can cease towork properly if Object.prototype.hasOwnProperty
is overridden.

> var obj1 = { hasOwnProperty: 123 };

> obj1.hasOwnProperty('toString')

TypeError: Property 'hasOwnProperty' is not a function

hasOwnProperty may also be unavailable via dispatch if Object.prototype is not in the
prototype chain of an object.

> var obj2 = Object.create(null);

> obj2.hasOwnProperty('toString')

TypeError: Object has no method 'hasOwnProperty'

In both cases, the solution is to make a direct call to hasOwnProperty:

> var obj1 = { hasOwnProperty: 123 };

> Object.prototype.hasOwnProperty.call(obj1, 'hasOwnProperty')

true

> var obj2 = Object.create(null);

> Object.prototype.hasOwnProperty.call(obj2, 'toString')

false

12.5.4.6 ES6: Less need for hasOwnProperty()

hasOwnProperty() is mostly used to implement Maps via objects. Thankfully, ECMAScript 6 has
a built-in Map data structure, which means that you’ll need hasOwnProperty() less.

12.5.4.7 ES5: Avoiding intermediate objects

Applying an Array method such as join() to a string normally involves two steps:



Callable entities in ECMAScript 6 174

var str = 'abc';

var arr = str.split(''); // step 1

var joined = arr.join('-'); // step 2

console.log(joined); // a-b-c

Strings are Array-like and can become the this value of generic Array methods. Therefore, a
direct call lets you avoid step 1:

var str = 'abc';

var joined = Array.prototype.join.call(str, '-');

Similarly, you can apply map() to a string either after you split it or via a direct method call:

> function toUpper(x) { return x.toUpperCase() }

> 'abc'.split('').map(toUpper)

[ 'A', 'B', 'C' ]

> Array.prototype.map.call('abc', toUpper)

[ 'A', 'B', 'C' ]

Note that the direct calls may be more efficient, but they are also much less elegant. Be sure that
they are really worth it!

12.5.4.8 ES6: Avoiding intermediate objects

Array.from() can convert andmap in a single step, if you provide it with a callback as the second
argument.

> Array.from('abc', ch => ch.toUpperCase())

[ 'A', 'B', 'C' ]

As a reminder, the two step solution is:

> 'abc'.split('').map(function (x) { return x.toUpperCase() })

[ 'A', 'B', 'C' ]

12.5.5 Abbreviations for Object.prototype and Array.prototype

You can access the methods of Object.prototype via an empty object literal (whose prototype
is Object.prototype). For example, the following two direct method calls are equivalent:



Callable entities in ECMAScript 6 175

Object.prototype.hasOwnProperty.call(obj, 'propKey')

{}.hasOwnProperty.call(obj, 'propKey')

The same trick works for Array.prototype:

Array.prototype.slice.call(arguments)

[].slice.call(arguments)

This pattern has become quite popular. It does not reflect the intention of the author as clearly
as the longer version, but it’s much less verbose. Speed-wise⁴, there isn’t much of a difference
between the two versions.

12.6 The name property of functions

The name property of a function contains its name:

> function foo() {}

> foo.name

'foo'

This property is useful for debugging (its value shows up in stack traces) and some metapro-
gramming tasks (picking a function by name etc.).

Prior to ECMAScript 6, this property was already supported by most engines. With ES6, it
becomes part of the language standard and is frequently filled in automatically.

12.6.1 Constructs that provide names for functions

The following sections describe how name is set up automatically for various programming
constructs.

12.6.1.1 Variable declarations and assignments

Functions pick up names if they are created via variable declarations:

⁴http://jsperf.com/array-prototype-slice-call-vs-slice-call/17

http://jsperf.com/array-prototype-slice-call-vs-slice-call/17
http://jsperf.com/array-prototype-slice-call-vs-slice-call/17


Callable entities in ECMAScript 6 176

let func1 = function () {};

console.log(func1.name); // func1

const func2 = function () {};

console.log(func2.name); // func2

var func3 = function () {};

console.log(func3.name); // func3

But even with a normal assignment, name is set up properly:

let func4;

func4 = function () {};

console.log(func4.name); // func4

var func5;

func5 = function () {};

console.log(func5.name); // func5

With regard to names, arrow functions are like anonymous function expressions:

const func = () => {};

console.log(func.name); // func

From now on, whenever you see an anonymous function expression, you can assume that an
arrow function works the same way.

12.6.1.2 Default values

If a function is a default value, it gets its name from its variable or parameter:

let [func1 = function () {}] = [];

console.log(func1.name); // func1

let { f2: func2 = function () {} } = {};

console.log(func2.name); // func2

function g(func3 = function () {}) {

return func3.name;

}

console.log(g()); // func3

12.6.1.3 Named function definitions

Function declarations and function expression are function definitions. This scenario has been
supported for a long time: a function definition with a name passes it on to the name property.

For example, a function declaration:



Callable entities in ECMAScript 6 177

function foo() {}

console.log(foo.name); // foo

The name of a named function expression also sets up the name property.

const bar = function baz() {};

console.log(bar.name); // baz

Because it comes first, the function expression’s name baz takes precedence over other names
(e.g. the name bar provided via the variable declaration):

However, as in ES5, the name of a function expression is only a variable inside the function
expression:

const bar = function baz() {

console.log(baz.name); // baz

};

bar();

console.log(baz); // ReferenceError

12.6.1.4 Methods in object literals

If a function is the value of a property, it gets its name from that property. It doesn’t matter if that
happens via a method definition (line A), a traditional property definition (line B), a property
definition with a computed property key (line C) or a property value shorthand (line D).

function func() {}

let obj = {

m1() {}, // (A)

m2: function () {}, // (B)

['m' + '3']: function () {}, // (C)

func, // (D)

};

console.log(obj.m1.name); // m1

console.log(obj.m2.name); // m2

console.log(obj.m3.name); // m3

console.log(obj.func.name); // func

The names of getters are prefixed with 'get', the names of setters are prefixed with 'set':



Callable entities in ECMAScript 6 178

let obj = {

get foo() {},

set bar(value) {},

};

let getter = Object.getOwnPropertyDescriptor(obj, 'foo').get;

console.log(getter.name); // 'get foo'

let setter = Object.getOwnPropertyDescriptor(obj, 'bar').set;

console.log(setter.name); // 'set bar'

12.6.1.5 Methods in class definitions

The naming of methods in class definitions is similar to object literals:

class C {

m1() {}

['m' + '2']() {} // computed property key

static classMethod() {}

}

console.log(C.prototype.m1.name); // m1

console.log(new C().m1.name); // m1

console.log(C.prototype.m2.name); // m2

console.log(C.classMethod.name); // classMethod

Getters and setters again have the name prefixes 'get' and 'set', respectively:

class C {

get foo() {}

set bar(value) {}

}

let getter = Object.getOwnPropertyDescriptor(C.prototype, 'foo').get;

console.log(getter.name); // 'get foo'

let setter = Object.getOwnPropertyDescriptor(C.prototype, 'bar').set;

console.log(setter.name); // 'set bar'

12.6.1.6 Methods whose keys are symbols

In ES6, the key of a method can be a symbol. The name property of such a method is still a string:

• If the symbol has a description, the method’s name is the description in square brackets.
• Otherwise, the method’s name is the empty string ('').



Callable entities in ECMAScript 6 179

const key1 = Symbol('description');

const key2 = Symbol();

let obj = {

[key1]() {},

[key2]() {},

};

console.log(obj[key1].name); // '[description]'

console.log(obj[key2].name); // ''

12.6.1.7 Class definitions

Remember that class definitions create functions. Those functions also have their property name

set up correctly:

class Foo {}

console.log(Foo.name); // Foo

const Bar = class {};

console.log(Bar.name); // Bar

12.6.1.8 Default exports

All of the following statements set name to 'default':

export default function () {}

export default (function () {});

export default class {}

export default (class {});

export default () => {};

12.6.1.9 Other programming constructs

• Generator functions and generator methods get their names the same way that normal
functions and methods do.

• new Function() produces functions whose name is 'anonymous'. A webkit bug⁵ describes
why that is necessary on the web.

• func.bind(···) produces a function whose name is 'bound '+func.name:

⁵https://bugs.webkit.org/show_bug.cgi?id=7726

https://bugs.webkit.org/show_bug.cgi?id=7726
https://bugs.webkit.org/show_bug.cgi?id=7726


Callable entities in ECMAScript 6 180

function foo(x) {

return x

}

const bound = foo.bind(undefined, 123);

console.log(bound.name); // 'bound foo'

12.6.2 Caveats

12.6.2.1 Caveat: the name of a function is always assigned at creation

Function names are always assigned during creation and never changed later on. That is,
JavaScript engines detect the previously mentioned patterns and create functions that start their
lives with the correct names. The following code demonstrates that the name of the function
created by functionFactory() is assigned in line A and not changed by the declaration in line
B.

function functionFactory() {

return function () {}; // (A)

}

const foo = functionFactory(); // (B)

console.log(foo.name.length); // 0 (anonymous)

One could, in theory, check for each assignment whether the right-hand side evaluates to a
function and whether that function doesn’t have a name, yet. But that would incur a significant
performance penalty.

12.6.2.2 Caveat: minification

Function names are subject to minification, which means that they will usually change in
minified code. Depending on what you want to do, you may have to manage function names via
strings (which are not minified) or you may have to tell your minifier what names not to minify.

12.6.3 Changing the names of functions

These are the attributes of property name:

> let func = function () {}

> Object.getOwnPropertyDescriptor(func, 'name')

{ value: 'func',

writable: false,

enumerable: false,

configurable: true }

The property not being writable means that you can’t change its value via assignment:



Callable entities in ECMAScript 6 181

> func.name = 'foo';

> func.name

'func'

The property is, however, configurable, which means that you can change it by re-defining it:

> Object.defineProperty(func, 'name', {value: 'foo', configurable: true});

> func.name

'foo'

If the property name already exists then you can omit the descriptor property configurable,
because missing descriptor properties mean that the corresponding attributes are not changed.

If the property name does not exist yet then the descriptor property configurable ensures that
name remains configurable (the default attribute values are all false or undefined).

12.6.4 The function property name in the spec

• The spec operation SetFunctionName()⁶ sets up the property name. Search for its name in
the spec to find out where that happens.

– The third parameter of that operations specifies a name prefix. It is used for:
* Getters and setters⁷ (prefixes 'get' and 'set')
* Function.prototype.bind()⁸ (prefix 'bound')

• Anonymous function expressions not having a property name can be seen by looking at
their runtime semantics⁹:

– The names of named function expressions are set up via SetFunctionName(). That
operation is not invoked for anonymous function expressions.

– The names of function declarations are set up when entering a scope (they are
hoisted!).

• When an arrow function is created¹⁰, no name is set up, either (SetFunctionName() is not
invoked).

12.7 FAQ: callable entities

12.7.1 Why are there “fat” arrow functions (=>) in ES6, but no
“thin” arrow functions (->)?

ECMAScript 6 has syntax for functions with a lexical this, so-called arrow functions. However,
it does not have arrow syntax for functions with dynamic this. That omission was deliberate;
method definitions cover most of the use cases for thin arrows. If you really need dynamic this,
you can still use a traditional function expression.

⁶http://www.ecma-international.org/ecma-262/6.0/#sec-setfunctionname
⁷http://www.ecma-international.org/ecma-262/6.0/#sec-method-definitions-runtime-semantics-propertydefinitionevaluation
⁸http://www.ecma-international.org/ecma-262/6.0/#sec-function.prototype.bind
⁹http://www.ecma-international.org/ecma-262/6.0/#sec-function-definitions-runtime-semantics-evaluation
¹⁰http://www.ecma-international.org/ecma-262/6.0/#sec-arrow-function-definitions-runtime-semantics-evaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-setfunctionname
http://www.ecma-international.org/ecma-262/6.0/#sec-method-definitions-runtime-semantics-propertydefinitionevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-function.prototype.bind
http://www.ecma-international.org/ecma-262/6.0/#sec-function-definitions-runtime-semantics-evaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-arrow-function-definitions-runtime-semantics-evaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-setfunctionname
http://www.ecma-international.org/ecma-262/6.0/#sec-method-definitions-runtime-semantics-propertydefinitionevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-function.prototype.bind
http://www.ecma-international.org/ecma-262/6.0/#sec-function-definitions-runtime-semantics-evaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-arrow-function-definitions-runtime-semantics-evaluation


Callable entities in ECMAScript 6 182

12.7.2 How do I determine whether a function was invoked via
new?

ES6 has a new protocol for subclassing, which is explained in the chapter on classes. Part of
that protocol is the meta-property new.target, which refers to the first element in a chain of
constructor calls (similar to this in a chain for supermethod calls). It is undefined if there is no
constructor call. We can use that to enforce that a function must be invoked via new or that it
must not be invoked via it. This is an example for the latter:

function realFunction() {

if (new.target !== undefined) {

throw new Error('Can’t be invoked via `new`');

}

···

}

In ES5, this was usually checked like this:

function realFunction() {

"use strict";

if (this !== undefined) {

throw new Error('Can’t be invoked via `new`');

}

···

}



13. Arrow functions
13.1 Overview

There are two benefits to arrow functions.

First, they are less verbose than traditional function expressions:

const arr = [1, 2, 3];

const squares = arr.map(x => x * x);

// Traditional function expression:

const squares = arr.map(function (x) { return x * x });

Second, their this is picked up from surroundings (lexical). Therefore, you don’t need bind()

or that = this, anymore.

function UiComponent() {

const button = document.getElementById('myButton');

button.addEventListener('click', () => {

console.log('CLICK');

this.handleClick(); // lexical `this`

});

}

The following variables are all lexical inside arrow functions:

• arguments

• super

• this

• new.target

13.2 Traditional functions are bad non-method
functions, due to this

In JavaScript, traditional functions can be used as:

1. Non-method functions
2. Methods
3. Constructors

These roles clash: Due to roles 2 and 3, functions always have their own this. But that prevents
you from accessing the this of, e.g., a surrounding method from inside a callback (role 1).

You can see that in the following ES5 code:



Arrow functions 184

function Prefixer(prefix) {

this.prefix = prefix;

}

Prefixer.prototype.prefixArray = function (arr) { // (A)

'use strict';

return arr.map(function (x) { // (B)

// Doesn’t work:

return this.prefix + x; // (C)

});

};

In line C, we’d like to access this.prefix, but can’t do that because the this of the function
from line B shadows the this of the method from line A. In strict mode, this is undefined in
non-method functions, which is why we get an error if we use Prefixer:

> var pre = new Prefixer('Hi ');

> pre.prefixArray(['Joe', 'Alex'])

TypeError: Cannot read property 'prefix' of undefined

There are three ways to work around this problem in ECMAScript 5.

13.2.1 Solution 1: that = this

You can assign this to a variable that isn’t shadowed. That’s what’s done in line A, below:

function Prefixer(prefix) {

this.prefix = prefix;

}

Prefixer.prototype.prefixArray = function (arr) {

var that = this; // (A)

return arr.map(function (x) {

return that.prefix + x;

});

};

Now Prefixer works as expected:

> var pre = new Prefixer('Hi ');

> pre.prefixArray(['Joe', 'Alex'])

[ 'Hi Joe', 'Hi Alex' ]

13.2.2 Solution 2: specifying a value for this

A few Array methods have an extra parameter for specifying the value that this should have
when invoking the callback. That’s the last parameter in line A, below.



Arrow functions 185

function Prefixer(prefix) {

this.prefix = prefix;

}

Prefixer.prototype.prefixArray = function (arr) {

return arr.map(function (x) {

return this.prefix + x;

}, this); // (A)

};

13.2.3 Solution 3: bind(this)

You can use the method bind() to convert a function whose this is determined by how it is
called (via call(), a function call, a method call, etc.) to a function whose this is always the
same fixed value. That’s what we are doing in line A, below.

function Prefixer(prefix) {

this.prefix = prefix;

}

Prefixer.prototype.prefixArray = function (arr) {

return arr.map(function (x) {

return this.prefix + x;

}.bind(this)); // (A)

};

13.2.4 ECMAScript 6 solution: arrow functions

Arrow functions are basically solution 3, with amore convenient syntax.With an arrow function,
the code looks as follows.

function Prefixer(prefix) {

this.prefix = prefix;

}

Prefixer.prototype.prefixArray = function (arr) {

return arr.map((x) => {

return this.prefix + x;

});

};

To fully ES6-ify the code, you’d use a class and a more compact variant of arrow functions:



Arrow functions 186

class Prefixer {

constructor(prefix) {

this.prefix = prefix;

}

prefixArray(arr) {

return arr.map(x => this.prefix + x); // (A)

}

}

In line A we save a few characters by tweaking two parts of the arrow function:

• If there is only one parameter and that parameter is an identifier then the parentheses can
be omitted.

• An expression following the arrow leads to that expression being returned.

In the code, you can also see that the methods constructor and prefixArray are defined using
new, more compact ES6 syntax that also works in object literals.

13.3 Arrow function syntax

The “fat” arrow => (as opposed to the thin arrow ->) was chosen to be compatible with
CoffeeScript, whose fat arrow functions are very similar.

Specifying parameters:

() => { ... } // no parameter

x => { ... } // one parameter, an identifier

(x, y) => { ... } // several parameters

Specifying a body:

x => { return x * x } // block

x => x * x // expression, equivalent to previous line

The statement block behaves like a normal function body. For example, you need return to give
back a value. With an expression body, the expression is always implicitly returned.

Note how much an arrow function with an expression body can reduce verbosity. Compare:

const squares = [1, 2, 3].map(function (x) { return x * x });

const squares = [1, 2, 3].map(x => x * x);

13.3.1 Omitting parentheses around single parameters

Omitting the parentheses around the parameters is only possible if they consist of a single
identifier:



Arrow functions 187

> [1,2,3].map(x => 2 * x)

[ 2, 4, 6 ]

As soon as there is anything else, you have to type the parentheses, even if there is only a single
parameter. For example, you need parens if you destructure a single parameter:

> [[1,2], [3,4]].map(([a,b]) => a + b)

[ 3, 7 ]

And you need parens if a single parameter has a default value (undefined triggers the default
value!):

> [1, undefined, 3].map((x='yes') => x)

[ 1, 'yes', 3 ]

13.4 Lexical variables

13.4.1 Sources of variable values: static versus dynamic

The following are two ways in which a variable can receive its value.

First, statically (lexically): Its value is determined by the structure of the program; it receives its
value from a surrounding scope. For example:

const x = 123;

function foo(y) {

return x; // value received statically

}

Second, dynamically: It receives its value via a function call. For example:

function bar(arg) {

return arg; // value received dynamically

}

13.4.2 Variables that are lexical in arrow functions

The source of this is an important distinguishing aspect of arrow functions:

• Traditional functions have a dynamic this; its value is determined by how they are called.
• Arrow functions have a lexical this; its value is determined by the surrounding scope.



Arrow functions 188

The complete list¹ of variables whose values are determined lexically is:

• arguments

• super

• this

• new.target

13.5 Syntax pitfalls

There are a few syntax-related details that can sometimes trip you up.

13.5.1 Arrow functions bind very loosely

Syntactically, arrow functions bind very loosely. The reason is that you want every expression
that can appear in an expression body to “stick together”; it should bind more tightly than the
arrow function:

const f = x => (x % 2) === 0 ? x : 0;

As a consequence, you often have to wrap arrow functions in parentheses if they appear
somewhere else. For example:

console.log(typeof () => {}); // SyntaxError

console.log(typeof (() => {})); // OK

On the flip side, you can use typeof as an expression body without putting it in parens:

const f = x => typeof x;

13.5.2 No line break after arrow function parameters

ES6 forbids a line break between the parameter definition and the arrow of an arrow function:

¹http://www.ecma-international.org/ecma-262/6.0/#sec-arrow-function-definitions-runtime-semantics-evaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-arrow-function-definitions-runtime-semantics-evaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-arrow-function-definitions-runtime-semantics-evaluation


Arrow functions 189

const func1 = (x, y) // SyntaxError

=> {

return x + y;

};

const func2 = (x, y) => // OK

{

return x + y;

};

const func3 = (x, y) => { // OK

return x + y;

};

const func4 = (x, y) // SyntaxError

=> x + y;

const func5 = (x, y) => // OK

x + y;

Line breaks inside parameter definitions are OK:

const func6 = ( // OK

x,

y

) => {

return x + y;

};

The rationale for this restriction is that it keeps the options open w.r.t. to “headless” arrow
functions in the future: if there are zero parameters, you’d be able to omit the parentheses.

13.5.3 You can’t use statements as expression bodies

13.5.3.1 Expressions versus statements

Quick review (consult “Speaking JavaScript” for more information²):

Expressions produce (are evaluated to) values. Examples:

3 + 4

foo(7)

'abc'.length

Statements do things. Examples:

²http://speakingjs.com/es5/ch07.html#expr_vs_stmt

http://speakingjs.com/es5/ch07.html#expr_vs_stmt
http://speakingjs.com/es5/ch07.html#expr_vs_stmt


Arrow functions 190

while (true) { ··· }

return 123;

Most expressions³ can be used as statements, simply by mentioning them in statement positions:

function bar() {

3 + 4;

foo(7);

'abc'.length;

}

13.5.3.2 The bodies of arrow functions

If an expression is the body of an arrow function, you don’t need braces:

asyncFunc.then(x => console.log(x));

However, statements have to be put in braces:

asyncFunc.catch(x => { throw x });

13.5.4 Returning object literals

Having a block body in addition to an expression body means that if you want the expression
body to be an object literal, you have to put it in parentheses.

The body of this arrow function is a block with the label bar and the expression statement 123.

const f = x => { bar: 123 }

The body of this arrow function is an expression, an object literal:

const f = x => ({ bar: 123 })

13.6 Immediately-invoked arrow functions

Remember Immediately Invoked Function Expressions (IIFEs)⁴? They look as follows and are
used to simulate block-scoping and value-returning blocks in ECMAScript 5:

³The exceptions are function expressions and object literals, which you have to put in parentheses, because they look like function
declarations and code blocks.

⁴http://speakingjs.com/es5/ch16.html#iife

http://speakingjs.com/es5/ch16.html#iife
http://speakingjs.com/es5/ch16.html#iife


Arrow functions 191

(function () { // open IIFE

// inside IIFE

}()); // close IIFE

You can save a few characters if you use an Immediately Invoked Arrow Function (IIAF):

(() => {

return 123

})();

Similarly to IIFEs, you should terminate IIAFs with semicolons (or use an equivalent measure⁵),
to avoid two consecutive IIAFs being interpreted as a function call (the first one as the function,
the second one as the parameter).

Even if the IIAF has a block body, you must wrap it in parentheses, because it can’t be (directly)
function-called, due to how loosely it binds. Note that the parentheses must be around the arrow
function. With IIFEs you have a choice: you can either put the parentheses around the whole
statement or just around the function expression.

As mentioned in the previous section, arrow functions binding loosely is useful for expression
bodies, where you want this expression:

const value = () => foo()

to be interpreted as:

const value = () => (foo())

and not as:

const value = (() => foo)()

A section in the chapter on callable entities has more information on using IIFEs and IIAFs in
ES6.

13.7 Arrow functions versus bind()

ES6 arrow functions are often a compelling alternative to Function.prototype.bind().

13.7.1 Extracting methods

If an extracted method is to work as a callback, you must specify a fixed this, otherwise it will
be invoked as a function (and this will be undefined or the global object). For example:

⁵http://speakingjs.com/es5/ch16.html#iife_prefix

http://speakingjs.com/es5/ch16.html#iife_prefix
http://speakingjs.com/es5/ch16.html#iife_prefix


Arrow functions 192

obj.on('anEvent', console.log.bind(console))

An alternative is to use an arrow function:

obj.on('anEvent', x => console.log(x))

13.7.2 this via parameters

The following code demonstrates a neat trick: For some methods, you don’t need bind() for a
callback, because they let you specify the value of this, via an additional parameter. filter()
is one such method:

const as = new Set([1, 2, 3]);

const bs = new Set([3, 2, 4]);

const intersection = [...as].filter(bs.has, bs);

// [2, 3]

However, this code is easier to understand if you use an arrow function:

const as = new Set([1, 2, 3]);

const bs = new Set([3, 2, 4]);

const intersection = [...as].filter(a => bs.has(a));

// [2, 3]

13.7.3 Partial evaluation

bind() enables you to do partial evaluation⁶, you can create new functions by filling in
parameters of an existing function:

function add(x, y) {

return x + y;

}

const plus1 = add.bind(undefined, 1);

Again, I find an arrow function easier to understand:

const plus1 = y => add(1, y);

⁶http://www.2ality.com/2011/09/currying-vs-part-eval.html

http://www.2ality.com/2011/09/currying-vs-part-eval.html
http://www.2ality.com/2011/09/currying-vs-part-eval.html


Arrow functions 193

13.8 Arrow functions versus normal functions

An arrow function is different from a normal function in only two ways:

• The following constructs are lexical: arguments, super, this, new.target
• It can’t be used as a constructor: Normal functions support new via the internal method
[[Construct]] and the property prototype. Arrow functions have neither, which is why
new (() => {}) throws an error.

Apart from that, there are no observable differences between an arrow function and a normal
function. For example, typeof and instanceof produce the same results:

> typeof (() => {})

'function'

> () => {} instanceof Function

true

> typeof function () {}

'function'

> function () {} instanceof Function

true

Consult the chapter on callable entities for more information on when to use arrow functions
and when to use traditional functions.



14. New OOP features besides
classes

Classes (which are explained in the next chapter) are themajor new OOP feature in ECMAScript
6. However, it also includes new features for object literals and new utility methods in Object.
This chapter describes them.

14.1 Overview

14.1.1 New object literal features

Method definitions:

const obj = {

myMethod(x, y) {

···

}

};

Property value shorthands:

const first = 'Jane';

const last = 'Doe';

const obj = { first, last };

// Same as:

const obj = { first: first, last: last };

Computed property keys:

const propKey = 'foo';

const obj = {

[propKey]: true,

['b'+'ar']: 123

};

This new syntax can also be used for method definitions:



New OOP features besides classes 195

const obj = {

['h'+'ello']() {

return 'hi';

}

};

console.log(obj.hello()); // hi

The main use case for computed property keys is to make it easy to use symbols as property keys.

14.1.2 New methods in Object

The most important new method of Object is assign(). Traditionally, this functionality was
called extend() in the JavaScript world. In contrast to how this classic operation works,
Object.assign() only considers own (non-inherited) properties.

const obj = { foo: 123 };

Object.assign(obj, { bar: true });

console.log(JSON.stringify(obj));

// {"foo":123,"bar":true}

14.2 New features of object literals

14.2.1 Method definitions

In ECMAScript 5, methods are properties whose values are functions:

var obj = {

myMethod: function (x, y) {

···

}

};

In ECMAScript 6, methods are still function-valued properties, but there is now a more compact
way of defining them:

const obj = {

myMethod(x, y) {

···

}

};

Getters and setters continue to work as they did in ECMAScript 5 (note how syntactically similar
they are to method definitions):



New OOP features besides classes 196

const obj = {

get foo() {

console.log('GET foo');

return 123;

},

set bar(value) {

console.log('SET bar to '+value);

// return value is ignored

}

};

Let’s use obj:

> obj.foo

GET foo

123

> obj.bar = true

SET bar to true

true

There is also a way to concisely define properties whose values are generator functions:

const obj = {

* myGeneratorMethod() {

···

}

};

This code is equivalent to:

const obj = {

myGeneratorMethod: function* () {

···

}

};

14.2.2 Property value shorthands

Property value shorthands let you abbreviate the definition of a property in an object literal: If
the name of the variable that specifies the property value is also the property key then you can
omit the key. This looks as follows.



New OOP features besides classes 197

const x = 4;

const y = 1;

const obj = { x, y };

The last line is equivalent to:

const obj = { x: x, y: y };

Property value shorthands work well together with destructuring:

const obj = { x: 4, y: 1 };

const {x,y} = obj;

console.log(x); // 4

console.log(y); // 1

One use case for property value shorthands are multiple return values (which are explained in
the chapter on destructuring).

14.2.3 Computed property keys

Remember that there are two ways of specifying a key when you set a property.

1. Via a fixed name: obj.foo = true;

2. Via an expression: obj['b'+'ar'] = 123;

In object literals, you only have option #1 in ECMAScript 5. ECMAScript 6 additionally provides
option #2:

const propKey = 'foo';

const obj = {

[propKey]: true,

['b'+'ar']: 123

};

This new syntax can also be used for method definitions:



New OOP features besides classes 198

const obj = {

['h'+'ello']() {

return 'hi';

}

};

console.log(obj.hello()); // hi

The main use case for computed property keys are symbols: you can define a public symbol and
use it as a special property key that is always unique. One prominent example is the symbol
stored in Symbol.iterator. If an object has a method with that key, it becomes iterable: The
method must return an iterator, which is used by constructs such as the for-of loop to iterate
over the object. The following code demonstrates how that works.

const obj = {

* [Symbol.iterator]() { // (A)

yield 'hello';

yield 'world';

}

};

for (const x of obj) {

console.log(x);

}

// Output:

// hello

// world

Line A starts a generator method definition with a computed key (the symbol stored in
Symbol.iterator).

14.3 New methods of Object

14.3.1 Object.assign(target, source_1, source_2, ···)

This method merges the sources into the target: It modifies target, first copies all enumerable
own (non-inherited) properties of source_1 into it, then all own properties of source_2, etc. At
the end, it returns the target.

const obj = { foo: 123 };

Object.assign(obj, { bar: true });

console.log(JSON.stringify(obj));

// {"foo":123,"bar":true}

Let’s look more closely at how Object.assign() works:



New OOP features besides classes 199

• Both kinds of property keys: Object.assign() is aware of both strings and symbols as
property keys.

• Only enumerable own properties: Object.assign() ignores inherited properties and
properties that are not enumerable.

• Reading a value from a source: normal “get” operation (const value = source[propKey]).
That means that if the source has a getter whose key is propKey then it will be invoked.
All properties created by Object.assign() are data properties, it won’t transfer getters to
the target.

• Writing a value to the target: normal “set” operation (target[propKey] = value). That
means that if the target has a setter whose key is propKey then it will be invoked with
value.

This is how you’d copy all properties (not just enumerable ones), while correctly transferring
getters and setters, without invoking setters on the target:

function copyAllProperties(target, ...sources) {

for (const source of sources) {

for (const key of Reflect.ownKeys(source)) {

const desc = Object.getOwnPropertyDescriptor(source, key);

Object.defineProperty(target, key, desc);

}

}

return target;

}

14.3.1.1 Caveat: Object.assign() doesn’t work well for moving methods

On one hand, you can’t move a method that uses super: Such a method has the internal slot
[[HomeObject]] that ties it to the object it was created in. If you move it via Object.assign(),
it will continue to refer to the super-properties of the original object. Details are explained in a
section in the chapter on classes.

On the other hand, enumerability is wrong if you move methods created by an object literal into
the prototype of a class. The former methods are all enumerable (otherwise Object.assign()

wouldn’t see them, anyway), but the prototype only has non-enumerable methods by default.

14.3.1.2 Use cases for Object.assign()

Let’s look at a few use cases.

14.3.1.2.1 Adding properties to this

You can use Object.assign() to add properties to this in a constructor:



New OOP features besides classes 200

class Point {

constructor(x, y) {

Object.assign(this, {x, y});

}

}

14.3.1.2.2 Providing default values for object properties

Object.assign() is also useful for filling in defaults for missing properties. In the following
example, we have an object DEFAULTS with default values for properties and an object options
with data.

const DEFAULTS = {

logLevel: 0,

outputFormat: 'html'

};

function processContent(options) {

options = Object.assign({}, DEFAULTS, options); // (A)

···

}

In line A, we created a fresh object, copied the defaults into it and then copied options into it,
overriding the defaults. Object.assign() returns the result of these operations, which we assign
to options.

14.3.1.2.3 Adding methods to objects

Another use case is adding methods to objects:

Object.assign(SomeClass.prototype, {

someMethod(arg1, arg2) {

···

},

anotherMethod() {

···

}

});

You could also manually assign functions, but then you don’t have the nice method definition
syntax and need to mention SomeClass.prototype each time:



New OOP features besides classes 201

SomeClass.prototype.someMethod = function (arg1, arg2) {

···

};

SomeClass.prototype.anotherMethod = function () {

···

};

14.3.1.2.4 Cloning objects

One last use case for Object.assign() is a quick way of cloning objects:

function clone(orig) {

return Object.assign({}, orig);

}

This way of cloning is also somewhat dirty, because it doesn’t preserve the property attributes
of orig. If that is what you need, you have to use property descriptors¹.

If youwant the clone to have the same prototype as the original, you can use Object.getPrototypeOf()
and Object.create():

function clone(orig) {

const origProto = Object.getPrototypeOf(orig);

return Object.assign(Object.create(origProto), orig);

}

14.3.2 Object.getOwnPropertySymbols(obj)

Object.getOwnPropertySymbols(obj) retrieves all own (non-inherited) symbol-valued property
keys of obj. It complements Object.getOwnPropertyNames(), which retrieves all string-valued
own property keys. Consult a later section for more details on traversing properties.

14.3.3 Object.is(value1, value2)

The strict equals operator (===) treats two values differently than one might expect.

First, NaN is not equal to itself.

> NaN === NaN

false

That is unfortunate, because it often prevents us from detecting NaN:

¹http://speakingjs.com/es5/ch17.html#property_attributes

http://speakingjs.com/es5/ch17.html#property_attributes
http://speakingjs.com/es5/ch17.html#property_attributes


New OOP features besides classes 202

> [0,NaN,2].indexOf(NaN)

-1

Second, JavaScript has two zeros², but strict equals treats them as if they were the same value:

> -0 === +0

true

Doing this is normally a good thing.

Object.is() provides a way of comparing values that is a bit more precise than ===. It works as
follows:

> Object.is(NaN, NaN)

true

> Object.is(-0, +0)

false

Everything else is compared as with ===.

14.3.3.1 Using Object.is() to find Array elements

If we combine Object.is() with the new ES6 Array method findIndex(), we can find NaN in
Arrays:

function myIndexOf(arr, elem) {

return arr.findIndex(x => Object.is(x, elem));

}

myIndexOf([0,NaN,2], NaN); // 1

In contrast, indexOf() does not handle NaN well:

> [0,NaN,2].indexOf(NaN)

-1

14.3.4 Object.setPrototypeOf(obj, proto)

This method sets the prototype of obj to proto. The non-standard way of doing so in
ECMAScript 5, that is supported by many engines, is via assigning to the special property
__proto__. The recommended way of setting the prototype remains the same as in ECMAScript
5: during the creation of an object, via Object.create(). That will always be faster than first
creating an object and then setting its prototype. Obviously, it doesn’t work if youwant to change
the prototype of an existing object.

²http://speakingjs.com/es5/ch11.html#two_zeros

http://speakingjs.com/es5/ch11.html#two_zeros
http://speakingjs.com/es5/ch11.html#two_zeros


New OOP features besides classes 203

14.4 Traversing properties in ES6

14.4.1 Five operations that traverse properties

In ECMAScript 6, the key of a property can be either a string or a symbol. The following are five
operations that traverse the property keys of an object obj:

• Object.keys(obj) : Array<string>

retrieves all string keys of all enumerable own (non-inherited) properties.
• Object.getOwnPropertyNames(obj) : Array<string>

retrieves all string keys of all own properties.
• Object.getOwnPropertySymbols(obj) : Array<symbol>

retrieves all symbol keys of all own properties.
• Reflect.ownKeys(obj) : Array<string|symbol>

retrieves all keys of all own properties.
• for (const key in obj)

retrieves all string keys of all enumerable properties (inherited and own).

14.4.2 Traversal order of properties

ES6 defines two traversal orders for properties.

Own Property Keys:

• Retrieves the keys of all own properties of an object, in the following order:
– First, the string keys that are integer indices (what these are is explained in the next
section), in ascending numeric order.

– Then all other string keys, in the order in which they were added to the object.
– Lastly, all symbol keys, in the order in which they were added to the object.

• Used by: Object.assign(), Object.defineProperties(), Object.getOwnPropertyNames(),
Object.getOwnPropertySymbols(), Reflect.ownKeys()

Enumerable Own Names:

• Retrieves the string keys of all enumerable own properties of an object. The order is not
defined by ES6, but it must be the same order in which for-in traverses properties.

• Used by: JSON.parse(), JSON.stringify(), Object.keys()

The order in which for-in traverses properties is not defined. Quoting Allen Wirfs-Brock³:

Historically, the for-in order was not defined and there has been variation among
browser implementations in the order they produce (and other specifics). ES5 added
Object.keys and the requirement that it should order the keys identically to for-

in. During development of both ES5 and ES6, the possibility of defining a specific
for-in order was considered but not adopted because of web legacy compatibility
concerns and uncertainty about the willingness of browsers to make changes in the
ordering they currently produce.

³https://mail.mozilla.org/pipermail/es-discuss/2015-August/043998.html

https://mail.mozilla.org/pipermail/es-discuss/2015-August/043998.html
https://mail.mozilla.org/pipermail/es-discuss/2015-August/043998.html


New OOP features besides classes 204

14.4.2.1 Integer indices

Many engines treat integer indices specially, even though they are still strings (at least as far as
the ES6 spec is concerned). Therefore, it makes sense to treat them as a separate category of keys.

Roughly, an integer index is a string that, if converted to a 53-bit non-negative integer and back
is the same value. Therefore:

• '10' and '2' are integer indices.
• '02' is not an integer index. Converting it to an integer and back results in the different
string '2'.

• '3.141' is not an integer index, because 3.141 is not an integer.

In ES6, instances of String and Typed Arrays have integer indices. The indices of normal Arrays
are a subset of integer indices: they have a smaller range of 32 bits. Formore information onArray
indices, consult “Array Indices in Detail⁴” in “Speaking JavaScript”.

Integer indices have a 53-bit range, because thats the largest range of integers that
JavaScript can handle. For details, see Sect. “Safe integers”.

14.4.2.2 Example

The following code demonstrates the traversal order “Own Property Keys”:

const obj = {

[Symbol('first')]: true,

'02': true,

'10': true,

'01': true,

'2': true,

[Symbol('second')]: true,

};

Reflect.ownKeys(obj);

// [ '2', '10', '02', '01',

// Symbol('first'), Symbol('second') ]

Explanation:

• '2' and '10' are integer indices, come first and are sorted numerically (not in the order
in which they were added).

• '02' and '01' are normal string keys, come next and appear in the order in which they
were added to obj.

• Symbol('first') and Symbol('second') are symbols and come last, in the order in which
they were added to obj.

⁴http://speakingjs.com/es5/ch18.html#_array_indices_in_detail

http://speakingjs.com/es5/ch18.html#_array_indices_in_detail
http://speakingjs.com/es5/ch18.html#_array_indices_in_detail


New OOP features besides classes 205

14.4.2.3 Why does the spec standardize in which order property keys are
returned?

Answer by Tab Atkins Jr.⁵:

Because, for objects at least, all implementations used approximately the same
order (matching the current spec), and lots of code was inadvertently written that
depended on that ordering, and would break if you enumerated it in a different
order. Since browsers have to implement this particular ordering to be web-
compatible, it was specced as a requirement.

There was some discussion about breaking from this in Maps/Sets, but doing so
would require us to specify an order that is impossible for code to depend on; in other
words, we’d have to mandate that the ordering be random, not just unspecified.
This was deemed too much effort, and creation-order is reasonable valuable (see
OrderedDict in Python, for example), so it was decided to have Maps and Sets match
Objects.

14.4.2.4 The order of properties in the spec

The following parts of the spec are relevant for this section:

• The section on Array exotic objects⁶ has a note on what Array indices are.
• The internal method [[OwnPropertyKeys]]⁷ is used by Reflect.ownKeys() and others.
• The operation EnumerableOwnNames⁸ is used by Object.keys() and others.
• The internal method [[Enumerate]]⁹ is used by for-in.

14.5 Assigning versus defining properties

This section provides background knowledge that is needed in later sections.

There are two similar ways of adding a property prop to an object obj:

• Assigning: obj.prop = 123

• Defining: Object.defineProperty(obj, 'prop', 123)

There are three cases in which assigning does not create an own property prop, even if it doesn’t
exist, yet:

⁵https://esdiscuss.org/topic/nailing-object-property-order
⁶http://www.ecma-international.org/ecma-262/6.0/#sec-array-exotic-objects
⁷http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots-ownpropertykeys
⁸http://www.ecma-international.org/ecma-262/6.0/#sec-enumerableownnames
⁹http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots-enumerate

https://esdiscuss.org/topic/nailing-object-property-order
http://www.ecma-international.org/ecma-262/6.0/#sec-array-exotic-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots-ownpropertykeys
http://www.ecma-international.org/ecma-262/6.0/#sec-enumerableownnames
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots-enumerate
https://esdiscuss.org/topic/nailing-object-property-order
http://www.ecma-international.org/ecma-262/6.0/#sec-array-exotic-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots-ownpropertykeys
http://www.ecma-international.org/ecma-262/6.0/#sec-enumerableownnames
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots-enumerate


New OOP features besides classes 206

1. A read-only property prop exists in the prototype chain. Then the assignment causes a
TypeError in strict mode.

2. A setter for prop exists in the prototype chain. Then that setter is called.
3. A getter for propwithout a setter exists in the prototype chain. Then a TypeError is thrown

in strict mode. This case is similar to the first one.

None of these cases prevent Object.defineProperty() from creating an own property. The next
section looks at case #3 in more detail.

14.5.1 Overriding inherited read-only properties

If an object obj inherits a property prop that is read-only then you can’t assign to that property:

const proto = Object.defineProperty({}, 'prop', {

writable: false,

configurable: true,

value: 123,

});

const obj = Object.create(proto);

obj.prop = 456;

// TypeError: Cannot assign to read-only property

This is similar to how an inherited property works that has a getter, but no setter. It is in line with
viewing assignment as changing the value of an inherited property. It does so non-destructively:
the original is not modified, but overridden by a newly created own property. Therefore, an
inherited read-only property and an inherited setter-less property both prevent changes via
assignment. You can, however, force the creation of an own property by defining a property:

const proto = Object.defineProperty({}, 'prop', {

writable: false,

configurable: true,

value: 123,

});

const obj = Object.create(proto);

Object.defineProperty(obj, 'prop', {value: 456});

console.log(obj.prop); // 456

14.6 __proto__ in ECMAScript 6

The property __proto__ (pronounced “dunder proto”) has existed for a while in most JavaScript
engines. This section explains how it worked prior to ECMAScript 6 and what changes with
ECMAScript 6.

For this section, it helps if you know what prototype chains are. Consult Sect. “Layer 2: The
Prototype Relationship Between Objects¹⁰” in “Speaking JavaScript”, if necessary.

¹⁰http://speakingjs.com/es5/ch17.html#prototype_relationship

http://speakingjs.com/es5/ch17.html#prototype_relationship
http://speakingjs.com/es5/ch17.html#prototype_relationship
http://speakingjs.com/es5/ch17.html#prototype_relationship


New OOP features besides classes 207

14.6.1 __proto__ prior to ECMAScript 6

14.6.1.1 Prototypes

Each object in JavaScript starts a chain of one or more objects, a so-called prototype chain.
Each object points to its successor, its prototype via the internal slot [[Prototype]] (which is
null if there is no successor). That slot is called internal, because it only exists in the language
specification and cannot be directly accessed from JavaScript. In ECMAScript 5, the standard
way of getting the prototype p of an object obj is:

var p = Object.getPrototypeOf(obj);

There is no standard way to change the prototype of an existing object, but you can create a new
object obj that has the given prototype p:

var obj = Object.create(p);

14.6.1.2 __proto__

A long time ago, Firefox got the non-standard property __proto__. Other browsers eventually
copied that feature, due to its popularity.

Prior to ECMAScript 6, __proto__ worked in obscure ways:

• You could use it to get or set the prototype of any object:

var obj = {};

var p = {};

console.log(obj.__proto__ === p); // false

obj.__proto__ = p;

console.log(obj.__proto__ === p); // true

• However, it was never an actual property:

> var obj = {};

> '__proto__' in obj

false

14.6.1.3 Subclassing Array via __proto__

The main reason why __proto__ became popular was because it enabled the only way to create
a subclass MyArray of Array in ES5: Array instances were exotic objects that couldn’t be created
by ordinary constructors. Therefore, the following trick was used:



New OOP features besides classes 208

function MyArray() {

var instance = new Array(); // exotic object

instance.__proto__ = MyArray.prototype;

return instance;

}

MyArray.prototype = Object.create(Array.prototype);

MyArray.prototype.customMethod = function (···) { ··· };

Subclassing in ES6 works differently than in ES5 and supports subclassing builtins out of the
box.

14.6.1.4 Why __proto__ is problematic in ES5

Themain problem is that __proto__mixes two levels: the object level (normal properties, holding
data) and the meta level.

If you accidentally use __proto__ as a normal property (object level!), to store data, you get into
trouble, because the two levels clash. The situation is compounded by the fact that you have to
abuse objects as maps in ES5, because it has no built-in data structure for that purpose. Maps
should be able to hold arbitrary keys, but you can’t use the key '__proto__' with objects-as-
maps.

In theory, one could fix the problem by using a symbol instead of the special name __proto__,
but keeping meta-operations completely separate (as done via Object.getPrototypeOf()) is the
best approach.

14.6.2 The two kinds of __proto__ in ECMAScript 6

Because __proto__ was so widely supported, it was decided that its behavior should be
standardized for ECMAScript 6. However, due to its problematic nature, it was added as a
deprecated feature. These features reside in Annex B in the ECMAScript specification¹¹, which
is described as follows:

The ECMAScript language syntax and semantics defined in this annex are required
when the ECMAScript host is a web browser. The content of this annex is normative
but optional if the ECMAScript host is not a web browser.

JavaScript has several undesirable features that are required by a significant amount of code on
the web. Therefore, web browsers must implement them, but other JavaScript engines don’t have
to.

In order to explain the magic behind __proto__, two mechanisms were introduced in ES6:

• A getter and a setter implemented via Object.prototype.__proto__.
• In an object literal, you can consider the property key '__proto__' a special operator for
specifying the prototype of the created objects.

¹¹http://www.ecma-international.org/ecma-262/6.0/#sec-additional-ecmascript-features-for-web-browsers

http://www.ecma-international.org/ecma-262/6.0/#sec-additional-ecmascript-features-for-web-browsers
http://www.ecma-international.org/ecma-262/6.0/#sec-additional-ecmascript-features-for-web-browsers


New OOP features besides classes 209

14.6.2.1 Object.prototype.__proto__

ECMAScript 6 enables getting and setting the property __proto__ via a getter and a setter stored
in Object.prototype. If you were to implement them manually, this is roughly what it would
look like:

Object.defineProperty(Object.prototype, '__proto__', {

get() {

const _thisObj = Object(this);

return Object.getPrototypeOf(_thisObj);

},

set(proto) {

if (this === undefined || this === null) {

throw new TypeError();

}

if (!isObject(this)) {

return undefined;

}

if (!isObject(proto)) {

return undefined;

}

const status = Reflect.setPrototypeOf(this, proto);

if (! status) {

throw new TypeError();

}

},

});

function isObject(value) {

return Object(value) === value;

}

The getter and the setter for __proto__ in the ES6 spec:

• get Object.prototype.__proto__¹²
• set Object.prototype.__proto__¹³

14.6.2.2 The property key __proto__ as an operator in an object literal

If __proto__ appears as an unquoted or quoted property key in an object literal, the prototype
of the object created by that literal is set to the property value:

¹²http://www.ecma-international.org/ecma-262/6.0/#sec-get-object.prototype.__proto__
¹³http://www.ecma-international.org/ecma-262/6.0/#sec-set-object.prototype.__proto__

http://www.ecma-international.org/ecma-262/6.0/#sec-get-object.prototype.__proto__
http://www.ecma-international.org/ecma-262/6.0/#sec-set-object.prototype.__proto__
http://www.ecma-international.org/ecma-262/6.0/#sec-get-object.prototype.__proto__
http://www.ecma-international.org/ecma-262/6.0/#sec-set-object.prototype.__proto__


New OOP features besides classes 210

> Object.getPrototypeOf({ __proto__: null })

null

> Object.getPrototypeOf({ '__proto__': null })

null

Using the string value '__proto__' as a computed property key does not change the prototype,
it creates an own property:

> const obj = { ['__proto__']: null };

> Object.getPrototypeOf(obj) === Object.prototype

true

> Object.keys(obj)

[ '__proto__' ]

The special property key '__proto__' in the ES6 spec:

• __proto__ Property Names in Object Initializers¹⁴

14.6.3 Avoiding the magic of __proto__

14.6.3.1 Defining (not assigning) __proto__

In ECMAScript 6, if you define the own property __proto__, no special functionality is triggered
and the getter/setter Object.prototype.__proto__ is overridden:

const obj = {};

Object.defineProperty(obj, '__proto__', { value: 123 })

Object.keys(obj); // [ '__proto__' ]

console.log(obj.__proto__); // 123

14.6.3.2 Objects that don’t have Object.prototype as a prototype

The __proto__ getter/setter is provided via Object.prototype. Therefore, an object without
Object.prototype in its prototype chain doesn’t have the getter/setter, either. In the following
code, dict is an example of such an object – it does not have a prototype. As a result, __proto_-
_ now works like any other property:

¹⁴http://www.ecma-international.org/ecma-262/6.0/#sec-__proto__-property-names-in-object-initializers

http://www.ecma-international.org/ecma-262/6.0/#sec-__proto__-property-names-in-object-initializers
http://www.ecma-international.org/ecma-262/6.0/#sec-__proto__-property-names-in-object-initializers


New OOP features besides classes 211

> const dict = Object.create(null);

> '__proto__' in dict

false

> dict.__proto__ = 'abc';

> dict.__proto__

'abc'

14.6.3.3 __proto__ and dict objects

If you want to use an object as a dictionary then it is best if it doesn’t have a prototype. That’s
why prototype-less objects are also called dict objects¹⁵. In ES6, you don’t even have to escape the
property key '__proto__' for dict objects, because it doesn’t trigger any special functionality.

__proto__ as an operator in an object literal lets you create dict objects more concisely:

const dictObj = {

__proto__: null,

yes: true,

no: false,

};

Note that in ES6, you should normally prefer the built-in data structure Map to dict objects,
especially if keys are not fixed.

14.6.3.4 __proto__ and JSON

Prior to ES6, the following could happen in a JavaScript engine:

> JSON.parse('{"__proto__": []}') instanceof Array

true

With __proto__ being a getter/setter in ES6, JSON.parse() works fine, because it defines
properties, it doesn’t assign them (if implemented properly, an older version of V8 did assign¹⁶).

JSON.stringify() isn’t affected by __proto__, either, because it only considers own properties.
Objects that have an own property whose name is __proto__ work fine:

> JSON.stringify({['__proto__']: true})

'{"__proto__":true}'

¹⁵http://speakingjs.com/es5/ch17.html#dict_pattern
¹⁶https://code.google.com/p/v8/issues/detail?id=621

http://speakingjs.com/es5/ch17.html#dict_pattern
https://code.google.com/p/v8/issues/detail?id=621
http://speakingjs.com/es5/ch17.html#dict_pattern
https://code.google.com/p/v8/issues/detail?id=621


New OOP features besides classes 212

14.6.4 Detecting support for ES6-style __proto__

Support for ES6-style __proto__ varies from engine to engine. Consult kangax’ ECMAScript 6
compatibility table for information on the status quo:

• Object.prototype.__proto__¹⁷
• __proto__ in object literals¹⁸

The following two sections describe how you can programmatically detect whether an engine
supports either of the two kinds of __proto__.

14.6.4.1 Feature: __proto__ as getter/setter

A simple check for the getter/setter:

var supported = {}.hasOwnProperty.call(Object.prototype, '__proto__');

A more sophisticated check:

var desc = Object.getOwnPropertyDescriptor(Object.prototype, '__proto__');

var supported = (

typeof desc.get === 'function' && typeof desc.set === 'function'

);

14.6.4.2 Feature: __proto__ as an operator in an object literal

You can use the following check:

var supported = Object.getPrototypeOf({__proto__: null}) === null;

14.6.5 __proto__ is pronounced “dunder proto”

Bracketing nameswith double underscores is a common practice in Python to avoid name clashes
between meta-data (such as __proto__) and data (user-defined properties). That practice will
never become common in JavaScript, because it now has symbols for this purpose. However, we
can look to the Python community for ideas on how to pronounce double underscores.

The following pronunciation has been suggested¹⁹ by Ned Batchelder:

¹⁷http://kangax.github.io/compat-table/es6/#Object.prototype.__proto__
¹⁸http://kangax.github.io/compat-table/es6/#__proto___in_object_literals
¹⁹http://nedbatchelder.com/blog/200605/dunder.html

http://kangax.github.io/compat-table/es6/#Object.prototype.__proto__
http://kangax.github.io/compat-table/es6/#__proto___in_object_literals
http://nedbatchelder.com/blog/200605/dunder.html
http://kangax.github.io/compat-table/es6/#Object.prototype.__proto__
http://kangax.github.io/compat-table/es6/#__proto___in_object_literals
http://nedbatchelder.com/blog/200605/dunder.html


New OOP features besides classes 213

An awkward thing about programming in Python: there are lots of double un-
derscores. For example, the standard method names beneath the syntactic sugar
have names like __getattr__, constructors are __init__, built-in operators can be
overloaded with __add__, and so on. […]

My problem with the double underscore is that it’s hard to say. How do you
pronounce __init__? “underscore underscore init underscore underscore”? “under
under init under under”? Just plain “init” seems to leave out something important.

I have a solution: double underscore should be pronounced “dunder”. So __init__ is
“dunder init dunder”, or just “dunder init”.

Thus, __proto__ is pronounced “dunder proto”. The chances for this pronunciation catching on
are good, JavaScript creator Brendan Eich uses it.

14.6.6 Recommendations for __proto__

It is nice how well ES6 turns __proto__ from something obscure into something that is easy to
understand.

However, I still recommend not to use it. It is effectively a deprecated feature and not part of the
core standard. You can’t rely on it being there for code that must run on all engines.

More recommendations:

• Use Object.getPrototypeOf() to get the prototype of an object.
• Prefer Object.create() to create a new object with a given prototype. Avoid Ob-

ject.setPrototypeOf(), which hampers performance on many engines.
• I actually like __proto__ as an operator in an object literal. It is useful for demonstrating
prototypal inheritance and for creating dict objects. However, the previously mentioned
caveats do apply.

14.7 Enumerability in ECMAScript 6

Enumerability is an attribute of object properties. This section explains how it works in
ECMAScript 6. Let’s first explore what attributes are.

14.7.1 Property attributes

Each object has zero or more properties. Each property has a key and three or more attributes,
named slots that store the data of the property (in other words, a property is itself much like a
JavaScript object or like a record with fields in a database).

ECMAScript 6 supports the following attributes (as does ES5):

• All properties have the attributes:
– enumerable: Setting this attribute to false hides the property from some operations.



New OOP features besides classes 214

– configurable: Setting this attribute to false prevents several changes to a property
(attributes except value can’t be change, property can’t be deleted, etc.).

• Normal properties (data properties, methods) have the attributes:
– value: holds the value of the property.
– writable: controls whether the property’s value can be changed.

• Accessors (getters/setters) have the attributes:
– get: holds the getter (a function).
– set: holds the setter (a function).

You can retrieve the attributes of a property via Object.getOwnPropertyDescriptor(), which
returns the attributes as a JavaScript object:

> const obj = { foo: 123 };

> Object.getOwnPropertyDescriptor(obj, 'foo')

{ value: 123,

writable: true,

enumerable: true,

configurable: true }

This section explains how the attribute enumerable works in ES6. All other attributes and how
to change attributes is explained in Sect. “Property Attributes and Property Descriptors²⁰” in
“Speaking JavaScript”.

14.7.2 Constructs affected by enumerability

ECMAScript 5:

• for-in loop: traverses the string keys of own and inherited enumerable properties.
• Object.keys(): returns the string keys of enumerable own properties.
• JSON.stringify(): only stringifies enumerable own properties with string keys.

ECMAScript 6:

• Object.assign(): only copies enumerable own properties (both string keys and symbol
keys are considered).

for-in is the only built-in operations where enumerability matters for inherited properties. All
other operations only work with own properties.

14.7.3 Use cases for enumerability

Unfortunately, enumerability is quite an idiosyncratic feature. This section presents several use
cases for it and argues that, apart from protecting legacy code from breaking, its usefulness is
limited.

²⁰http://speakingjs.com/es5/ch17.html#property_attributes

http://speakingjs.com/es5/ch17.html#property_attributes
http://speakingjs.com/es5/ch17.html#property_attributes


New OOP features besides classes 215

14.7.3.1 Use case: Hiding properties from the for-in loop

The for-in loop traverses all enumerable properties of an object, own and inherited ones.
Therefore, the attribute enumerable is used to hide properties that should not be traversed. That
was the reason for introducing enumerability in ECMAScript 1.

14.7.3.1.1 Non-enumerability in the language

Non-enumerable properties occur in the following locations in the language:

• All prototype properties of built-in classes are non-enumerable:

> const desc = Object.getOwnPropertyDescriptor.bind(Object);

> desc(Object.prototype, 'toString').enumerable

false

• All prototype properties of classes are non-enumerable:

> desc(class {foo() {}}.prototype, 'foo').enumerable

false

• In Arrays, length is not enumerable, which means that for-in only traverses indices.
(However, that can easily change if you add a property via assignment, which is makes it
enumerable.)

> desc([], 'length').enumerable

false

> desc(['a'], '0').enumerable

true

Themain reason formaking all of these properties non-enumerable is to hide them (especially the
inherited ones) from legacy code that uses the for-in loop or $.extend() (and similar operations
that copy both inherited and own properties; see next section). Both operations should be avoided
in ES6. Hiding them ensures that the legacy code doesn’t break.

14.7.3.2 Use case: Marking properties as not to be copied

14.7.3.2.1 Historical precedents

When it comes to copying properties, there are two important historical precedents that take
enumerability into consideration:

• Prototype’s Object.extend(destination, source)²¹

²¹http://api.prototypejs.org/language/Object/extend/

http://api.prototypejs.org/language/Object/extend/
http://api.prototypejs.org/language/Object/extend/


New OOP features besides classes 216

const obj1 = Object.create({ foo: 123 });

Object.extend({}, obj1); // { foo: 123 }

const obj2 = Object.defineProperty({}, 'foo', {

value: 123,

enumerable: false

});

Object.extend({}, obj2) // {}

• jQuery’s $.extend(target, source1, source2, ···)²² copies all enumerable own and
inherited properties of source1 etc. into own properties of target.

const obj1 = Object.create({ foo: 123 });

$.extend({}, obj1); // { foo: 123 }

const obj2 = Object.defineProperty({}, 'foo', {

value: 123,

enumerable: false

});

$.extend({}, obj2) // {}

Problems with this way of copying properties:

• Turning inherited source properties into own target properties is rarely what you want.
That’s why enumerability is used to hide inherited properties.

• Which properties to copy and which not often depends on the task at hand, it rarely
makes sense to have a single flag for everything. A better choice is to provide the copying
operation with a predicate (a callback that returns a boolean) that tells it when to consider
a property.

The only instance property that is non-enumerable in the standard library is property length

of Arrays. However, that property only needs to be hidden due to it magically updating itself
via other properties. You can’t create that kind of magic property for your own objects (short of
using a Proxy).

14.7.3.2.2 ES6: Object.assign()

In ES6, Object.assign(target, source_1, source_2, ···) can be used to merge the sources
into the target. All own enumerable properties of the sources are considered (that is, keys can be
either strings or symbols). Object.assign() uses a “get” operation to read a value from a source
and a “set” operation to write a value to the target.

With regard to enumerability, Object.assign() continues the tradition of Object.extend() and
$.extend(). Quoting Yehuda Katz²³:

²²https://api.jquery.com/jquery.extend/
²³https://mail.mozilla.org/pipermail/es-discuss/2012-October/025934.html

https://api.jquery.com/jquery.extend/
https://mail.mozilla.org/pipermail/es-discuss/2012-October/025934.html
https://api.jquery.com/jquery.extend/
https://mail.mozilla.org/pipermail/es-discuss/2012-October/025934.html


New OOP features besides classes 217

Object.assign would pave the cowpath of all of the extend() APIs already in
circulation. We thought the precedent of not copying enumerable methods in those
cases was enough reason for Object.assign to have this behavior.

In other words: Object.assign() was created with an upgrade path from $.extend() (and
similar) in mind. Its approach is cleaner than $.extend’s, because it ignores inherited properties.

14.7.3.3 Marking properties as private

If you make a property non-enumerable, it can’t by seen by Object.keys() and the for-in loop,
anymore. With regard to those mechanisms, the property is private.

However, there are several problems with this approach:

• When copying an object, you normally want to copy private properties. That clashes
making properties non-enumerable that shouldn’t be copied (see previous section).

• The property isn’t really private. Getting, setting and several other mechanisms make no
distinction between enumerable and non-enumerable properties.

• When working with code either as source or interactively, you can’t immediately see
whether a property is enumerable or not. A naming convention (such as prefixing property
names with an underscore) is easier to discover.

• You can’t use enumerability to distinguish between public and private methods, because
methods in prototypes are non-enumerable by default.

14.7.3.4 Hiding own properties from JSON.stringify()

JSON.stringify() does not include properties in its output that are non-enumerable. You can
therefore use enumerability to determine which own properties should be exported to JSON. This
use case is similar to marking properties as private, the previous use case. But it is also different,
because this is more about exporting and slightly different considerations apply. For example:
Can an object be completely reconstructed from JSON?

An alternative for specifying how an object should be converted to JSON is to use toJSON():

const obj = {

foo: 123,

toJSON() {

return { bar: 456 };

},

};

JSON.stringify(obj); // '{"bar":456}'

I find toJSON() cleaner than enumerability for the current use case. It also gives youmore control,
because you can export properties that don’t exist on the object.



New OOP features besides classes 218

14.7.4 Naming inconsistencies

In general, a shorter name means that only enumerable properties are considered:

• Object.keys() ignores non-enumerable properties
• Object.getOwnPropertyNames() lists all property names

However, Reflect.ownKeys() deviates from that rule, it ignores enumerability and returns the
keys of all properties. Additionally, starting with ES6, the following distinction is made:

• Property keys are either strings or symbols.
• Property names are only strings.

Therefore, a better name for Object.keys() would now be Object.names().

14.7.5 Looking ahead

It seems to me that enumerability is only suited for hiding properties from the for-in loop and
$.extend() (and similar operations). Both are legacy features, you should avoid them in new
code. As for the other use cases:

• I don’t think there is a need for a general flag specifying whether or not to copy a property.
• Non-enumerability does not work well as a way to keep properties private.
• The toJSON()method is more powerful and explicit than enumerability when it comes to
controlling how to convert an object to JSON.

I’m not sure what the best strategy is for enumerability going forward. If, with ES6, we had
started to pretend that it didn’t exist (except for making prototype properties non-enumerable
so that old code doesn’t break), we might eventually have been able to deprecate enumerability.
However, Object.assign() considering enumerability runs counter that strategy (but it does so
for a valid reason, backward compatibility).

Inmy own ES6 code, I’m not using enumerability, except (implicitly) for classes whose prototype
methods are non-enumerable.

Lastly, when using an interactive command line, I occasionally miss an operation that returns all
property keys of an object, not just the own ones (Reflect.ownKeys). Such an operation would
provide a nice overview of the contents of an object.



New OOP features besides classes 219

14.8 Customizing basic language operations via
well-known symbols

This section explains how you can customize basic language operations by using the following
well-known symbols as property keys:

• Symbol.hasInstance (method)
Lets an object C customize the behavior of x instanceof C.

• Symbol.toPrimitive (method)
Lets an object customize how it is converted to a primitive value. This is the first step
whenever something is coerced to a primitive type (via operators etc.).

• Symbol.toStringTag (string)
Called by Object.prototype.toString() to compute the default string description of an
object obj: ‘[object ‘+obj[Symbol.toStringTag]+’]’.

• Symbol.unscopables (Object)
Lets an object hide some properties from the with statement.

14.8.1 Property key Symbol.hasInstance (method)

An object C can customize the behavior of the instanceof operator via a method with the key
Symbol.hasInstance that has the following signature:

[Symbol.hasInstance](potentialInstance : any)

x instanceof C works as follows in ES6:

• If C is not an object, throw a TypeError.
• If the method exists, call C[Symbol.hasInstance](x), coerce the result to boolean and
return it.

• Otherwise, compute and return the result according to the traditional algorithm (C must
be callable, C.prototype in the prototype chain of x, etc.).

14.8.1.1 Uses in the standard library

The only method in the standard library that has this key is:

• Function.prototype[Symbol.hasInstance]()

This is the implementation of instanceof that all functions (including classes) use by default.
Quoting the spec²⁴:

²⁴http://www.ecma-international.org/ecma-262/6.0/sec-function.prototype-@@hasinstance

http://www.ecma-international.org/ecma-262/6.0/sec-function.prototype-@@hasinstance
http://www.ecma-international.org/ecma-262/6.0/sec-function.prototype-@@hasinstance


New OOP features besides classes 220

This property is non-writable and non-configurable to prevent tampering that could
be used to globally expose the target function of a bound function.

The tampering is possible because the traditional instanceof algorithm, OrdinaryHasIn-

stance()²⁵, applies instanceof to the target function if it encounters a bound function.

Given that this property is read-only, you can’t use assignment to override it, as mentioned
earlier.

14.8.1.2 Example: checking whether a value is an object

As an example, let’s implement an object ReferenceType whose “instances” are all objects, not
just objects that are instances of Object (and therefore have Object.prototype in their prototype
chains).

const ReferenceType = {

[Symbol.hasInstance](value) {

return (value !== null

&& (typeof value === 'object'

|| typeof value === 'function'));

}

};

const obj1 = {};

console.log(obj1 instanceof Object); // true

console.log(obj1 instanceof ReferenceType); // true

const obj2 = Object.create(null);

console.log(obj2 instanceof Object); // false

console.log(obj2 instanceof ReferenceType); // true

14.8.2 Property key Symbol.toPrimitive (method)

Symbol.toPrimitive lets an object customize how it is coerced (converted automatically) to a
primitive value.

Many JavaScript operations coerce values to the types that they need.

• The multiplication operator (*) coerces its operands to numbers.
• new Date(year, month, date) coerces its parameters to numbers.
• parseInt(string , radix) coerces its first parameter to a string.

The following are the most common types that values are coerced to:

• Boolean: Coercion returns true for truthy values, false for falsy values. Objects are
always truthy (even new Boolean(false)).

²⁵http://www.ecma-international.org/ecma-262/6.0/#sec-ordinaryhasinstance

http://www.ecma-international.org/ecma-262/6.0/#sec-ordinaryhasinstance
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinaryhasinstance
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinaryhasinstance


New OOP features besides classes 221

• Number: Coercion converts objects to primitives first. Primitives are then converted to
numbers (null → 0, true → 1, '123' → 123, etc.).

• String: Coercion converts objects to primitives first. Primitives are then converted to
strings (null → 'null', true → 'true', 123 → '123', etc.).

• Object: The coercion wraps primitive values (booleans b via new Boolean(b), numbers n
via new Number(n), etc.).

Thus, for numbers and strings, the first step is to ensure that a value is any kind of primitive.
That is handled by the spec-internal operation ToPrimitive(), which has three modes:

• Number: the caller needs a number.
• String: the caller needs a string.
• Default: the caller needs either a number or a string.

The default mode is only used by:

• Equality operator (==)
• Addition operator (+)
• new Date(value) (exactly one parameter!)

If the value is a primitive then ToPrimitive() is already done. Otherwise, the value is an object
obj, which is converted to a primitive as follows:

• Number mode: Return the result of obj.valueOf() if it is primitive. Otherwise, return the
result of obj.toString() if it is primitive. Otherwise, throw a TypeError.

• String mode: works like Number mode, but toString() is called first, valueOf() second.
• Default mode: works exactly like Number mode.

This normal algorithm can be overridden by giving an object a method with the following
signature:

[Symbol.toPrimitive](hint : 'default' | 'string' | 'number')

In the standard library, there are two such methods:

• Symbol.prototype[Symbol.toPrimitive](hint)²⁶ prevents toString() from being called
(which throws an exception).

• Date.prototype[Symbol.toPrimitive](hint)²⁷ This method implements behavior that
deviates from the default algorithm. Quoting the specification: “Date objects are unique
among built-in ECMAScript object in that they treat 'default' as being equivalent to
'string'. All other built-in ECMAScript objects treat 'default' as being equivalent to
'number'.”

14.8.2.1 Example

The following code demonstrates how coercion affects the object obj.

²⁶http://www.ecma-international.org/ecma-262/6.0/#sec-symbol.prototype-@@toprimitive
²⁷http://www.ecma-international.org/ecma-262/6.0/#sec-date.prototype-@@toprimitive

http://www.ecma-international.org/ecma-262/6.0/#sec-symbol.prototype-@@toprimitive
http://www.ecma-international.org/ecma-262/6.0/#sec-date.prototype-@@toprimitive
http://www.ecma-international.org/ecma-262/6.0/#sec-symbol.prototype-@@toprimitive
http://www.ecma-international.org/ecma-262/6.0/#sec-date.prototype-@@toprimitive


New OOP features besides classes 222

const obj = {

[Symbol.toPrimitive](hint) {

switch (hint) {

case 'number':

return 123;

case 'string':

return 'str';

case 'default':

return 'default';

default:

throw new Error();

}

}

};

console.log(2 * obj); // 246

console.log(3 + obj); // '3default'

console.log(obj == 'default'); // true

console.log(String(obj)); // 'str'

14.8.3 Property key Symbol.toStringTag (string)

In ES5 and earlier, each object had the internal own property [[Class]] whose value hinted
at its type. You could not access it directly, but its value was part of the string returned by
Object.prototype.toString(), which is why that method was used for type checks, as an
alternative to typeof.

In ES6, there is no internal slot [[Class]], anymore, and using Object.prototype.toString()

for type checks is discouraged. In order to ensure the backwards-compatibility of that method,
the public property with the key Symbol.toStringTag was introduced. You could say that it
replaces [[Class]].

Object.prototype.toString()²⁸ now works as follows:

• Convert this to an object obj.
• Determine the toString tag tst of obj.
• Return '[object ' + tst + ']'.

14.8.3.1 Default toString tags

The default values for various kinds of objects are shown in the following table.

²⁸http://www.ecma-international.org/ecma-262/6.0/#sec-object.prototype.tostring

http://www.ecma-international.org/ecma-262/6.0/#sec-object.prototype.tostring
http://www.ecma-international.org/ecma-262/6.0/#sec-object.prototype.tostring


New OOP features besides classes 223

Value toString tag

undefined 'Undefined'

null 'Null'

An Array object 'Array'

A string object 'String'

arguments 'Arguments'

Something callable 'Function'

An error object 'Error'

A boolean object 'Boolean'

A number object 'Number'

A date object 'Date'

A regular expression object 'RegExp'

(Otherwise) 'Object'

Most of the checks in the left column are performed by looking at internal slots. For example, if
an object has the internal slot [[Call]], it is callable.

The following interaction demonstrates the default toString tags.

> Object.prototype.toString.call(null)

'[object Null]'

> Object.prototype.toString.call([])

'[object Array]'

> Object.prototype.toString.call({})

'[object Object]'

> Object.prototype.toString.call(Object.create(null))

'[object Object]'

14.8.3.2 Overriding the default toString tag

If an object has an (own or inherited) property whose key is Symbol.toStringTag then its value
overrides the default toString tag. For example:

> ({}.toString())

'[object Object]'

> ({[Symbol.toStringTag]: 'Foo'}.toString())

'[object Foo]'

Instances of user-defined classes get the default toString tag (of objects):

class Foo { }

console.log(new Foo().toString()); // [object Object]

One option for overriding the default is via a getter:



New OOP features besides classes 224

class Bar {

get [Symbol.toStringTag]() {

return 'Bar';

}

}

console.log(new Bar().toString()); // [object Bar]

In the JavaScript standard library, there are the following custom toString tags. Objects that have
no global names are quoted with percent symbols (for example: %TypedArray%).

• Module-like objects:
– JSON[Symbol.toStringTag]→ 'JSON'

– Math[Symbol.toStringTag]→ 'Math'

• Actual module objects M: M[Symbol.toStringTag] → 'Module'

• Built-in classes
– ArrayBuffer.prototype[Symbol.toStringTag]→ 'ArrayBuffer'

– DataView.prototype[Symbol.toStringTag]→ 'DataView'

– Map.prototype[Symbol.toStringTag]→ 'Map'

– Promise.prototype[Symbol.toStringTag]→ 'Promise'

– Set.prototype[Symbol.toStringTag]→ 'Set'

– get %TypedArray%.prototype[Symbol.toStringTag]→ 'Uint8Array' etc.
– WeakMap.prototype[Symbol.toStringTag]→ 'WeakMap'

– WeakSet.prototype[Symbol.toStringTag]→ 'WeakSet'

• Iterators
– %MapIteratorPrototype%[Symbol.toStringTag]→ 'Map Iterator'

– %SetIteratorPrototype%[Symbol.toStringTag]→ 'Set Iterator'

– %StringIteratorPrototype%[Symbol.toStringTag]→ 'String Iterator'

• Miscellaneous
– Symbol.prototype[Symbol.toStringTag]→ 'Symbol'

– Generator.prototype[Symbol.toStringTag]→ 'Generator'

– GeneratorFunction.prototype[Symbol.toStringTag]→ 'GeneratorFunction'

All of the built-in properties whose keys are Symbol.toStringTag have the following property
descriptor:

{

writable: false,

enumerable: false,

configurable: true,

}

As mentioned earlier, you can’t use assignment to override those properties, because they are
read-only.



New OOP features besides classes 225

14.8.4 Property key Symbol.unscopables (Object)

Symbol.unscopables lets an object hide some properties from the with statement.

The reason for doing so is that it allows TC39 to add new methods to Array.prototype without
breaking old code. Note that current code rarely uses with, which is forbidden in strict mode and
therefore ES6 modules (which are implicitly in strict mode).

Why would adding methods to Array.prototype break code that uses with (such as the
widely deployed Ext JS 4.2.1²⁹)? Take a look at the following code. The existence of a property
Array.prototype.values breaks foo(), if you call it with an Array:

function foo(values) {

with (values) {

console.log(values.length); // abc (*)

}

}

Array.prototype.values = { length: 'abc' };

foo([]);

Inside the with statement, all properties of values become local variables, shadowing even
values itself. Therefore, if values has a property values then the statement in line * logs
values.values.length and not values.length.

Symbol.unscopables is used only once in the standard library:

• Array.prototype[Symbol.unscopables]

– Holds an object with the following properties (which are therefore hidden from the
with statement): copyWithin, entries, fill, find, findIndex, keys, values

14.9 FAQ: object literals

14.9.1 Can I use super in object literals?

Yes you can! Details are explained in the chapter on classes.

²⁹https://bugzilla.mozilla.org/show_bug.cgi?id=883914

https://bugzilla.mozilla.org/show_bug.cgi?id=883914
https://bugzilla.mozilla.org/show_bug.cgi?id=883914


15. Classes
15.1 Overview

A class and a subclass:

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

toString() {

return `(${this.x}, ${this.y})`;

}

}

class ColorPoint extends Point {

constructor(x, y, color) {

super(x, y);

this.color = color;

}

toString() {

return super.toString() + ' in ' + this.color;

}

}

Using the classes:

> const cp = new ColorPoint(25, 8, 'green');

> cp.toString();

'(25, 8) in green'

> cp instanceof ColorPoint

true

> cp instanceof Point

true

Under the hood, ES6 classes are not something that is radically new: They mainly provide more
convenient syntax to create old-school constructor functions. You can see that if you use typeof:



Classes 227

> typeof Point

'function'

15.2 The essentials

15.2.1 Base classes

A class is defined like this in ECMAScript 6:

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

toString() {

return `(${this.x}, ${this.y})`;

}

}

You use this class just like an ES5 constructor function:

> var p = new Point(25, 8);

> p.toString()

'(25, 8)'

In fact, the result of a class definition is a function:

> typeof Point

'function'

However, you can only invoke a class via new, not via a function call (the rationale behind this
is explained later):

> Point()

TypeError: Classes can’t be function-called

In the spec, function-calling classes is prevented in the internal method [[Call]]¹ of
function objects.

15.2.1.1 No separators between members of class definitions

There is no separating punctuation between the members of a class definition. For example, the
members of an object literal are separated by commas, which are illegal at the top levels of class
definitions. Semicolons are allowed, but ignored:

¹http://www.ecma-international.org/ecma-262/6.0/#sec-ecmascript-function-objects-call-thisargument-argumentslist

http://www.ecma-international.org/ecma-262/6.0/#sec-ecmascript-function-objects-call-thisargument-argumentslist
http://www.ecma-international.org/ecma-262/6.0/#sec-ecmascript-function-objects-call-thisargument-argumentslist


Classes 228

class MyClass {

foo() {}

; // OK, ignored

, // SyntaxError

bar() {}

}

Semicolons are allowed in preparation for future syntax which may include semicolon-termi-
nated members. Commas are forbidden to emphasize that class definitions are different from
object literals.

15.2.1.2 Class declarations are not hoisted

Function declarations are hoisted: When entering a scope, the functions that are declared in it
are immediately available – independently of where the declarations happen. That means that
you can call a function that is declared later:

foo(); // works, because `foo` is hoisted

function foo() {}

In contrast, class declarations are not hoisted. Therefore, a class only exists after execution
reached its definition and it was evaluated. Accessing it beforehand leads to a ReferenceError:

new Foo(); // ReferenceError

class Foo {}

The reason for this limitation is that classes can have an extends clause whose value is an
arbitrary expression. That expression must be evaluated in the proper “location”, its evaluation
can’t be hoisted.

Not having hoisting is less limiting than you may think. For example, a function that comes
before a class declaration can still refer to that class, but you have to wait until the class
declaration has been evaluated before you can call the function.

function functionThatUsesBar() {

new Bar();

}

functionThatUsesBar(); // ReferenceError

class Bar {}

functionThatUsesBar(); // OK

15.2.1.3 Class expressions

Similarly to functions, there are two kinds of class definitions, two ways to define a class: class
declarations and class expressions.

Similarly to function expressions, class expressions can be anonymous:



Classes 229

const MyClass = class {

···

};

const inst = new MyClass();

Also similarly to function expressions, class expressions can have names that are only visible
inside them:

const MyClass = class Me {

getClassName() {

return Me.name;

}

};

const inst = new MyClass();

console.log(inst.getClassName()); // Me

console.log(Me.name); // ReferenceError: Me is not defined

The last two lines demonstrate that Me does not become a variable outside of the class, but can
be used inside it.

15.2.2 Inside the body of a class definition

A class body can only containmethods, but not data properties. Prototypes having data properties
is generally considered an anti-pattern, so this just enforces a best practice.

15.2.2.1 constructor, static methods, prototype methods

Let’s examine three kinds of methods that you often find in class definitions.

class Foo {

constructor(prop) {

this.prop = prop;

}

static staticMethod() {

return 'classy';

}

prototypeMethod() {

return 'prototypical';

}

}

const foo = new Foo(123);



Classes 230

The object diagram for this class declaration looks as follows. Tip for understanding it:
[[Prototype]] is an inheritance relationship between objects, while prototype is a normal
property whose value is an object. The property prototype is only special w.r.t. the new operator
using its value as the prototype for instances it creates.

First, the pseudo-method constructor. This method is special, as it defines the function that
represents the class:

> Foo === Foo.prototype.constructor

true

> typeof Foo

'function'

It is sometimes called a class constructor. It has features that normal constructor functions
don’t have (mainly the ability to constructor-call its superconstructor via super(), which is
explained later).

Second, static methods. Static properties (or class properties) are properties of Foo itself. If you
prefix a method definition with static, you create a class method:

> typeof Foo.staticMethod

'function'

> Foo.staticMethod()

'classy'

Third, prototypemethods. The prototype properties of Foo are the properties of Foo.prototype.
They are usually methods and inherited by instances of Foo.



Classes 231

> typeof Foo.prototype.prototypeMethod

'function'

> foo.prototypeMethod()

'prototypical'

15.2.2.2 Static data properties

For the sake of finishing ES6 classes in time, they were deliberately designed to be “maximally
minimal”. That’s why you can currently only create static methods, getters, and setters, but not
static data properties. There is a proposal for adding them to the language. Until that proposal is
accepted, there are two work-arounds that you can use.

First, you can manually add a static property:

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

}

Point.ZERO = new Point(0, 0);

You could use Object.defineProperty() to create a read-only property, but I like the simplicity
of an assignment.

Second, you can create a static getter:

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

static get ZERO() {

return new Point(0, 0);

}

}

In both cases, you get a property Point.ZERO that you can read. In the first case, the same instance
is returned every time. In the second case, a new instance is returned every time.

15.2.2.3 Getters and setters

The syntax for getters and setters is just like in ECMAScript 5 object literals²:

²http://speakingjs.com/es5/ch17.html#getters_setters

http://speakingjs.com/es5/ch17.html#getters_setters
http://speakingjs.com/es5/ch17.html#getters_setters


Classes 232

class MyClass {

get prop() {

return 'getter';

}

set prop(value) {

console.log('setter: '+value);

}

}

You use MyClass as follows.

> const inst = new MyClass();

> inst.prop = 123;

setter: 123

> inst.prop

'getter'

15.2.2.4 Computed method names

You can define the name of a method via an expression, if you put it in square brackets. For
example, the following ways of defining Foo are all equivalent.

class Foo {

myMethod() {}

}

class Foo {

['my'+'Method']() {}

}

const m = 'myMethod';

class Foo {

[m]() {}

}

Several special methods in ECMAScript 6 have keys that are symbols. Computed method names
allow you to define such methods. For example, if an object has a method whose key is
Symbol.iterator, it is iterable. That means that its contents can be iterated over by the for-

of loop and other language mechanisms.



Classes 233

class IterableClass {

[Symbol.iterator]() {

···

}

}

15.2.2.5 Generator methods

If you prefix a method definition with an asterisk (*), it becomes a generator method. Among
other things, a generator is useful for defining the method whose key is Symbol.iterator. The
following code demonstrates how that works.

class IterableArguments {

constructor(...args) {

this.args = args;

}

* [Symbol.iterator]() {

for (const arg of this.args) {

yield arg;

}

}

}

for (const x of new IterableArguments('hello', 'world')) {

console.log(x);

}

// Output:

// hello

// world

15.2.3 Subclassing

The extends clause lets you create a subclass of an existing constructor (which may or may not
have been defined via a class):

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

toString() {

return `(${this.x}, ${this.y})`;

}

}



Classes 234

class ColorPoint extends Point {

constructor(x, y, color) {

super(x, y); // (A)

this.color = color;

}

toString() {

return super.toString() + ' in ' + this.color; // (B)

}

}

Again, this class is used like you’d expect:

> const cp = new ColorPoint(25, 8, 'green');

> cp.toString()

'(25, 8) in green'

> cp instanceof ColorPoint

true

> cp instanceof Point

true

There are two kinds of classes:

• Point is a base class, because it doesn’t have an extends clause.
• ColorPoint is a derived class.

There are two ways of using super:

• A class constructor (the pseudo-method constructor in a class definition) uses it like a
function call (super(···)), in order to make a superconstructor call (line A).

• Method definitions (in object literals or classes, with or without static) use it like
property references (super.prop) or method calls (super.method(···)), in order to refer
to superproperties (line B).

15.2.3.1 The prototype of a subclass is the superclass

The prototype of a subclass is the superclass in ECMAScript 6:

> Object.getPrototypeOf(ColorPoint) === Point

true

That means that static properties are inherited:



Classes 235

class Foo {

static classMethod() {

return 'hello';

}

}

class Bar extends Foo {

}

Bar.classMethod(); // 'hello'

You can even super-call static methods:

class Foo {

static classMethod() {

return 'hello';

}

}

class Bar extends Foo {

static classMethod() {

return super.classMethod() + ', too';

}

}

Bar.classMethod(); // 'hello, too'

15.2.3.2 Superconstructor calls

In a derived class, you must call super() before you can use this:

class Foo {}

class Bar extends Foo {

constructor(num) {

const tmp = num * 2; // OK

this.num = num; // ReferenceError

super();

this.num = num; // OK

}

}

Implicitly leaving a derived constructor without calling super() also causes an error:



Classes 236

class Foo {}

class Bar extends Foo {

constructor() {

}

}

const bar = new Bar(); // ReferenceError

15.2.3.3 Overriding the result of a constructor

Just like in ES5, you can override the result of a constructor by explicitly returning an object:

class Foo {

constructor() {

return Object.create(null);

}

}

console.log(new Foo() instanceof Foo); // false

If you do so, it doesn’t matter whether this has been initialized or not. In other words: you don’t
have to call super() in a derived constructor if you override the result in this manner.

15.2.3.4 Default constructors for classes

If you don’t specify a constructor for a base class, the following definition is used:

constructor() {}

For derived classes, the following default constructor is used:

constructor(...args) {

super(...args);

}

15.2.3.5 Subclassing built-in constructors

In ECMAScript 6, you can finally subclass all built-in constructors (there are work-arounds for
ES5³, but these have significant limitations).

For example, you can now create your own exception classes (that will inherit the feature of
having a stack trace in most engines):

³http://speakingjs.com/es5/ch28.html

http://speakingjs.com/es5/ch28.html
http://speakingjs.com/es5/ch28.html
http://speakingjs.com/es5/ch28.html


Classes 237

class MyError extends Error {

}

throw new MyError('Something happened!');

You can also create subclasses of Array whose instances properly handle length:

class Stack extends Array {

get top() {

return this[this.length - 1];

}

}

var stack = new Stack();

stack.push('world');

stack.push('hello');

console.log(stack.top); // hello

console.log(stack.length); // 2

Note that subclassing Array is usually not the best solution. It’s often better to create your own
class (whose interface you control) and to delegate to an Array in a private property.

Subclassing built-in constructors is something that engines have to support natively,
you won’t get this feature via transpilers.

15.3 Private data for classes

This section explains four approaches for managing private data for ES6 classes:

1. Keeping private data in the environment of a class constructor
2. Marking private properties via a naming convention (e.g. a prefixed underscore)
3. Keeping private data in WeakMaps
4. Using symbols as keys for private properties

Approaches #1 and #2 were already common in ES5, for constructors. Approaches #3 and #4 are
new in ES6. Let’s implement the same example four times, via each of the approaches.

15.3.1 Private data via constructor environments

Our running example is a class Countdown that invokes a callback action once a counter (whose
initial value is counter) reaches zero. The two parameters action and counter should be stored
as private data.

In the first implementation, we store action and counter in the environment of the class
constructor. An environment is the internal data structure, in which a JavaScript engine stores
the parameters and local variables that come into existence whenever a new scope is entered
(e.g. via a function call or a constructor call). This is the code:



Classes 238

class Countdown {

constructor(counter, action) {

Object.assign(this, {

dec() {

if (counter < 1) return;

counter--;

if (counter === 0) {

action();

}

}

});

}

}

Using Countdown looks like this:

> const c = new Countdown(2, () => console.log('DONE'));

> c.dec();

> c.dec();

DONE

Pros:

• The private data is completely safe
• The names of private properties won’t clash with the names of other private properties (of
superclasses or subclasses).

Cons:

• The code becomes less elegant, because you need to add all methods to the instance, inside
the constructor (at least those methods that need access to the private data).

• Due to the instance methods, the code wastes memory. If the methods were prototype
methods, they would be shared.

More information on this technique: Sect. “Private Data in the Environment of a Constructor
(Crockford Privacy Pattern)⁴” in “Speaking JavaScript”.

15.3.2 Private data via a naming convention

The following code keeps private data in properties whose names a marked via a prefixed
underscore:

⁴http://speakingjs.com/es5/ch17.html#private_data_constructor_environment

http://speakingjs.com/es5/ch17.html#private_data_constructor_environment
http://speakingjs.com/es5/ch17.html#private_data_constructor_environment
http://speakingjs.com/es5/ch17.html#private_data_constructor_environment


Classes 239

class Countdown {

constructor(counter, action) {

this._counter = counter;

this._action = action;

}

dec() {

if (this._counter < 1) return;

this._counter--;

if (this._counter === 0) {

this._action();

}

}

}

Pros:

• Code looks nice.
• We can use prototype methods.

Cons:

• Not safe, only a guideline for client code.
• The names of private properties can clash.

15.3.3 Private data via WeakMaps

There is a neat technique involvingWeakMaps that combines the advantage of the first approach
(safety) with the advantage of the second approach (being able to use prototype methods). This
technique is demonstrated in the following code: we use the WeakMaps _counter and _action

to store private data.

const _counter = new WeakMap();

const _action = new WeakMap();

class Countdown {

constructor(counter, action) {

_counter.set(this, counter);

_action.set(this, action);

}

dec() {

let counter = _counter.get(this);

if (counter < 1) return;

counter--;

_counter.set(this, counter);

if (counter === 0) {



Classes 240

_action.get(this)();

}

}

}

Each of the two WeakMaps _counter and _action maps objects to their private data. Due to
how WeakMaps work that won’t prevent objects from being garbage-collected. As long as you
keep the WeakMaps hidden from the outside world, the private data is safe.

If you want to be even safer, you can store WeakMap.prototype.get and WeakMap.prototype.set
in variables and invoke those (instead of the methods, dynamically):

const set = WeakMap.prototype.set;

···

set.call(_counter, this, counter);

// _counter.set(this, counter);

Then your code won’t be affected if malicious code replaces those methods with ones that snoop
on our private data. However, you are only protected against code that runs after your code.
There is nothing you can do if it runs before yours.

Pros:

• We can use prototype methods.
• Safer than a naming convention for property keys.
• The names of private properties can’t clash.
• Relatively elegant.

Con:

• Code is not as elegant as a naming convention.

15.3.4 Private data via symbols

Another storage location for private data are properties whose keys are symbols:



Classes 241

const _counter = Symbol('counter');

const _action = Symbol('action');

class Countdown {

constructor(counter, action) {

this[_counter] = counter;

this[_action] = action;

}

dec() {

if (this[_counter] < 1) return;

this[_counter]--;

if (this[_counter] === 0) {

this[_action]();

}

}

}

Each symbol is unique, which is why a symbol-valued property key will never clash with any
other property key. Additionally, symbols are somewhat hidden from the outside world, but not
completely:

const c = new Countdown(2, () => console.log('DONE'));

console.log(Object.keys(c));

// []

console.log(Reflect.ownKeys(c));

// [ Symbol(counter), Symbol(action) ]

Pros:

• We can use prototype methods.
• The names of private properties can’t clash.

Cons:

• Code is not as elegant as a naming convention.
• Not safe: you can list all property keys (including symbols!) of an object via Re-

flect.ownKeys().

15.3.5 Further reading

• Sect. “Keeping Data Private⁵” in “Speaking JavaScript” (covers ES5 techniques)

⁵http://speakingjs.com/es5/ch17.html#private_data_for_objects

http://speakingjs.com/es5/ch17.html#private_data_for_objects
http://speakingjs.com/es5/ch17.html#private_data_for_objects


Classes 242

15.4 Simple mixins

Subclassing in JavaScript is used for two reasons:

• Interface inheritance: Every object that is an instance of a subclass (as tested by in-

stanceof) is also an instance of the superclass. The expectation is that subclass instances
behave like superclass instances, but may do more.

• Implementation inheritance: Superclasses pass on functionality to their subclasses.

The usefulness of classes for implementation inheritance is limited, because they only support
single inheritance (a class can have at most one superclass). Therefore, it is impossible to inherit
tool methods from multiple sources – they must all come from the superclass.

So how can we solve this problem? Let’s explore a solution via an example. Consider a
management system for an enterprise where Employee is a subclass of Person.

class Person { ··· }

class Employee extends Person { ··· }

Additionally, there are tool classes for storage and for data validation:

class Storage {

save(database) { ··· }

}

class Validation {

validate(schema) { ··· }

}

It would be nice if we could include the tool classes like this:

// Invented ES6 syntax:

class Employee extends Storage, Validation, Person { ··· }

That is, we want Employee to be a subclass of Storagewhich should be a subclass of Validation
which should be a subclass of Person. Employee and Personwill only be used in one such chain of
classes. But Storage and Validation will be used multiple times. We want them to be templates
for classes whose superclasses we fill in. Such templates are called abstract subclasses ormixins.

One way of implementing a mixin in ES6 is to view it as a function whose input is a superclass
and whose output is a subclass extending that superclass:



Classes 243

const Storage = Sup => class extends Sup {

save(database) { ··· }

};

const Validation = Sup => class extends Sup {

validate(schema) { ··· }

};

Here, we profit from the operand of the extends clause not being a fixed identifier, but an
arbitrary expression. With these mixins, Employee is created like this:

class Employee extends Storage(Validation(Person)) { ··· }

Acknowledgement. The first occurrence of this technique that I’m aware of is a Gist by
Sebastian Markbåge⁶.

15.5 The details of classes

What we have seen so far are the essentials of classes. You only need to read on if you are
interested how things happen under the hood. Let’s start with the syntax of classes. The following
is a slightly modified version of the syntax shown in Sect. A.4 of the ECMAScript 6 specification⁷.

ClassDeclaration:

"class" BindingIdentifier ClassTail

ClassExpression:

"class" BindingIdentifier? ClassTail

ClassTail:

ClassHeritage? "{" ClassBody? "}"

ClassHeritage:

"extends" AssignmentExpression

ClassBody:

ClassElement+

ClassElement:

MethodDefinition

"static" MethodDefinition

";"

MethodDefinition:

PropName "(" FormalParams ")" "{" FuncBody "}"

"*" PropName "(" FormalParams ")" "{" GeneratorBody "}"

"get" PropName "(" ")" "{" FuncBody "}"

"set" PropName "(" PropSetParams ")" "{" FuncBody "}"

⁶https://gist.github.com/sebmarkbage/fac0830dbb13ccbff596
⁷http://www.ecma-international.org/ecma-262/6.0/#sec-functions-and-classes

https://gist.github.com/sebmarkbage/fac0830dbb13ccbff596
https://gist.github.com/sebmarkbage/fac0830dbb13ccbff596
http://www.ecma-international.org/ecma-262/6.0/#sec-functions-and-classes
https://gist.github.com/sebmarkbage/fac0830dbb13ccbff596
http://www.ecma-international.org/ecma-262/6.0/#sec-functions-and-classes


Classes 244

PropertyName:

LiteralPropertyName

ComputedPropertyName

LiteralPropertyName:

IdentifierName /* foo */

StringLiteral /* "foo" */

NumericLiteral /* 123.45, 0xFF */

ComputedPropertyName:

"[" Expression "]"

Two observations:

• The value to be extended can be produced by an arbitrary expression. Which means that
you’ll be able to write code such as the following:

class Foo extends combine(MyMixin, MySuperClass) {}

• Semicolons are allowed between methods.

15.5.1 Various checks

• Error checks: the class name cannot be eval or arguments; duplicate class element names
are not allowed; the name constructor can only be used for a normal method, not for a
getter, a setter or a generator method.

• Classes can’t be function-called. They throw a TypeException if they are.
• Prototype methods cannot be used as constructors:

class C {

m() {}

}

new C.prototype.m(); // TypeError

15.5.2 Attributes of properties

Class declarations create (mutable) let bindings. The following table describes the attributes of
properties related to a given class Foo:

writable enumerable configurable

Static properties Foo.* true false true

Foo.prototype false false false

Foo.prototype.constructor false false true

Prototype properties Foo.prototype.* true false true

Notes:



Classes 245

• Many properties are writable, to allow for dynamic patching.
• A constructor and the object in its property prototype have an immutable bidirectional
link.

• Method definitions in object literals produce enumerable properties.

The properties shown in the table are created in Sect. “Runtime Semantics: ClassDefi-
nitionEvaluation⁸” in the spec.

15.5.3 Classes have inner names

Classes have lexical inner names, just like named function expressions.

15.5.3.1 The inner names of named function expressions

You may know that named function expressions have lexical inner names:

const fac = function me(n) {

if (n > 0) {

// Use inner name `me` to

// refer to function

return n * me(n-1);

} else {

return 1;

}

};

console.log(fac(3)); // 6

The name me of the named function expression becomes a lexically bound variable that is
unaffected by which variable currently holds the function.

15.5.3.2 The inner names of classes

Interestingly, ES6 classes also have lexical inner names that you can use in methods (constructor
methods and regular methods):

⁸http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation


Classes 246

class C {

constructor() {

// Use inner name C to refer to class

console.log(`constructor: ${C.prop}`);

}

logProp() {

// Use inner name C to refer to class

console.log(`logProp: ${C.prop}`);

}

}

C.prop = 'Hi!';

const D = C;

C = null;

// C is not a class, anymore:

new C().logProp();

// TypeError: C is not a function

// But inside the class, the identifier C

// still works

new D().logProp();

// constructor: Hi!

// logProp: Hi!

(In the ES6 spec the inner name is set up by the dynamic semantics of ClassDefinitionEvalua-
tion⁹.)

Acknowledgement: Thanks to Michael Ficarra for pointing out that classes have inner names.

15.6 The details of subclassing

In ECMAScript 6, subclassing looks as follows.

class Person {

constructor(name) {

this.name = name;

}

toString() {

return `Person named ${this.name}`;

}

static logNames(persons) {

for (const person of persons) {

console.log(person.name);

⁹http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation


Classes 247

}

}

}

class Employee extends Person {

constructor(name, title) {

super(name);

this.title = title;

}

toString() {

return `${super.toString()} (${this.title})`;

}

}

const jane = new Employee('Jane', 'CTO');

console.log(jane.toString()); // Person named Jane (CTO)

The next section examines the structure of the objects that were created by the previous example.
The section after that examines how jane is allocated and initialized.

15.6.1 Prototype chains

The previous example creates the following objects.

Prototype chains are objects linked via the [[Prototype]] relationship (which is an inheritance
relationship). In the diagram, you can see two prototype chains:

15.6.1.1 Left column: classes (functions)

The prototype of a derived class is the class it extends. The reason for this setup is that you want
a subclass to inherit all properties of its superclass:



Classes 248

> Employee.logNames === Person.logNames

true

The prototype of a base class is Function.prototype, which is also the prototype of functions:

> const getProto = Object.getPrototypeOf.bind(Object);

> getProto(Person) === Function.prototype

true

> getProto(function () {}) === Function.prototype

true

That means that base classes and all their derived classes (their prototypees) are functions.
Traditional ES5 functions are essentially base classes.

15.6.1.2 Right column: the prototype chain of the instance

The main purpose of a class is to set up this prototype chain. The prototype chain ends with
Object.prototype (whose prototype is null). That makes Object an implicit superclass of every
base class (as far as instances and the instanceof operator are concerned).

The reason for this setup is that you want the instance prototype of a subclass to inherit all
properties of the superclass instance prototype.

As an aside, objects created via object literals also have the prototype Object.prototype:

> Object.getPrototypeOf({}) === Object.prototype

true

15.6.2 Allocating and initializing instances

The data flow between class constructors is different from the canonical way of subclassing in
ES5. Under the hood, it roughly looks as follows.

// Base class: this is where the instance is allocated

function Person(name) {

// Performed before entering this constructor:

this = Object.create(new.target.prototype);

this.name = name;

}

···

function Employee(name, title) {

// Performed before entering this constructor:

this = uninitialized;



Classes 249

this = Reflect.construct(Person, [name], new.target); // (A)

// super(name);

this.title = title;

}

Object.setPrototypeOf(Employee, Person);

···

const jane = Reflect.construct( // (B)

Employee, ['Jane', 'CTO'],

Employee);

// const jane = new Employee('Jane', 'CTO')

The instance object is created in different locations in ES6 and ES5:

• In ES6, it is created in the base constructor, the last in a chain of constructor calls. The
superconstructor is invoked via super(), which triggers a constructor call.

• In ES5, it is created in the operand of new, the first in a chain of constructor calls. The
superconstructor is invoked via a function call.

The previous code uses two new ES6 features:

• new.target is an implicit parameter that all functions have. In a chain of constructor calls,
its role is similar to this in a chain of supermethod calls.

– If a constructor is directly invoked via new (as in line B), the value of new.target is
that constructor.

– If a constructor is called via super() (as in line A), the value of new.target is the
new.target of the constructor that makes the call.

– During a normal function call, it is undefined. That means that you can use
new.target to determine whether a function was function-called or constructor-
called (via new).

– Inside an arrow function, new.target refers to the new.target of the surrounding
non-arrow function.

• Reflect.construct() lets youmake constructor calls while specifying new.target via the
last parameter.

The advantage of this way of subclassing is that it enables normal code to subclass built-in
constructors (such as Error and Array). A later section explains why a different approach was
necessary.

As a reminder, here is how you do subclassing in ES5:



Classes 250

function Person(name) {

this.name = name;

}

···

function Employee(name, title) {

Person.call(this, name);

this.title = title;

}

Employee.prototype = Object.create(Person.prototype);

Employee.prototype.constructor = Employee;

···

15.6.2.1 Safety checks

• this originally being uninitialized in derived constructors means that an error is thrown
if they access this in any way before they have called super().

• Once this is initialized, calling super() produces a ReferenceError. This protects you
against calling super() twice.

• If a constructor returns implicitly (without a return statement), the result is this. If this
is uninitialized, a ReferenceError is thrown. This protects you against forgetting to call
super().

• If a constructor explicitly returns a non-object (including undefined and null), the result
is this (this behavior is required to remain compatible with ES5 and earlier). If this is
uninitialized, a TypeError is thrown.

• If a constructor explicitly returns an object, it is used as its result. Then it doesn’t matter
whether this is initialized or not.

15.6.2.2 The extends clause

Let’s examine how the extends clause influences how a class is set up (Sect. 14.5.14 of the spec¹⁰).

The value of an extends clause must be “constructible” (invocable via new). null is allowed,
though.

class C {

}

• Constructor kind: base
• Prototype of C: Function.prototype (like a normal function)
• Prototype of C.prototype: Object.prototype (which is also the prototype of objects
created via object literals)

¹⁰http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-runtime-semantics-classdefinitionevaluation


Classes 251

class C extends B {

}

• Constructor kind: derived
• Prototype of C: B
• Prototype of C.prototype: B.prototype

class C extends Object {

}

• Constructor kind: derived
• Prototype of C: Object
• Prototype of C.prototype: Object.prototype

Note the following subtle difference with the first case: If there is no extends clause, the class
is a base class and allocates instances. If a class extends Object, it is a derived class and Object

allocates the instances. The resulting instances (including their prototype chains) are the same,
but you get there differently.

class C extends null {

}

• Constructor kind: base (as of ES2016)
• Prototype of C: Function.prototype
• Prototype of C.prototype: null

Such a class lets you avoid Object.prototype in the prototype chain.

15.6.3 Why can’t you subclass built-in constructors in ES5?

In ECMAScript 5, most built-in constructors can’t be subclassed (several work-arounds exist¹¹).

To understand why, let’s use the canonical ES5 pattern to subclass Array. As we shall soon find
out, this doesn’t work.

function MyArray(len) {

Array.call(this, len); // (A)

}

MyArray.prototype = Object.create(Array.prototype);

Unfortunately, if we instantiate MyArray, we find out that it doesn’t work properly: The instance
property length does not change in reaction to us adding Array elements:

¹¹http://speakingjs.com/es5/ch28.html

http://speakingjs.com/es5/ch28.html
http://speakingjs.com/es5/ch28.html


Classes 252

> var myArr = new MyArray(0);

> myArr.length

0

> myArr[0] = 'foo';

> myArr.length

0

There are two obstracles that prevent myArr from being a proper Array.

First obstacle: initialization. The this you hand to the constructor Array (in line A) is
completely ignored. That means you can’t use Array to set up the instance that was created
for MyArray.

> var a = [];

> var b = Array.call(a, 3);

> a !== b // a is ignored, b is a new object

true

> b.length // set up correctly

3

> a.length // unchanged

0

Second obstacle: allocation. The instance objects created by Array are exotic (a term used by the
ECMAScript specification for objects that have features that normal objects don’t have): Their
property length tracks and influences the management of Array elements. In general, exotic
objects can be created from scratch, but you can’t convert an existing normal object into an
exotic one. Unfortunately, that is what Array would have to do, when called in line A: It would
have to turn the normal object created for MyArray into an exotic Array object.

15.6.3.1 The solution: ES6 subclassing

In ECMAScript 6, subclassing Array looks as follows:

class MyArray extends Array {

constructor(len) {

super(len);

}

}

This works:



Classes 253

> const myArr = new MyArray(0);

> myArr.length

0

> myArr[0] = 'foo';

> myArr.length

1

Let’s examine how the ES6 approach to subclassing removes the previously mentioned obstacles:

• The first obstacle, Array not being able to set up an instance, is removed by Array returning
a fully configured instance. In contrast to ES5, this instance has the prototype of the
subclass.

• The second obstacle, subconstructors not creating exotic instances, is removed by derived
classes relying on base classes for allocating instances.

15.6.4 Referring to superproperties in methods

The following ES6 code makes a supermethod call in line B.

class Person {

constructor(name) {

this.name = name;

}

toString() { // (A)

return `Person named ${this.name}`;

}

}

class Employee extends Person {

constructor(name, title) {

super(name);

this.title = title;

}

toString() {

return `${super.toString()} (${this.title})`; // (B)

}

}

const jane = new Employee('Jane', 'CTO');

console.log(jane.toString()); // Person named Jane (CTO)

To understand how super-calls work, let’s look at the object diagram of jane:



Classes 254

In line B, Employee.prototype.toString makes a super-call (line B) to the method (starting
in line A) that it has overridden. Let’s call the object, in which a method is stored, the
home object of that method. For example, Employee.prototype is the home object of Em-

ployee.prototype.toString().

The super-call in line B involves three steps:

1. Start your search in the prototype of the home object of the current method.
2. Look for a method whose name is toString. That method may be found in the object

where the search started or later in the prototype chain.
3. Call that method with the current this. The reason for doing so is: the super-called method

must be able to access the same instance properties (in our example, the own properties of
jane).

Note that even if you are only getting (super.prop) or setting (super.prop = 123) a superprop-
erty (versus making a method call), this may still (internally) play a role in step #3, because a
getter or a setter may be invoked.

Let’s express these steps in three different – but equivalent – ways:



Classes 255

// Variation 1: supermethod calls in ES5

var result = Person.prototype.toString.call(this) // steps 1,2,3

// Variation 2: ES5, refactored

var superObject = Person.prototype; // step 1

var superMethod = superObject.toString; // step 2

var result = superMethod.call(this) // step 3

// Variation 3: ES6

var homeObject = Employee.prototype;

var superObject = Object.getPrototypeOf(homeObject); // step 1

var superMethod = superObject.toString; // step 2

var result = superMethod.call(this) // step 3

Variation 3 is how ECMAScript 6 handles super-calls. This approach is supported by two internal
bindings¹² that the environments of functions have (environments provide storage space, so-
called bindings, for the variables in a scope):

• [[thisValue]]: This internal binding also exists in ECMAScript 5 and stores the value of
this.

• [[HomeObject]]: Refers to the home object of the environment’s function. Filled in via the
internal slot [[HomeObject]] that all methods have that use super. Both the binding and
the slot are new in ECMAScript 6.

Methods are a special kind of function now
In a class, a method definition that uses super creates a special kind of function: It is still
a function, but it has the internal slot [[HomeObject]]. That slot is set up by the method
definition and can’t be changed in JavaScript. Therefore, you can’t meaningfully move
such a method to a different object. (But maybe it’ll be possible in a future version of
ECMAScript.)

15.6.4.1 Where can you use super?

Referring to superproperties is handy whenever prototype chains are involved, which is why you
can use it in method definitions (incl. generator method definitions, getters and setters) inside
object literals and class definitions. The class can be derived or not, the method can be static or
not.

Using super to refer to a property is not allowed in function declarations, function expressions
and generator functions.

¹²http://www.ecma-international.org/ecma-262/6.0/#sec-function-environment-records

http://www.ecma-international.org/ecma-262/6.0/#sec-function-environment-records
http://www.ecma-international.org/ecma-262/6.0/#sec-function-environment-records
http://www.ecma-international.org/ecma-262/6.0/#sec-function-environment-records


Classes 256

15.6.4.2 Pitfall: A method that uses super can’t be moved

You can’t move a method that uses super: Such a method has the internal slot [[HomeObject]]
that ties it to the object it was created in. If you move it via an assignment, it will continue to
refer to the superproperties of the original object. In future ECMAScript versions, there may be
a way to transfer such a method, too.

15.7 The species pattern

One more mechanism of built-in constructors has been made extensible in ECMAScript 6:
Sometimes a method creates new instances of its class. If you create a subclass – should the
method return an instance of its class or an instance of the subclass? A few built-in ES6 methods
let you configure how they create instances via the so-called species pattern.

As an example, consider a subclass SortedArray of Array. If we invoke map() on instances of
that class, we want it to return instances of Array, to avoid unnecessary sorting. By default,
map() returns instances of the receiver (this), but the species patterns lets you change that.

15.7.1 Helper methods for examples

In the following three sections, I’ll use two helper functions in the examples:

function isObject(value) {

return (value !== null

&& (typeof value === 'object'

|| typeof value === 'function'));

}

/**

* Spec-internal operation that determines whether `x`

* can be used as a constructor.

*/

function isConstructor(x) {

···

}

15.7.2 The standard species pattern

The standard species pattern is used by Promise.prototype.then(), the filter() method of
Typed Arrays and other operations. It works as follows:

• If this.constructor[Symbol.species] exists, use it as a constructor for the new instance.
• Otherwise, use a default constructor (e.g. Array for Arrays).

Implemented in JavaScript, the pattern would look like this:



Classes 257

function SpeciesConstructor(O, defaultConstructor) {

const C = O.constructor;

if (C === undefined) {

return defaultConstructor;

}

if (! isObject(C)) {

throw new TypeError();

}

const S = C[Symbol.species];

if (S === undefined || S === null) {

return defaultConstructor;

}

if (! isConstructor(S)) {

throw new TypeError();

}

return S;

}

The standard species pattern is implemented in the spec via the operation
SpeciesConstructor()¹³.

15.7.3 The species pattern for Arrays

Normal Arrays implement the species pattern slightly differently:

function ArraySpeciesCreate(self, length) {

let C = undefined;

// If the receiver `self` is an Array,

// we use the species pattern

if (Array.isArray(self)) {

C = self.constructor;

if (isObject(C)) {

C = C[Symbol.species];

}

}

// Either `self` is not an Array or the species

// pattern didn’t work out:

// create and return an Array

if (C === undefined || C === null) {

return new Array(length);

}

if (! IsConstructor(C)) {

¹³http://www.ecma-international.org/ecma-262/6.0/#sec-speciesconstructor

http://www.ecma-international.org/ecma-262/6.0/#sec-speciesconstructor
http://www.ecma-international.org/ecma-262/6.0/#sec-speciesconstructor


Classes 258

throw new TypeError();

}

return new C(length);

}

Array.prototype.map() creates theArray it returns via ArraySpeciesCreate(this, this.length).

The species pattern for Arrays is implemented in the spec via the operation
ArraySpeciesCreate()¹⁴.

15.7.4 The species pattern in static methods

Promises use a variant of the species pattern for static methods such as Promise.all()¹⁵:

let C = this; // default

if (! isObject(C)) {

throw new TypeError();

}

// The default can be overridden via the property `C[Symbol.species]`

const S = C[Symbol.species];

if (S !== undefined && S !== null) {

C = S;

}

if (!IsConstructor(C)) {

throw new TypeError();

}

const instance = new C(···);

15.7.5 Overriding the default species in subclasses

This is the default getter for the property [Symbol.species]:

static get [Symbol.species]() {

return this;

}

This default getter is implemented by the built-in classes Array, ArrayBuffer, Map, Promise,
RegExp, Set and %TypedArray%. It is automatically inherited by subclasses of these built-in classes.

There are two ways in which you can override the default species: with a constructor of your
choosing or with null.

15.7.5.1 Setting the species to a constructor of your choosing

You can override the default species via a static getter (line A):

¹⁴http://www.ecma-international.org/ecma-262/6.0/#sec-arrayspeciescreate
¹⁵http://www.ecma-international.org/ecma-262/6.0/#sec-promise.all

http://www.ecma-international.org/ecma-262/6.0/#sec-arrayspeciescreate
http://www.ecma-international.org/ecma-262/6.0/#sec-promise.all
http://www.ecma-international.org/ecma-262/6.0/#sec-arrayspeciescreate
http://www.ecma-international.org/ecma-262/6.0/#sec-promise.all


Classes 259

class MyArray1 extends Array {

static get [Symbol.species]() { // (A)

return Array;

}

}

As a result, map() returns an instance of Array:

const result1 = new MyArray1().map(x => x);

console.log(result1 instanceof Array); // true

If you don’t override the default species, map() returns an instance of the subclass:

class MyArray2 extends Array { }

const result2 = new MyArray2().map(x => x);

console.log(result2 instanceof MyArray2); // true

15.7.5.1.1 Specifying the species via a data property

If you don’t want to use a static getter, you need to use Object.defineProperty(). You can’t
use assignment, as there is already a property with that key that only has a getter. That means
that it is read-only and can’t be assigned to.

For example, here we set the species of MyArray1 to Array:

Object.defineProperty(

MyArray1, Symbol.species, {

value: Array

});

15.7.5.2 Setting the species to null

If you set the species to null then the default constructor is used (which one that is depends on
which variant of the species pattern is used, consult the previous sections for more information).

class MyArray3 extends Array {

static get [Symbol.species]() {

return null;

}

}

const result3 = new MyArray3().map(x => x);

console.log(result3 instanceof Array); // true



Classes 260

15.8 The pros and cons of classes

Classes are controversial within the JavaScript community: On one hand, people coming from
class-based languages are happy that they don’t have to deal with JavaScript’s unconventional
inheritance mechanisms, anymore. On the other hand, there are many JavaScript programmers
who argue that what’s complicated about JavaScript is not prototypal inheritance, but construc-
tors.

ES6 classes provide a few clear benefits:

• They are backward-compatible with much of the current code.
• Compared to constructors and constructor inheritance, classes make it easier for beginners
to get started.

• Subclassing is supported within the language.
• Built-in constructors are subclassable.
• No library for inheritance is needed, anymore; code will become more portable between
frameworks.

• They provide a foundation for advanced features in the future: traits (or mixins), im-
mutable instances, etc.

• They help tools that statically analyze code (IDEs, type checkers, style checkers, etc.).

Let’s look at a few common complaints about ES6 classes. You will see me agree with most of
them, but I also think that they benefits of classes much outweigh their disadvantages. I’m glad
that they are in ES6 and I recommend to use them.

15.8.1 Complaint: ES6 classes obscure the true nature of
JavaScript inheritance

Yes, ES6 classes do obscure the true nature of JavaScript inheritance. There is an unfortunate
disconnect between what a class looks like (its syntax) and how it behaves (its semantics): It looks
like an object, but it is a function. My preference would have been for classes to be constructor
objects, not constructor functions. I explore that approach in the Proto.js project¹⁶, via a tiny
library (which proves how good a fit this approach is).

However, backwards-compatibility matters, which is why classes being constructor functions
also makes sense. That way, ES6 code and ES5 are more interoperable.

The disconnect between syntax and semantics will cause some friction in ES6 and later. But you
can lead a comfortable life by simply taking ES6 classes at face value. I don’t think the illusion
will ever bite you. Newcomers can get started more quickly and later read up on what goes on
behind the scenes (after they are more comfortable with the language).

¹⁶https://github.com/rauschma/proto-js

https://github.com/rauschma/proto-js
https://github.com/rauschma/proto-js


Classes 261

15.8.2 Complaint: Classes provide only single inheritance

Classes only give you single inheritance, which severely limits your freedom of expression w.r.t.
object-oriented design. However, the plan has always been for them to be the foundation of a
multiple-inheritance mechanism such as traits.

traits.js: traits library for JavaScript
Check out traits.js¹⁷ if you are interested in how traits work (they are similar to mixins,
which you may be familiar with).

Then a class becomes an instantiable entity and a location where you assemble traits. Until that
happens, you will need to resort to libraries if you want multiple inheritance.

15.8.3 Complaint: Classes lock you in, due to mandatory new

If you want to instantiate a class, you are forced to use new in ES6. That means that you can’t
switch from a class to a factory function without changing the call sites. That is indeed a
limitation, but there are two mitigating factors:

• You can override the default result returned by the new operator, by returning an object
from the constructor method of a class.

• Due to its built-in modules and classes, ES6 makes it easier for IDEs to refactor code.
Therefore, going from new to a function call will be simple. Obviously that doesn’t help
you if you don’t control the code that calls your code, as is the case for libraries.

Therefore, classes do somewhat limit you syntactically, but, once JavaScript has traits, they won’t
limit you conceptually (w.r.t. object-oriented design).

15.9 FAQ: classes

15.9.1 Why can’t classes be function-called?

Function-calling classes is currently forbidden. That was done to keep options open for the future,
to eventually add a way to handle function calls via classes.

15.9.2 How do I instantiate a class, given an Array of
arguments?

What is the analog of Function.prototype.apply() for classes? That is, if I have a class
TheClass and an Array args of arguments, how do I instantiate TheClass?

One way of doing so is via the spread operator (...):

¹⁷http://soft.vub.ac.be/~tvcutsem/traitsjs/

http://soft.vub.ac.be/~tvcutsem/traitsjs/
http://soft.vub.ac.be/~tvcutsem/traitsjs/


Classes 262

function instantiate(TheClass, args) {

return new TheClass(...args);

}

Another option is to use Reflect.construct():

function instantiate(TheClass, args) {

return Reflect.construct(TheClass, args);

}

15.10 What is next for classes?

The design motto for classes was “maximally minimal”. Several advanced features were dis-
cussed, but ultimately discarded in order to get a design that would be unanimously accepted by
TC39.

Upcoming versions of ECMAScript can now extend this minimal design – classes will provide a
foundation for features such as traits (or mixins), value objects (where different objects are equal
if they have the same content) and const classes (that produce immutable instances).

15.11 Further reading

The following document is an important source of this chapter:

• “Instantiation Reform: One last time¹⁸”, slides by Allen Wirfs-Brock.

¹⁸https://github.com/rwaldron/tc39-notes/blob/master/es6/2015-01/jan2015-allen-slides.pdf

https://github.com/rwaldron/tc39-notes/blob/master/es6/2015-01/jan2015-allen-slides.pdf
https://github.com/rwaldron/tc39-notes/blob/master/es6/2015-01/jan2015-allen-slides.pdf


16. Modules
16.1 Overview

JavaScript has had modules for a long time. However, they were implemented via libraries, not
built into the language. ES6 is the first time that JavaScript has built-in modules.

ES6 modules are stored in files. There is exactly one module per file and one file per module.
You have two ways of exporting things from a module. These two ways can be mixed, but it is
usually better to use them separately.

16.1.1 Multiple named exports

There can be multiple named exports:

//------ lib.js ------

export const sqrt = Math.sqrt;

export function square(x) {

return x * x;

}

export function diag(x, y) {

return sqrt(square(x) + square(y));

}

//------ main.js ------

import { square, diag } from 'lib';

console.log(square(11)); // 121

console.log(diag(4, 3)); // 5

You can also import the complete module:

//------ main.js ------

import * as lib from 'lib';

console.log(lib.square(11)); // 121

console.log(lib.diag(4, 3)); // 5

16.1.2 Single default export

There can be a single default export. For example, a function:



Modules 264

//------ myFunc.js ------

export default function () { ··· } // no semicolon!

//------ main1.js ------

import myFunc from 'myFunc';

myFunc();

Or a class:

//------ MyClass.js ------

export default class { ··· } // no semicolon!

//------ main2.js ------

import MyClass from 'MyClass';

const inst = new MyClass();

Note that there is no semicolon at the end if you default-export a function or a class (which are
anonymous declarations).

16.1.3 Browsers: scripts versus modules

Scripts Modules

HTML element <script> <script type="module">

Default mode non-strict strict
Top-level variables are global local to module
Value of this at top level window undefined

Executed synchronously asynchronously
Declarative imports (import statement) no yes
Programmatic imports (Promise-based API) yes yes
File extension .js .js

16.2 Modules in JavaScript

Even though JavaScript never had built-in modules, the community has converged on a simple
style of modules, which is supported by libraries in ES5 and earlier. This style has also been
adopted by ES6:

• Each module is a piece of code that is executed once it is loaded.
• In that code, there may be declarations (variable declarations, function declarations, etc.).

– By default, these declarations stay local to the module.
– You can mark some of them as exports, then other modules can import them.

• A module can import things from other modules. It refers to those modules via module
specifiers, strings that are either:



Modules 265

– Relative paths ('../model/user'): these paths are interpreted relatively to the
location of the importing module. The file extension .js can usually be omitted.

– Absolute paths ('/lib/js/helpers'): point directly to the file of the module to be
imported.

– Names ('util'): What modules names refer to has to be configured.
• Modules are singletons. Even if a module is imported multiple times, only a single
“instance” of it exists.

This approach to modules avoids global variables, the only things that are global are module
specifiers.

16.2.1 ECMAScript 5 module systems

It is impressive how well ES5 module systems work without explicit support from the language.
The two most important (and unfortunately incompatible) standards are:

• CommonJS Modules: The dominant implementation of this standard is in Node.js¹
(Node.js modules have a few features that go beyond CommonJS). Characteristics:

– Compact syntax
– Designed for synchronous loading and servers

• Asynchronous Module Definition (AMD): The most popular implementation of this
standard is RequireJS². Characteristics:

– Slightly more complicated syntax, enabling AMD to work without eval() (or a
compilation step)

– Designed for asynchronous loading and browsers

The above is but a simplified explanation of ES5 modules. If you want more in-depth material,
take a look at “Writing Modular JavaScript With AMD, CommonJS & ES Harmony³” by Addy
Osmani.

16.2.2 ECMAScript 6 modules

The goal for ECMAScript 6 modules was to create a format that both users of CommonJS and of
AMD are happy with:

• Similarly to CommonJS, they have a compact syntax, a preference for single exports and
support for cyclic dependencies.

• Similarly to AMD, they have direct support for asynchronous loading and configurable
module loading.

Being built into the language allows ES6 modules to go beyond CommonJS and AMD (details
are explained later):

¹http://nodejs.org/api/modules.html
²http://requirejs.org/
³http://addyosmani.com/writing-modular-js/

http://nodejs.org/api/modules.html
http://requirejs.org/
http://addyosmani.com/writing-modular-js/
http://nodejs.org/api/modules.html
http://requirejs.org/
http://addyosmani.com/writing-modular-js/


Modules 266

• Their syntax is even more compact than CommonJS’s.
• Their structure can be statically analyzed (for static checking, optimization, etc.).
• Their support for cyclic dependencies is better than CommonJS’s.

The ES6 module standard has two parts:

• Declarative syntax (for importing and exporting)
• Programmatic loader API: to configure how modules are loaded and to conditionally load
modules

16.3 The basics of ES6 modules

There are two kinds of exports: named exports (several per module) and default exports (one per
module). As explained later, it is possible use both at the same time, but usually best to keep
them separate.

16.3.1 Named exports (several per module)

A module can export multiple things by prefixing its declarations with the keyword export.
These exports are distinguished by their names and are called named exports.

//------ lib.js ------

export const sqrt = Math.sqrt;

export function square(x) {

return x * x;

}

export function diag(x, y) {

return sqrt(square(x) + square(y));

}

//------ main.js ------

import { square, diag } from 'lib';

console.log(square(11)); // 121

console.log(diag(4, 3)); // 5

There are other ways to specify named exports (which are explained later), but I find this one
quite convenient: simply write your code as if there were no outside world, then label everything
that you want to export with a keyword.

If you want to, you can also import the whole module and refer to its named exports via property
notation:



Modules 267

//------ main.js ------

import * as lib from 'lib';

console.log(lib.square(11)); // 121

console.log(lib.diag(4, 3)); // 5

The same code in CommonJS syntax: For a while, I tried several clever strategies to be less
redundant with my module exports in Node.js. Now I prefer the following simple but slightly
verbose style that is reminiscent of the revealing module pattern⁴:

//------ lib.js ------

var sqrt = Math.sqrt;

function square(x) {

return x * x;

}

function diag(x, y) {

return sqrt(square(x) + square(y));

}

module.exports = {

sqrt: sqrt,

square: square,

diag: diag,

};

//------ main.js ------

var square = require('lib').square;

var diag = require('lib').diag;

console.log(square(11)); // 121

console.log(diag(4, 3)); // 5

16.3.2 Default exports (one per module)

Modules that only export single values are very popular in the Node.js community. But they are
also common in frontend development where you often have classes for models and components,
with one class per module. An ES6 module can pick a default export, the main exported value.
Default exports are especially easy to import.

The following ECMAScript 6 module “is” a single function:

⁴http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/

http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/
http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/


Modules 268

//------ myFunc.js ------

export default function () {} // no semicolon!

//------ main1.js ------

import myFunc from 'myFunc';

myFunc();

An ECMAScript 6 module whose default export is a class looks as follows:

//------ MyClass.js ------

export default class {} // no semicolon!

//------ main2.js ------

import MyClass from 'MyClass';

const inst = new MyClass();

There are two styles of default exports:

1. Labeling declarations
2. Default-exporting values directly

16.3.2.1 Default export style 1: labeling declarations

You can prefix any function declaration (or generator function declaration) or class declaration
with the keywords export default to make it the default export:

export default function foo() {} // no semicolon!

export default class Bar {} // no semicolon!

You can also omit the name in this case. That makes default exports the only place where
JavaScript has anonymous function declarations and anonymous class declarations:

export default function () {} // no semicolon!

export default class {} // no semicolon!

16.3.2.1.1 Why anonymous function declarations and not anonymous function
expressions?

When you look at the previous two lines of code, you’d expect the operands of export default

to be expressions. They are only declarations for reasons of consistency: operands can be named
declarations, interpreting their anonymous versions as expressions would be confusing (even
more so than introducing new kinds of declarations).

If you want the operands to be interpreted as expressions, you need to use parentheses:



Modules 269

export default (function () {});

export default (class {});

16.3.2.2 Default export style 2: default-exporting values directly

The values are produced via expressions:

export default 'abc';

export default foo();

export default /^xyz$/;

export default 5 * 7;

export default { no: false, yes: true };

Each of these default exports has the following structure.

export default «expression»;

That is equivalent to:

const __default__ = «expression»;

export { __default__ as default }; // (A)

The statement in line A is an export clause (which is explained in a later section).

16.3.2.2.1 Why two default export styles?

The second default export style was introduced because variable declarations can’t be meaning-
fully turned into default exports if they declare multiple variables:

export default const foo = 1, bar = 2, baz = 3; // not legal JavaScript!

Which one of the three variables foo, bar and baz would be the default export?

16.3.3 Imports and exports must be at the top level

As explained in more detail later, the structure of ES6 modules is static, you can’t conditionally
import or export things. That brings a variety of benefits.

This restriction is enforced syntactically by only allowing imports and exports at the top level of
a module:



Modules 270

if (Math.random()) {

import 'foo'; // SyntaxError

}

// You can’t even nest `import` and `export`

// inside a simple block:

{

import 'foo'; // SyntaxError

}

16.3.4 Imports are hoisted

Module imports are hoisted (internally moved to the beginning of the current scope). Therefore,
it doesn’t matter where you mention them in a module and the following code works without
any problems:

foo();

import { foo } from 'my_module';

16.3.5 Imports are read-only views on exports

The imports of an ES6 module are read-only views on the exported entities. That means that
the connections to variables declared inside module bodies remain live, as demonstrated in the
following code.

//------ lib.js ------

export let counter = 3;

export function incCounter() {

counter++;

}

//------ main.js ------

import { counter, incCounter } from './lib';

// The imported value `counter` is live

console.log(counter); // 3

incCounter();

console.log(counter); // 4

How that works under the hood is explained in a later section.

Imports as views have the following advantages:

• They enable cyclic dependencies, even for unqualified imports (as explained in the next
section).



Modules 271

• Qualified and unqualified imports work the same way (they are both indirections).
• You can split code into multiple modules and it will continue to work (as long as you don’t
try to change the values of imports).

16.3.6 Support for cyclic dependencies

Two modules A and B are cyclically dependent⁵ on each other if both A (possibly indirectly/-
transitively) imports B and B imports A. If possible, cyclic dependencies should be avoided, they
lead to A and B being tightly coupled – they can only be used and evolved together.

Why support cyclic dependencies, then? Occasionally, you can’t get around them, which is why
support for them is an important feature. A later section has more information.

Let’s see how CommonJS and ECMAScript 6 handle cyclic dependencies.

16.3.6.1 Cyclic dependencies in CommonJS

The following CommonJS code correctly handles two modules a and b cyclically depending on
each other.

//------ a.js ------

var b = require('b');

function foo() {

b.bar();

}

exports.foo = foo;

//------ b.js ------

var a = require('a'); // (i)

function bar() {

if (Math.random()) {

a.foo(); // (ii)

}

}

exports.bar = bar;

If module a is imported first then, in line i, module b gets a’s exports object before the exports
are added to it. Therefore, b cannot access a.foo in its top level, but that property exists once the
execution of a is finished. If bar() is called afterwards then the method call in line ii works.

As a general rule, keep in mind that with cyclic dependencies, you can’t access imports in the
body of the module. That is inherent to the phenomenon and doesn’t change with ECMAScript
6 modules.

The limitations of the CommonJS approach are:

• Node.js-style single-value exports don’t work. There, you export single values instead of
objects:

⁵http://en.wikipedia.org/wiki/Circular_dependency

http://en.wikipedia.org/wiki/Circular_dependency
http://en.wikipedia.org/wiki/Circular_dependency


Modules 272

module.exports = function () { ··· };

If module a did that then module b’s variable awould not be updated once the assignment
is made. It would continue to refer to the original exports object.

• You can’t use named exports directly. That is, module b can’t import foo like this:

var foo = require('a').foo;

foo would simply be undefined. In other words, you have no choice but to refer to foo

via a.foo.

These limitations mean that both exporter and importers must be aware of cyclic dependencies
and support them explicitly.

16.3.6.2 Cyclic dependencies in ECMAScript 6

ES6 modules support cyclic dependencies automatically. That is, they do not have the two
limitations of CommonJS modules that were mentioned in the previous section: default exports
work, as do unqualified named imports (lines i and iii in the following example). Therefore, you
can implement modules that cyclically depend on each other as follows.

//------ a.js ------

import {bar} from 'b'; // (i)

export function foo() {

bar(); // (ii)

}

//------ b.js ------

import {foo} from 'a'; // (iii)

export function bar() {

if (Math.random()) {

foo(); // (iv)

}

}

This codeworks, because, as explained in the previous section, imports are views on exports. That
means that even unqualified imports (such as bar in line ii and foo in line iv) are indirections
that refer to the original data. Thus, in the face of cyclic dependencies, it doesn’t matter whether
you access a named export via an unqualified import or via its module: There is an indirection
involved in either case and it always works.



Modules 273

16.4 Importing and exporting in detail

16.4.1 Importing styles

ECMAScript 6 provides several styles of importing⁶:

• Default import:

import localName from 'src/my_lib';

• Namespace import: imports the module as an object (with one property per named export).

import * as my_lib from 'src/my_lib';

• Named imports:

import { name1, name2 } from 'src/my_lib';

You can rename named imports:

// Renaming: import `name1` as `localName1`

import { name1 as localName1, name2 } from 'src/my_lib';

// Renaming: import the default export as `foo`

import { default as foo } from 'src/my_lib';

• Empty import: only loads the module, doesn’t import anything. The first such import in a
program executes the body of the module.

import 'src/my_lib';

There are only two ways to combine these styles and the order in which they appear is fixed;
the default export always comes first.

• Combining a default import with a namespace import:

import theDefault, * as my_lib from 'src/my_lib';

• Combining a default import with named imports

import theDefault, { name1, name2 } from 'src/my_lib';

16.4.2 Named exporting styles: inline versus clause

There are two ways⁷ in which you can export named things inside modules.

On one hand, you can mark declarations with the keyword export.

⁶[Spec] Sect. “Imports” starts with grammar rules and continues with semantics.
⁷http://www.ecma-international.org/ecma-262/6.0/#sec-exports

http://www.ecma-international.org/ecma-262/6.0/#sec-exports
http://www.ecma-international.org/ecma-262/6.0/#sec-imports
http://www.ecma-international.org/ecma-262/6.0/#sec-exports


Modules 274

export var myVar1 = ···;

export let myVar2 = ···;

export const MY_CONST = ···;

export function myFunc() {

···

}

export function* myGeneratorFunc() {

···

}

export class MyClass {

···

}

On the other hand, you can list everything you want to export at the end of the module (which
is similar in style to the revealing module pattern).

const MY_CONST = ···;

function myFunc() {

···

}

export { MY_CONST, myFunc };

You can also export things under different names:

export { MY_CONST as FOO, myFunc };

16.4.3 Re-exporting

Re-exporting means adding another module’s exports to those of the current module. You can
either add all of the other module’s exports:

export * from 'src/other_module';

Default exports are ignored⁸ by export *.

Or you can be more selective (optionally while renaming):

⁸[Spec] The specification method GetExportedNames() collects the exports of a module. In step (7.d.i), a check prevents other modules’
default exports from being re-exported.

http://www.ecma-international.org/ecma-262/6.0/#sec-getexportednames


Modules 275

export { foo, bar } from 'src/other_module';

// Renaming: export other_module’s foo as myFoo

export { foo as myFoo, bar } from 'src/other_module';

16.4.3.1 Making a re-export the default export

The following statement makes the default export of another module foo the default export of
the current module:

export { default } from 'foo';

The following statement makes the named export myFunc of module foo the default export of
the current module:

export { myFunc as default } from 'foo';

16.4.4 All exporting styles

ECMAScript 6 provides several styles of exporting⁹:

• Re-exporting:
– Re-export everything (except for the default export):

export * from 'src/other_module';

– Re-export via a clause:

export { foo as myFoo, bar } from 'src/other_module';

export { default } from 'src/other_module';

export { default as foo } from 'src/other_module';

export { foo as default } from 'src/other_module';

• Named exporting via a clause:

export { MY_CONST as FOO, myFunc };

export { foo as default };

• Inline named exports:
– Variable declarations:

export var foo;

export let foo;

export const foo;

– Function declarations:

⁹[Spec] Sect. “Exports” starts with grammar rules and continues with semantics.

http://www.ecma-international.org/ecma-262/6.0/#sec-exports


Modules 276

export function myFunc() {}

export function* myGenFunc() {}

– Class declarations:
export class MyClass {}

• Default export:
– Function declarations (can be anonymous here):

export default function myFunc() {}

export default function () {}

export default function* myGenFunc() {}

export default function* () {}

– Class declarations (can be anonymous here):
export default class MyClass {}

export default class {}

– Expressions: export values. Note the semicolons at the end.
export default foo;

export default 'Hello world!';

export default 3 * 7;

export default (function () {});

16.4.5 Having both named exports and a default export in a
module

The following pattern is surprisingly common in JavaScript: A library is a single function, but
additional services are provided via properties of that function. Examples include jQuery and
Underscore.js. The following is a sketch of Underscore as a CommonJS module:

//------ underscore.js ------

var _ = function (obj) {

···

};

var each = _.each = _.forEach =

function (obj, iterator, context) {

···

};

module.exports = _;

//------ main.js ------

var _ = require('underscore');

var each = _.each;

···

With ES6 glasses, the function _ is the default export, while each and forEach are named exports.
As it turns out, you can actually have named exports and a default export at the same time. As
an example, the previous CommonJS module, rewritten as an ES6 module, looks like this:



Modules 277

//------ underscore.js ------

export default function (obj) {

···

}

export function each(obj, iterator, context) {

···

}

export { each as forEach };

//------ main.js ------

import _, { each } from 'underscore';

···

Note that the CommonJS version and the ECMAScript 6 version are only roughly similar. The
latter has a flat structure, whereas the former is nested.

16.4.5.1 Recommendation: avoid mixing default exports and named exports

I generally recommend to keep the two kinds of exporting separate: per module, either only have
a default export or only have named exports.

However, that is not a very strong recommendation; it occasionally may make sense to mix the
two kinds. One example is a module that default-exports an entity. For unit tests, one could
additionally make some of the internals available via named exports.

16.4.5.2 The default export is just another named export

The default export is actually just a named export with the special name default. That is, the
following two statements are equivalent:

import { default as foo } from 'lib';

import foo from 'lib';

Similarly, the following two modules have the same default export:

//------ module1.js ------

export default function foo() {} // function declaration!

//------ module2.js ------

function foo() {}

export { foo as default };

16.4.5.3 default: OK as export name, but not as variable name

You can’t use reserved words (such as default and new) as variable names, but you can use them
as names for exports (you can also use them as property names in ECMAScript 5). If you want
to directly import such named exports, you have to rename them to proper variables names.

That means that default can only appear on the left-hand side of a renaming import:



Modules 278

import { default as foo } from 'some_module';

And it can only appear on the right-hand side of a renaming export:

export { foo as default };

In re-exporting, both sides of the as are export names:

export { myFunc as default } from 'foo';

export { default as otherFunc } from 'foo';

// The following two statements are equivalent:

export { default } from 'foo';

export { default as default } from 'foo';

16.5 The ECMAScript 6 module loader API

In addition to the declarative syntax for working with modules, there is also a programmatic
API. It allows you to:

• Programmatically work with modules
• Configure module loading

Themodule loader API is not part of the ES6
standard
It will be specified in a separate document, the “JavaScript Loader Standard”, that will
be evolved more dynamically than the language specification. The repository for that
document¹⁰ states:

[The JavaScript Loader Standard] consolidates work on the ECMAScript
module loading semantics with the integration points of Web browsers,
as well as Node.js.

The module loader API is work in progress
As you can see in the repository of the JavaScript Loader Standard¹¹, the module loader
API is still work in progress. Everything you read about it in this book is tentative. To
get an impression of what the API may look like, you can take a look at the ES6 Module
Loader Polyfill¹² on GitHub.

¹⁰https://github.com/whatwg/loader/
¹¹https://github.com/whatwg/loader/
¹²https://github.com/ModuleLoader/es6-module-loader

https://github.com/whatwg/loader/
https://github.com/whatwg/loader/
https://github.com/whatwg/loader/
https://github.com/ModuleLoader/es6-module-loader
https://github.com/ModuleLoader/es6-module-loader
https://github.com/whatwg/loader/
https://github.com/whatwg/loader/
https://github.com/ModuleLoader/es6-module-loader


Modules 279

16.5.1 Loaders

Loaders handle resolving module specifiers (the string IDs at the end of import-from), loading
modules, etc. Their constructor is Reflect.Loader. Each platform keeps a default instance in
the global variable System (the system loader), which implements its specific style of module
loading.

16.5.2 Loader method: importing modules

You can programmatically import a module, via an API based on Promises:

System.import('some_module')

.then(some_module => {

// Use some_module

})

.catch(error => {

···

});

System.import() enables you to:

• Use modules inside <script> elements (where module syntax is not supported, consult the
section on modules versus scripts for details).

• Load modules conditionally.

System.import() retrieves a single module, you can use Promise.all() to import several
modules:

Promise.all(

['module1', 'module2', 'module3']

.map(x => System.import(x)))

.then(([module1, module2, module3]) => {

// Use module1, module2, module3

});

16.5.3 More loader methods

Loaders have more methods. Three important ones are:

• System.module(source, options?)

evaluates the JavaScript code in source to a module (which is delivered asynchronously
via a Promise).

• System.set(name, module)

is for registering a module (e.g. one you have created via System.module()).
• System.define(name, source, options?)

both evaluates the module code in source and registers the result.



Modules 280

16.5.4 Configuring module loading

The module loader API will have various hooks for configuring the loading process. Use cases
include:

1. Lint modules on import (e.g. via JSLint or JSHint).
2. Automatically translate modules on import (they could contain CoffeeScript or TypeScript

code).
3. Use legacy modules (AMD, Node.js).

Configurable module loading is an area where Node.js and CommonJS are limited.

16.6 Using ES6 modules in browsers

Let’s look at how ES6 modules are supported in browsers.

Support for ES6modules inbrowsers iswork
in progress
Similarly to module loading, other aspects of support for modules in browsers are still
being worked on. Everything you read here may change.

16.6.1 Browsers: asynchronous modules versus synchronous
scripts

In browsers, there are two different kinds of entities: scripts and modules. They have slightly
different syntax and work differently.

This is an overview of the differences, details are explained later:

Scripts Modules

HTML element <script> <script type="module">

Default mode non-strict strict
Top-level variables are global local to module
Value of this at top level window undefined

Executed synchronously asynchronously
Declarative imports (import statement) no yes
Programmatic imports (Promise-based API) yes yes
File extension .js .js



Modules 281

16.6.1.1 Scripts

Scripts are the traditional browser way to embed JavaScript and to refer to external JavaScript
files. Scripts have an internet media type¹³ that is used as:

• The content type of JavaScript files delivered via a web server.
• The value of the attribute type of <script> elements. Note that for HTML5, the recom-
mendation is to omit the type attribute in <script> elements if they contain or refer to
JavaScript.

The following are the most important values:

• text/javascript: is a legacy value and used as the default if you omit the type attribute
in a script tag. It is the safest choice¹⁴ for Internet Explorer 8 and earlier.

• application/javascript: is recommended¹⁵ for current browsers.

Scripts are normally loaded or executed synchronously. The JavaScript thread stops until the
code has been loaded or executed.

16.6.1.2 Modules

To be in line with JavaScript’s usual run-to-completion semantics, the body of a module must be
executed without interruption. That leaves two options for importing modules:

1. Load modules synchronously, while the body is executed. That is what Node.js does.
2. Load all modules asynchronously, before the body is executed. That is how AMDmodules

are handled. It is the best option for browsers, because modules are loaded over the internet
and execution doesn’t have to pause while they are. As an added benefit, this approach
allows one to load multiple modules in parallel.

ECMAScript 6 gives you the best of both worlds: The synchronous syntax of Node.js plus the
asynchronous loading of AMD. Tomake both possible, ES6modules are syntactically less flexible
than Node.js modules: Imports and exports must happen at the top level. That means that they
can’t be conditional, either. This restriction allows an ES6 module loader to analyze statically
what modules are imported by a module and load them before executing its body.

The synchronous nature of scripts prevents them from becoming modules. Scripts cannot even
import modules declaratively (you have to use the programmatic module loader API if you want
to do so).

Modules can be used from browsers via a new variant of the <script> element that is completely
asynchronous:

¹³http://en.wikipedia.org/wiki/Internet_media_type
¹⁴http://stackoverflow.com/questions/359895/what-are-the-most-likely-causes-of-javascript-errors-in-ie8/703590#703590
¹⁵http://tools.ietf.org/html/rfc4329#section-7

http://en.wikipedia.org/wiki/Internet_media_type
http://stackoverflow.com/questions/359895/what-are-the-most-likely-causes-of-javascript-errors-in-ie8/703590#703590
http://tools.ietf.org/html/rfc4329#section-7
http://en.wikipedia.org/wiki/Internet_media_type
http://stackoverflow.com/questions/359895/what-are-the-most-likely-causes-of-javascript-errors-in-ie8/703590#703590
http://tools.ietf.org/html/rfc4329#section-7


Modules 282

<script type="module">

import $ from 'lib/jquery';

var x = 123;

// The current scope is not global

console.log('$' in window); // false

console.log('x' in window); // false

// `this` still refers to the global object

console.log(this === window); // true

</script>

As you can see, the element has its own scope and variables “inside” it are local to that scope.
Note that module code is implicitly in strict mode. This is great news – no more 'use strict'.

Similar to normal <script> elements, <script type="module"> can also be used to load external
modules. For example, the following tag starts a web application via a mainmodule (the attribute
name import is my invention, it isn’t yet clear what name will be used).

<script type="module" import="impl/main"></script>

The advantage of supporting modules in HTML via a custom <script> type is that it is easy to
bring that support to older engines via a polyfill (a library). There may or may not eventually be
a dedicated element for modules (e.g. <module>).

16.6.1.3 Module or script – a matter of context

Whether a file is a module or a script is only determined by how it is imported or loaded. Most
modules have either imports or exports and can thus be detected. But if a module has neither
then it is indistinguishable from a script. For example:

var x = 123;

The semantics of this piece of code differs depending on whether it is interpreted as a module or
as a script:

• As a module, the variable x is created in module scope.
• As a script, the variable x becomes a global variable and a property of the global object
(window in browsers).

More realistic example is a module that installs something, e.g. a polyfill in global variables or
a global event listener. Such a module neither imports nor exports anything and is activated via
an empty import:



Modules 283

import './my_module';

Sources of this section

• “Modules: Status Update¹⁶”, slides by David Herman.
• “Modules vs Scripts¹⁷”, an email by David Herman.

16.7 Details: imports as views on exports

The code in this section is available on GitHub¹⁸.

Imports work differently in CommonJS and ES6:

• In CommonJS, imports are copies of exported values.
• In ES6, imports are live read-only views on exported values.

The following sections explain what that means.

16.7.1 In CommonJS, imports are copies of exported values

With CommonJS (Node.js) modules, things work in relatively familiar ways.

If you import a value into a variable, the value is copied twice: once when it is exported (line A)
and once it is imported (line B).

//------ lib.js ------

var counter = 3;

function incCounter() {

counter++;

}

module.exports = {

counter: counter, // (A)

incCounter: incCounter,

};

¹⁶https://github.com/rwaldron/tc39-notes/blob/master/es6/2013-09/modules.pdf
¹⁷https://mail.mozilla.org/pipermail/es-discuss/2013-November/034869.html
¹⁸https://github.com/rauschma/imports-are-views-demo

https://github.com/rwaldron/tc39-notes/blob/master/es6/2013-09/modules.pdf
https://mail.mozilla.org/pipermail/es-discuss/2013-November/034869.html
https://github.com/rauschma/imports-are-views-demo
https://github.com/rwaldron/tc39-notes/blob/master/es6/2013-09/modules.pdf
https://mail.mozilla.org/pipermail/es-discuss/2013-November/034869.html
https://github.com/rauschma/imports-are-views-demo


Modules 284

//------ main1.js ------

var counter = require('./lib').counter; // (B)

var incCounter = require('./lib').incCounter;

// The imported value is a (disconnected) copy of a copy

console.log(counter); // 3

incCounter();

console.log(counter); // 3

// The imported value can be changed

counter++;

console.log(counter); // 4

If you access the value via the exports object, it is still copied once, on export:

//------ main2.js ------

var lib = require('./lib');

// The imported value is a (disconnected) copy

console.log(lib.counter); // 3

lib.incCounter();

console.log(lib.counter); // 3

// The imported value can be changed

lib.counter++;

console.log(lib.counter); // 4

16.7.2 In ES6, imports are live read-only views on exported
values

In contrast to CommonJS, imports are views on exported values. In other words, every import is
a live connection to the exported data. Imports are read-only:

• Unqualified imports (import x from 'foo') are like const-declared variables.
• The properties of a module object foo (import * as foo from 'foo') are like the prop-
erties of a frozen object¹⁹.

The following code demonstrates how imports are like views:

¹⁹http://speakingjs.com/es5/ch17.html#freezing_objects

http://speakingjs.com/es5/ch17.html#freezing_objects
http://speakingjs.com/es5/ch17.html#freezing_objects


Modules 285

//------ lib.js ------

export let counter = 3;

export function incCounter() {

counter++;

}

//------ main1.js ------

import { counter, incCounter } from './lib';

// The imported value `counter` is live

console.log(counter); // 3

incCounter();

console.log(counter); // 4

// The imported value can’t be changed

counter++; // TypeError

If you import the module object via the asterisk (*), you get the same results:

//------ main2.js ------

import * as lib from './lib';

// The imported value `counter` is live

console.log(lib.counter); // 3

lib.incCounter();

console.log(lib.counter); // 4

// The imported value can’t be changed

lib.counter++; // TypeError

Note that while you can’t change the values of imports, you can change the objects that they are
referring to. For example:

//------ lib.js ------

export let obj = {};

//------ main.js ------

import { obj } from './lib';

obj.prop = 123; // OK

obj = {}; // TypeError

16.7.2.1 Why a new approach to importing?

Why introduce such a relatively complicated mechanism for importing that deviates from
established practices?



Modules 286

• Cyclic dependencies: The main advantage is that it supports cyclic dependencies even for
unqualified imports.

• Qualified and unqualified imports work the same. In CommonJS, they don’t: a qualified
import provides direct access to a property of a module’s export object, an unqualified
import is a copy of it.

• You can split code into multiple modules and it will continue to work (as long as you don’t
try to change the values of imports).

• On the flip side,module folding, combiningmultiplemodules into a singlemodule becomes
simpler, too.

In my experience, ES6 imports just work, you rarely have to think about what’s going on under
the hood.

16.7.3 Implementing views

How do imports work as views of exports under the hood? Exports are managed via the data
structure export entry. All export entries (except those for re-exports) have the following two
names:

• Local name: is the name under which the export is stored inside the module.
• Export name: is the name that importing modules need to use to access the export.

After you have imported an entity, that entity is always accessed via a pointer that has the two
componentsmodule and local name. In other words, that pointer refers to a binding (the storage
space of a variable) inside a module.

Let’s examine the export names and local names created by various kinds of exporting. The
following table (adapted from the ES6 spec²⁰) gives an overview, subsequent sections have more
details.

Statement Local name Export name

export {v}; 'v' 'v'

export {v as x}; 'v' 'x'

export const v = 123; 'v' 'v'

export function f() {} 'f' 'f'

export default function f() {} 'f' 'default'

export default function () {} '*default*' 'default'

export default 123; '*default*' 'default'

16.7.3.1 Export clause

²⁰http://www.ecma-international.org/ecma-262/6.0/#table-42

http://www.ecma-international.org/ecma-262/6.0/#table-42
http://www.ecma-international.org/ecma-262/6.0/#table-42


Modules 287

function foo() {}

export { foo };

• Local name: foo
• Export name: foo

function foo() {}

export { foo as bar };

• Local name: foo
• Export name: bar

16.7.3.2 Inline exports

This is an inline export:

export function foo() {}

It is equivalent to the following code:

function foo() {}

export { foo };

Therefore, we have the following names:

• Local name: foo
• Export name: foo

16.7.3.3 Default exports

There are two kinds of default exports:

• Default exports of hoistable declarations (function declarations, generator function dec-
larations) and class declarations are similar to normal inline exports in that named local
entities are created and tagged.

• All other default exports are about exporting the results of expressions.

16.7.3.3.1 Default-exporting expressions

The following code default-exports the result of the expression 123:



Modules 288

export default 123;

It is equivalent to:

const *default* = 123; // *not* legal JavaScript

export { *default* as default };

If you default-export an expression, you get:

• Local name: *default*
• Export name: default

The local name was chosen so that it wouldn’t clash with any other local name.

Note that a default export still leads to a binding being created. But, due to *default* not being
a legal identifier, you can’t access that binding from inside the module.

16.7.3.3.2 Default-exporting hoistable declarations and class declarations

The following code default-exports a function declaration:

export default function foo() {}

It is equivalent to:

function foo() {}

export { foo as default };

The names are:

• Local name: foo
• Export name: default

That means that you can change the value of the default export from within the module, by
assigning a different value to foo.

(Only) for default exports, you can also omit the name of a function declaration:

export default function () {}

That is equivalent to:



Modules 289

function *default*() {} // *not* legal JavaScript

export { *default* as default };

The names are:

• Local name: *default*
• Export name: default

Default-exporting generator declarations and class declarations works similarly to default-
exporting function declarations.

16.7.4 Imports as views in the spec

This section gives pointers into the ECMAScript 2015 (ES6) language specification.

Managing imports:

• CreateImportBinding()²¹ creates local bindings for imports.
• GetBindingValue()²² is used to access them.
• ModuleDeclarationInstantiation()²³ sets up the environment of a module (compare: Func-
tionDeclarationInstantiation()²⁴, BlockDeclarationInstantiation()²⁵).

The export names and local names created by the various kinds of exports are shown in table 42²⁶
in the section “Source Text Module Records²⁷”. The section “Static Semantics: ExportEntries²⁸”
has more details. You can see that export entries are set up statically (before evaluating
the module), evaluating export statements is described in the section “Runtime Semantics:
Evaluation²⁹”.

16.8 Design goals for ES6 modules

If youwant tomake sense of ECMAScript 6modules, it helps to understandwhat goals influenced
their design. The major ones are:

• Default exports are favored
• Static module structure
• Support for both synchronous and asynchronous loading
• Support for cyclic dependencies between modules

The following subsections explain these goals.

²¹http://www.ecma-international.org/ecma-262/6.0/#sec-createimportbinding
²²http://www.ecma-international.org/ecma-262/6.0/#sec-module-environment-records-getbindingvalue-n-s
²³http://www.ecma-international.org/ecma-262/6.0/#sec-moduledeclarationinstantiation
²⁴http://www.ecma-international.org/ecma-262/6.0/#sec-functiondeclarationinstantiation
²⁵http://www.ecma-international.org/ecma-262/6.0/#sec-blockdeclarationinstantiation
²⁶http://www.ecma-international.org/ecma-262/6.0/#table-42
²⁷http://www.ecma-international.org/ecma-262/6.0/#sec-source-text-module-records
²⁸http://www.ecma-international.org/ecma-262/6.0/#sec-exports-static-semantics-exportentries
²⁹http://www.ecma-international.org/ecma-262/6.0/#sec-exports-runtime-semantics-evaluation

http://www.ecma-international.org/ecma-262/6.0/#sec-createimportbinding
http://www.ecma-international.org/ecma-262/6.0/#sec-module-environment-records-getbindingvalue-n-s
http://www.ecma-international.org/ecma-262/6.0/#sec-moduledeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-functiondeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-functiondeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-blockdeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#table-42
http://www.ecma-international.org/ecma-262/6.0/#sec-source-text-module-records
http://www.ecma-international.org/ecma-262/6.0/#sec-exports-static-semantics-exportentries
http://www.ecma-international.org/ecma-262/6.0/#sec-exports-runtime-semantics-evaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-exports-runtime-semantics-evaluation
http://www.ecma-international.org/ecma-262/6.0/#sec-createimportbinding
http://www.ecma-international.org/ecma-262/6.0/#sec-module-environment-records-getbindingvalue-n-s
http://www.ecma-international.org/ecma-262/6.0/#sec-moduledeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-functiondeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#sec-blockdeclarationinstantiation
http://www.ecma-international.org/ecma-262/6.0/#table-42
http://www.ecma-international.org/ecma-262/6.0/#sec-source-text-module-records
http://www.ecma-international.org/ecma-262/6.0/#sec-exports-static-semantics-exportentries
http://www.ecma-international.org/ecma-262/6.0/#sec-exports-runtime-semantics-evaluation


Modules 290

16.8.1 Default exports are favored

The module syntax suggesting that the default export “is” the module may seem a bit strange,
but it makes sense if you consider that one major design goal was to make default exports as
convenient as possible. Quoting David Herman³⁰:

ECMAScript 6 favors the single/default export style, and gives the sweetest syntax
to importing the default. Importing named exports can and even should be slightly
less concise.

16.8.2 Static module structure

Current JavaScript module formats have a dynamic structure: What is imported and exported
can change at runtime. One reason why ES6 introduced its own module format is to enable a
static structure, which has several benefits. But before we go into those, let’s examine what the
structure being static means.

It means that you can determine imports and exports at compile time (statically) – you only need
to look at the source code, you don’t have to execute it. ES6 enforces this syntactically: You can
only import and export at the top level (never nested inside a conditional statement). And import
and export statements have no dynamic parts (no variables etc. are allowed).

The following are two examples of CommonJS modules that don’t have a static structure. In the
first example, you have to run the code to find out what it imports:

var my_lib;

if (Math.random()) {

my_lib = require('foo');

} else {

my_lib = require('bar');

}

In the second example, you have to run the code to find out what it exports:

if (Math.random()) {

exports.baz = ···;

}

ECMAScript 6 modules are less flexible and force you to be static. As a result, you get several
benefits, which are described next.

³⁰http://esdiscuss.org/topic/moduleimport#content-0

http://esdiscuss.org/topic/moduleimport#content-0
http://esdiscuss.org/topic/moduleimport#content-0


Modules 291

16.8.2.1 Benefit: dead code elimination during bundling

In frontend development, modules are usually handled as follows:

• During development, code exists as many, often small, modules.
• For deployment, these modules are bundled into a few, relatively large, files.

The reasons for bundling are:

1. Fewer files need to be retrieved in order to load all modules.
2. Compressing the bundled file is slightly more efficient than compressing separate files.
3. During bundling, unused exports can be removed, potentially resulting in significant space

savings.

Reason #1 is important for HTTP/1, where the cost for requesting a file is relatively high. That
will change with HTTP/2, which is why this reason doesn’t matter there.

Reason #3 will remain compelling. It can only be achieved with a module format that has a static
structure.

16.8.2.2 Benefit: compact bundling, no custom bundle format

The module bundler Rollup³¹ proved that ES6 modules can be combined efficiently, because they
all fit into a single scope (after renaming variables to eliminate name clashes). This is possible
due to two characteristics of ES6 modules:

• Their static structure means that the bundle format does not have to account for con-
ditionally loaded modules (a common technique for doing so is putting module code in
functions).

• Imports being read-only views on exports means that you don’t have to copy exports, you
can refer to them directly.

As an example, consider the following two ES6 modules.

// lib.js

export function foo() {}

export function bar() {}

// main.js

import {foo} from './lib.js';

console.log(foo());

Rollup can bundle these two ES6 modules into the following single ES6 module (note the
eliminated unused export bar):

³¹https://github.com/rollup/rollup

https://github.com/rollup/rollup
https://github.com/rollup/rollup


Modules 292

function foo() {}

console.log(foo());

Another benefit of Rollup’s approach is that the bundle does not have a custom format, it is just
an ES6 module.

16.8.2.3 Benefit: faster lookup of imports

If you require a library in CommonJS, you get back an object:

var lib = require('lib');

lib.someFunc(); // property lookup

Thus, accessing a named export via lib.someFunc means you have to do a property lookup,
which is slow, because it is dynamic.

In contrast, if you import a library in ES6, you statically know its contents and can optimize
accesses:

import * as lib from 'lib';

lib.someFunc(); // statically resolved

16.8.2.4 Benefit: variable checking

With a static module structure, you always statically know which variables are visible at any
location inside the module:

• Global variables: increasingly, the only completely global variables will come from the
language proper. Everything else will come from modules (including functionality from
the standard library and the browser). That is, you statically know all global variables.

• Module imports: You statically know those, too.
• Module-local variables: can be determined by statically examining the module.

This helps tremendously with checking whether a given identifier has been spelled properly. This
kind of check is a popular feature of linters such as JSLint and JSHint; in ECMAScript 6, most of
it can be performed by JavaScript engines.

Additionally, any access of named imports (such as lib.foo) can also be checked statically.

16.8.2.5 Benefit: ready for macros

Macros are still on the roadmap for JavaScript’s future. If a JavaScript engine supports macros,
you can add new syntax to it via a library. Sweet.js³² is an experimental macro system for
JavaScript. The following is an example from the Sweet.js website: a macro for classes.

³²http://sweetjs.org

http://sweetjs.org/
http://sweetjs.org/


Modules 293

// Define the macro

macro class {

rule {

$className {

constructor $cparams $cbody

$($mname $mparams $mbody) ...

}

} => {

function $className $cparams $cbody

$($className.prototype.$mname

= function $mname $mparams $mbody; ) ...

}

}

// Use the macro

class Person {

constructor(name) {

this.name = name;

}

say(msg) {

console.log(this.name + " says: " + msg);

}

}

var bob = new Person("Bob");

bob.say("Macros are sweet!");

For macros, a JavaScript engine performs a preprocessing step before compilation: If a sequence
of tokens in the token stream produced by the parser matches the pattern part of the macro, it is
replaced by tokens generated via the body of macro. The preprocessing step only works if you
are able to statically find macro definitions. Therefore, if you want to import macros via modules
then they must have a static structure.

16.8.2.6 Benefit: ready for types

Static type checking imposes constraints similar to macros: it can only be done if type definitions
can be found statically. Again, types can only be imported from modules if they have a static
structure.

Types are appealing because they enable statically typed fast dialects of JavaScript in which
performance-critical code can be written. One such dialect is Low-Level JavaScript³³ (LLJS).

16.8.2.7 Benefit: supporting other languages

If you want to support compiling languages with macros and static types to JavaScript then
JavaScript’s modules should have a static structure, for the reasons mentioned in the previous
two sections.

³³http://lljs.org

http://lljs.org/
http://lljs.org/


Modules 294

16.8.2.8 Source of this section

• “Static module resolution³⁴” by David Herman

16.8.3 Support for both synchronous and asynchronous loading

ECMAScript 6 modules must work independently of whether the engine loads modules syn-
chronously (e.g. on servers) or asynchronously (e.g. in browsers). Its syntax is well suited for
synchronous loading, asynchronous loading is enabled by its static structure: Because you can
statically determine all imports, you can load them before evaluating the body of the module (in
a manner reminiscent of AMD modules).

16.8.4 Support for cyclic dependencies between modules

Support for cyclic dependencies was a key goal for ES6 modules. Here is why:

Cyclic dependencies are not inherently evil. Especially for objects, you sometimes even want
this kind of dependency. For example, in some trees (such as DOM documents), parents refer to
children and children refer back to parents. In libraries, you can usually avoid cyclic dependencies
via careful design. In a large system, though, they can happen, especially during refactoring. Then
it is very useful if a module system supports them, because the system doesn’t break while you
are refactoring.

The Node.js documentation acknowledges the importance of cyclic dependencies³⁵ and Rob
Sayre provides additional evidence³⁶:

Data point: I once implemented a system like [ECMAScript 6 modules] for Firefox.
I got asked³⁷ for cyclic dependency support 3 weeks after shipping.

That system that Alex Fritze invented and I worked on is not perfect, and the syntax
isn’t very pretty. But it’s still getting used³⁸ 7 years later, so it must have gotten
something right.

16.9 FAQ: modules

16.9.1 Can I use a variable to specify from which module I want
to import?

The import statement is completely static: its module specifier is always fixed. If you want to
dynamically determine what module to load, you need to use the programmatic loader API:

³⁴http://calculist.org/blog/2012/06/29/static-module-resolution/
³⁵http://nodejs.org/api/modules.html#modules_cycles
³⁶https://mail.mozilla.org/pipermail/es-discuss/2014-July/038250.html
³⁷https://bugzilla.mozilla.org/show_bug.cgi?id=384168#c7
³⁸https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Using

http://calculist.org/blog/2012/06/29/static-module-resolution/
http://nodejs.org/api/modules.html#modules_cycles
https://mail.mozilla.org/pipermail/es-discuss/2014-July/038250.html
https://mail.mozilla.org/pipermail/es-discuss/2014-July/038250.html
https://bugzilla.mozilla.org/show_bug.cgi?id=384168#c7
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Using
http://calculist.org/blog/2012/06/29/static-module-resolution/
http://nodejs.org/api/modules.html#modules_cycles
https://mail.mozilla.org/pipermail/es-discuss/2014-July/038250.html
https://bugzilla.mozilla.org/show_bug.cgi?id=384168#c7
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Using


Modules 295

const moduleSpecifier = 'module_' + Math.random();

System.import(moduleSpecifier)

.then(the_module => {

// Use the_module

})

16.9.2 Can I import a module conditionally or on demand?

Import statements must always be at the top level of modules. That means that you can’t nest
them inside if statements, functions, etc. Therefore, you have to use the programmatic loader
API if you want to load a module conditionally or on demand:

if (Math.random()) {

System.import('some_module')

.then(some_module => {

// Use some_module

})

}

16.9.3 Can I use variables in an import statement?

No, you can’t. Remember – what is imported must not depend on anything that is computed at
runtime. Therefore:

// Illegal syntax:

import foo from 'some_module'+SUFFIX;

16.9.4 Can I use destructuring in an import statement?

No you can’t. The import statement only looks like destructuring, but is completely different
(static, imports are views, etc.).

Therefore, you can’t do something like this in ES6:

// Illegal syntax:

import { foo: { bar } } from 'some_module';

16.9.5 Are named exports necessary? Why not default-export
objects?

You may be wondering – why do we need named exports if we could simply default-export
objects (like in CommonJS)? The answer is that you can’t enforce a static structure via objects
and lose all of the associated advantages (which are explained in this chapter).



Modules 296

16.9.6 Can I eval() the code of module?

No, you can’t. Modules are too high-level a construct for eval(). Themodule loader API provides
the means for creating modules from strings. Syntactically, eval() accepts scripts (which don’t
allow import and export), not modules.

16.10 Advantages of ECMAScript 6 modules

At first glance, having modules built into ECMAScript 6 may seem like a boring feature – after
all, we already have several good module systems. But ECMAScript 6 modules have several new
features:

• More compact syntax
• Static module structure (helpingwith dead code elimination, optimizations, static checking
and more)

• Automatic support for cyclic dependencies

ES6 modules will also – hopefully – end the fragmentation between the currently dominant
standards CommonJS and AMD. Having a single, native standard for modules means:

• No more UMD (Universal Module Definition³⁹): UMD is a name for patterns that enable
the same file to be used by several module systems (e.g. both CommonJS and AMD). Once
ES6 is the only module standard, UMD becomes obsolete.

• New browser APIs becomemodules instead of global variables or properties of navigator.
• No more objects-as-namespaces: Objects such as Math and JSON serve as namespaces for
functions in ECMAScript 5. In the future, such functionality can be provided via modules.

16.11 Further reading

• CommonJS versus ES6: “JavaScript Modules⁴⁰” (by Yehuda Katz⁴¹) is a quick intro
to ECMAScript 6 modules. Especially interesting is a second page⁴² where CommonJS
modules are shown side by side with their ECMAScript 6 versions.

³⁹https://github.com/umdjs/umd
⁴⁰http://jsmodules.io/
⁴¹https://github.com/wycats/jsmodules
⁴²http://jsmodules.io/cjs.html

https://github.com/umdjs/umd
http://jsmodules.io/
https://github.com/wycats/jsmodules
http://jsmodules.io/cjs.html
https://github.com/umdjs/umd
http://jsmodules.io/
https://github.com/wycats/jsmodules
http://jsmodules.io/cjs.html


IV Collections



17. The for-of loop
17.1 Overview

for-of is a new loop in ES6 that replaces both for-in and forEach() and supports the new
iteration protocol.

Use it to loop over iterable objects (Arrays, strings, Maps, Sets, etc.; see Chap. “Iterables and
iterators”):

const iterable = ['a', 'b'];

for (const x of iterable) {

console.log(x);

}

// Output:

// a

// b

break and continue work inside for-of loops:

for (const x of ['a', '', 'b']) {

if (x.length === 0) break;

console.log(x);

}

// Output:

// a

Access both elements and their indices while looping over an Array (the square brackets before
of mean that we are using destructuring):

const arr = ['a', 'b'];

for (const [index, element] of arr.entries()) {

console.log(`${index}. ${element}`);

}

// Output:

// 0. a

// 1. b

Looping over the [key, value] entries in a Map (the square brackets before of mean that we are
using destructuring):



The for-of loop 299

const map = new Map([

[false, 'no'],

[true, 'yes'],

]);

for (const [key, value] of map) {

console.log(`${key} => ${value}`);

}

// Output:

// false => no

// true => yes

17.2 Introducing the for-of loop

for-of lets you loop over data structures that are iterable: Arrays, strings, Maps, Sets and others.
How exactly iterability works is explained in Chap. “Iterables and iterators”. But you don’t have
to know the details if you use the for-of loop:

const iterable = ['a', 'b'];

for (const x of iterable) {

console.log(x);

}

// Output:

// a

// b

for-of goes through the items of iterable and assigns them, one at a time, to the loop variable
x, before it executes the body. The scope of x is the loop, it only exists inside it.

You can use break and continue:

for (const x of ['a', '', 'b']) {

if (x.length === 0) break;

console.log(x);

}

// Output:

// a

for-of combines the advantages of:

• Normal for loops: break/continue; usable in generators
• forEach() methods: concise syntax



The for-of loop 300

17.3 Pitfall: for-of only works with iterable values

The operand of the of clause must be iterable. That means that you need a helper function if you
want to iterate over plain objects (see “Plain objects are not iterable”). If a value is Array-like,
you can convert it to an Array via Array.from():

// Array-like, but not iterable!

const arrayLike = { length: 2, 0: 'a', 1: 'b' };

for (const x of arrayLike) { // TypeError

console.log(x);

}

for (const x of Array.from(arrayLike)) { // OK

console.log(x);

}

17.4 Iteration variables: const declarations versus var

declarations

If you const-declare the iteration variable, a fresh binding (storage space) will be created for
each iteration. That can be seen in the following code snippet where we save the current binding
of elem for later, via an arrow function. Afterwards, you can see that the arrow functions don’t
share the same binding for elem, they each have a different one.

const arr = [];

for (const elem of [0, 1, 2]) {

arr.push(() => elem); // save `elem` for later

}

console.log(arr.map(f => f())); // [0, 1, 2]

// `elem` only exists inside the loop:

console.log(elem); // ReferenceError: elem is not defined

A let declaration works the same way as a const declaration (but the bindings are mutable).

It is instructive to see how things are different if you var-declare the iteration variable. Now all
arrow functions refer to the same binding of elem.



The for-of loop 301

const arr = [];

for (var elem of [0, 1, 2]) {

arr.push(() => elem);

}

console.log(arr.map(f => f())); // [2, 2, 2]

// `elem` exists in the surrounding function:

console.log(elem); // 2

Having one binding per iteration is very helpful whenever you create functions via a loop (e.g.
to add event listeners).

You also get per-iteration bindings in for loops (via let) and for-in loops (via const or let).
Details are explained in the chapter on variables.

17.5 Iterating with existing variables, object
properties and Array elements

So far, we have only seen for-of with a declared iteration variable. But there are several other
forms.

You can iterate with an existing variable:

let x;

for (x of ['a', 'b']) {

console.log(x);

}

You can also iterate with an object property:

const obj = {};

for (obj.prop of ['a', 'b']) {

console.log(obj.prop);

}

And you can iterate with an Array element:

const arr = [];

for (arr[0] of ['a', 'b']) {

console.log(arr[0]);

}

17.6 Iterating with a destructuring pattern

Combining for-of with destructuring is especially useful for iterables over [key, value] pairs
(encoded as Arrays). That’s what Maps are:



The for-of loop 302

const map = new Map().set(false, 'no').set(true, 'yes');

for (const [k,v] of map) {

console.log(`key = ${k}, value = ${v}`);

}

// Output:

// key = false, value = no

// key = true, value = yes

Array.prototype.entries() also returns an iterable over [key, value] pairs:

const arr = ['a', 'b', 'c'];

for (const [k,v] of arr.entries()) {

console.log(`key = ${k}, value = ${v}`);

}

// Output:

// key = 0, value = a

// key = 1, value = b

// key = 2, value = c

Therefore, entries() gives you a way to treat iterated items differently, depending on their
position:

/** Same as arr.join(', ') */

function toString(arr) {

let result = '';

for (const [i,elem] of arr.entries()) {

if (i > 0) {

result += ', ';

}

result += String(elem);

}

return result;

}

This function is used as follows:

> toString(['eeny', 'meeny', 'miny', 'moe'])

'eeny, meeny, miny, moe'



18. New Array features
18.1 Overview

New static Array methods:

• Array.from(arrayLike, mapFunc?, thisArg?)

• Array.of(...items)

New Array.prototype methods:

• Iterating:
– Array.prototype.entries()

– Array.prototype.keys()

– Array.prototype.values()

• Searching for elements:
– Array.prototype.find(predicate, thisArg?)

– Array.prototype.findIndex(predicate, thisArg?)

• Array.prototype.copyWithin(target, start, end=this.length)

• Array.prototype.fill(value, start=0, end=this.length)

18.2 New static Array methods

The object Array has new methods.

18.2.1 Array.from(arrayLike, mapFunc?, thisArg?)

Array.from()’s basic functionality is to convert two kinds of values to Arrays:

• Array-like values¹, which have a property length and indexed elements. Examples include
the results of DOM operations such as document.getElementsByClassName().

• Iterable values, whose contents can be retrieved one element at a time. Strings and Arrays
are iterable, as are ECMAScript’s new data structures Map and Set.

The following is an example of converting an Array-like object to an Array:

¹http://speakingjs.com/es5/ch18.html#_pitfall_array_like_objects

http://speakingjs.com/es5/ch18.html#_pitfall_array_like_objects
http://speakingjs.com/es5/ch18.html#_pitfall_array_like_objects


New Array features 304

const arrayLike = { length: 2, 0: 'a', 1: 'b' };

// for-of only works with iterable values

for (const x of arrayLike) { // TypeError

console.log(x);

}

const arr = Array.from(arrayLike);

for (const x of arr) { // OK, iterable

console.log(x);

}

// Output:

// a

// b

18.2.1.1 Mapping via Array.from()

Array.from() is also a convenient alternative to using map() generically²:

const spans = document.querySelectorAll('span.name');

// map(), generically:

const names1 = Array.prototype.map.call(spans, s => s.textContent);

// Array.from():

const names2 = Array.from(spans, s => s.textContent);

In this example, the result of document.querySelectorAll() is again an Array-like object, not
an Array, which is why we couldn’t invoke map() on it. Previously, we converted the Array-
like object to an Array in order to call forEach(). Here, we skipped that intermediate step via a
generic method call and via the two-parameter version of Array.from().

18.2.1.2 from() in subclasses of Array

Another use case for Array.from() is to convert an Array-like or iterable value to an instance of
a subclass of Array. For example, if you create a subclass MyArray of Array and want to convert
such an object to an instance of MyArray, you simply use MyArray.from(). The reason that that
works is because constructors inherit from each other in ECMAScript 6 (a super-constructor is
the prototype of its sub-constructors).

²http://speakingjs.com/es5/ch17.html#generic_method

http://speakingjs.com/es5/ch17.html#generic_method
http://speakingjs.com/es5/ch17.html#generic_method


New Array features 305

class MyArray extends Array {

···

}

const instanceOfMyArray = MyArray.from(anIterable);

You can also combine this functionality with mapping, to get a map operation where you control
the result’s constructor:

// from() – determine the result’s constructor via the receiver

// (in this case, MyArray)

const instanceOfMyArray = MyArray.from([1, 2, 3], x => x * x);

// map(): the result is always an instance of Array

const instanceOfArray = [1, 2, 3].map(x => x * x);

The species pattern lets you configure what instances non-static built-in methods (such as
slice(), filter() and map()) return. It is explained in Sect. “The species pattern” in Chap.
“Classes”.

18.2.2 Array.of(...items)

Array.of(item_0, item_1, ···) creates an Array whose elements are item_0, item_1, etc.

18.2.2.1 Array.of() as an Array literal for subclasses of Array

If youwant to turn several values into anArray, you should always use anArray literal, especially
since the Array constructor doesn’t work properly if there is a single value that is a number (more
information³ on this quirk):

> new Array(3, 11, 8)

[ 3, 11, 8 ]

> new Array(3)

[ , , ,]

> new Array(3.1)

RangeError: Invalid array length

But how are you supposed to turn values into an instance of a sub-constructor of Array then?
This is where Array.of() helps (remember that sub-constructors of Array inherit all of Array’s
methods, including of()).

³http://speakingjs.com/es5/ch18.html#array_constructor

http://speakingjs.com/es5/ch18.html#array_constructor
http://speakingjs.com/es5/ch18.html#array_constructor
http://speakingjs.com/es5/ch18.html#array_constructor


New Array features 306

class MyArray extends Array {

···

}

console.log(MyArray.of(3, 11, 8) instanceof MyArray); // true

console.log(MyArray.of(3).length === 1); // true

18.3 New Array.prototype methods

Several new methods are available for Array instances.

18.3.1 Iterating over Arrays

The following methods help with iterating over Arrays:

• Array.prototype.entries()

• Array.prototype.keys()

• Array.prototype.values()

The result of each of the aforementioned methods is a sequence of values, but they are not
returned as an Array; they are revealed one by one, via an iterator. Let’s look at an example. I’m
using Array.from() to put the iterators’ contents into Arrays:

> Array.from(['a', 'b'].keys())

[ 0, 1 ]

> Array.from(['a', 'b'].values())

[ 'a', 'b' ]

> Array.from(['a', 'b'].entries())

[ [ 0, 'a' ],

[ 1, 'b' ] ]

I could also have used the spread operator (...) to convert iterators to Arrays:

> [...['a', 'b'].keys()]

[ 0, 1 ]

18.3.1.1 Iterating over [index, element] pairs

You can combine entries()with ECMAScript 6’s for-of loop and destructuring to conveniently
iterate over [index, element] pairs:



New Array features 307

for (const [index, element] of ['a', 'b'].entries()) {

console.log(index, element);

}

18.3.2 Searching for Array elements

Array.prototype.find(predicate, thisArg?)

Returns the first Array element for which the callback predicate returns true. If there is no
such element, it returns undefined. Example:

> [6, -5, 8].find(x => x < 0)

-5

> [6, 5, 8].find(x => x < 0)

undefined

Array.prototype.findIndex(predicate, thisArg?)

Returns the index of the first element for which the callback predicate returns true. If there is
no such element, it returns -1. Example:

> [6, -5, 8].findIndex(x => x < 0)

1

> [6, 5, 8].findIndex(x => x < 0)

-1

The full signature of the callback predicate is:

predicate(element, index, array)

18.3.2.1 Finding NaN via findIndex()

A well-known limitation⁴ of Array.prototype.indexOf() is that it can’t find NaN, because it
searches for elements via ===:

> [NaN].indexOf(NaN)

-1

With findIndex(), you can use Object.is() (explained in the chapter on OOP) and will have
no such problem:

> [NaN].findIndex(y => Object.is(NaN, y))

0

You can also adopt a more general approach, by creating a helper function elemIs():

⁴http://speakingjs.com/es5/ch18.html#_searching_for_values_nondestructive

http://speakingjs.com/es5/ch18.html#_searching_for_values_nondestructive
http://speakingjs.com/es5/ch18.html#_searching_for_values_nondestructive


New Array features 308

> function elemIs(x) { return Object.is.bind(Object, x) }

> [NaN].findIndex(elemIs(NaN))

0

18.3.3 Array.prototype.copyWithin()

The signature of this method is:

Array.prototype.copyWithin(target : number,

start : number, end = this.length) : This

It copies the elements whose indices are in the range [start,end) to index target and subsequent
indices. If the two index ranges overlap, care is taken that all source elements are copied before
they are overwritten.

Example:

> const arr = [0,1,2,3];

> arr.copyWithin(2, 0, 2)

[ 0, 1, 0, 1 ]

> arr

[ 0, 1, 0, 1 ]

18.3.4 Array.prototype.fill()

The signature of this method is:

Array.prototype.fill(value : any, start=0, end=this.length) : This

It fills an Array with the given value:

> const arr = ['a', 'b', 'c'];

> arr.fill(7)

[ 7, 7, 7 ]

> arr

[ 7, 7, 7 ]

Optionally, you can restrict where the filling starts and ends:

> ['a', 'b', 'c'].fill(7, 1, 2)

[ 'a', 7, 'c' ]



New Array features 309

18.4 ES6 and holes in Arrays

Holes are indices “inside” an Array that have no associated element. In other words: An Array
arr is said to have a hole at index i if:

• 0 ≤ i < arr.length

• !(i in arr)

For example: The following Array has a hole at index 1.

> const arr = ['a',,'b']

'use strict'

> 0 in arr

true

> 1 in arr

false

> 2 in arr

true

> arr[1]

undefined

You’ll see lots of examples involving holes in this section. Should anything ever be unclear, you
can consult Sect. “Holes in Arrays⁵” in “Speaking JavaScript” for more information.

ES6 pretends that holes don’t exist (as much as it can while being backward-com-
patible). And so should you – especially if you consider that holes can also affect
performance negatively. Then you don’t have to burden your brain with the numerous
and inconsistent rules around holes.

18.4.1 ECMAScript 6 treats holes like undefined elements

The general rule for Array methods that are new in ES6 is: each hole is treated as if it were the
element undefined. Examples:

> Array.from(['a',,'b'])

[ 'a', undefined, 'b' ]

> [,'a'].findIndex(x => x === undefined)

0

> [...[,'a'].entries()]

[ [ 0, undefined ], [ 1, 'a' ] ]

The idea is to steer people away from holes and to simplify long-term. Unfortunately that means
that things are even more inconsistent now.

⁵http://speakingjs.com/es5/ch18.html#array_holes

http://speakingjs.com/es5/ch18.html#array_holes
http://speakingjs.com/es5/ch18.html#array_holes


New Array features 310

18.4.2 Array operations and holes

18.4.2.1 Iteration

The iterator created by Array.prototype[Symbol.iterator] treats each hole as if it were the
element undefined. Take, for example, the following iterator iter:

> var arr = [, 'a'];

> var iter = arr[Symbol.iterator]();

If we invoke next() twice, we get the hole at index 0 and the element 'a' at index 1. As you can
see, the former produces undefined:

> iter.next()

{ value: undefined, done: false }

> iter.next()

{ value: 'a', done: false }

Among others, two operations are based on the iteration protocol. Therefore, these operations
also treat holes as undefined elements.

First, the spread operator (...):

> [...[, 'a']]

[ undefined, 'a' ]

Second, the for-of loop:

for (const x of [, 'a']) {

console.log(x);

}

// Output:

// undefined

// a

Note that the Array prototype methods (filter() etc.) do not use the iteration protocol.

18.4.2.2 Array.from()

If its argument is iterable, Array.from() uses iteration to convert it to an Array. Then it works
exactly like the spread operator:



New Array features 311

> Array.from([, 'a'])

[ undefined, 'a' ]

But Array.from() can also convert Array-like objects⁶ to Arrays. Then holes become undefined,
too:

> Array.from({1: 'a', length: 2})

[ undefined, 'a' ]

With a second argument, Array.from() works mostly like Array.prototype.map().

However, Array.from() treats holes as undefined:

> Array.from([,'a'], x => x)

[ undefined, 'a' ]

> Array.from([,'a'], (x,i) => i)

[ 0, 1 ]

Array.prototype.map() skips them, but preserves them:

> [,'a'].map(x => x)

[ , 'a' ]

> [,'a'].map((x,i) => i)

[ , 1 ]

18.4.2.3 Array.prototype methods

In ECMAScript 5, behavior already varied slightly. For example:

• forEach(), filter(), every() and some() ignore holes.
• map() skips but preserves holes.
• join() and toString() treat holes as if they were undefined elements, but interprets both
null and undefined as empty strings.

ECMAScript 6 adds new kinds of behaviors:

• copyWithin() creates holes when copying holes (i.e., it deletes elements if necessary).
• entries(), keys(), values() treat each hole as if it was the element undefined.
• find() and findIndex() do the same.
• fill() doesn’t care whether there are elements at indices or not.

The following table describes how Array.prototype methods handle holes.

⁶http://speakingjs.com/es5/ch17.html#array-like_objects

http://speakingjs.com/es5/ch17.html#array-like_objects
http://speakingjs.com/es5/ch17.html#array-like_objects


New Array features 312

Method Holes are

concat Preserved ['a',,'b'].concat(['c',,'d']) � ['a',,'b','c',,'d']

copyWithinES⁶ Preserved [,'a','b',,].copyWithin(2,0) � [,'a',,'a']

entriesES⁶ Elements [...[,'a'].entries()] � [[0,undefined], [1,'a']]

every Ignored [,'a'].every(x => x==='a') � true

fillES⁶ Filled new Array(3).fill('a') � ['a','a','a']

filter Removed ['a',,'b'].filter(x => true) � ['a','b']

findES⁶ Elements [,'a'].find(x => true) � undefined

findIndexES⁶ Elements [,'a'].findIndex(x => true) � 0

forEach Ignored [,'a'].forEach((x,i) => log(i)); � 1

indexOf Ignored [,'a'].indexOf(undefined) � -1

join Elements [,'a',undefined,null].join('#') � '#a##'

keysES⁶ Elements [...[,'a'].keys()] � [0,1]

lastIndexOf Ignored [,'a'].lastIndexOf(undefined) � -1

map Preserved [,'a'].map(x => 1) � [,1]

pop Elements ['a',,].pop() � undefined

push Preserved new Array(1).push('a') � 2

reduce Ignored ['#',,undefined].reduce((x,y)=>x+y) � '#undefined'

reduceRight Ignored ['#',,undefined].reduceRight((x,y)=>x+y) � 'undefined#'

reverse Preserved ['a',,'b'].reverse() � ['b',,'a']

shift Elements [,'a'].shift() � undefined

slice Preserved [,'a'].slice(0,1) � [,]

some Ignored [,'a'].some(x => x !== 'a') � false

sort Preserved [,undefined,'a'].sort() � ['a',undefined,,]

splice Preserved ['a',,].splice(1,1) � [,]

toString Elements [,'a',undefined,null].toString() � ',a,,'

unshift Preserved [,'a'].unshift('b') � 3

valuesES⁶ Elements [...[,'a'].values()] � [undefined,'a']

Notes:

• ES6 methods are marked via the superscript “ES6”.
• JavaScript ignores a trailing comma in an Array literal: ['a',,].length � 2

• Helper function used in the table: const log = console.log.bind(console);

18.4.3 Creating Arrays filled with values

Holes being treated as undefined elements by the new ES6 operations helps with creating Arrays
that are filled with values.

18.4.3.1 Filling with a fixed value

Array.prototype.fill() replaces all Array elements (incl. holes) with a fixed value:



New Array features 313

> new Array(3).fill(7)

[ 7, 7, 7 ]

new Array(3) creates an Array with three holes and fill() replaces each hole with the value 7.

18.4.3.2 Filling with ascending numbers

Array.prototype.keys() reports keys even if an Array only has holes. It returns an iterable,
which you can convert to an Array via the spread operator:

> [...new Array(3).keys()]

[ 0, 1, 2 ]

18.4.3.3 Filling with computed values

The mapping function in the second parameter of Array.from() is notified of holes. Therefore,
you can use Array.from() for more sophisticated filling:

> Array.from(new Array(5), (x,i) => i*2)

[ 0, 2, 4, 6, 8 ]

18.4.3.4 Filling with undefined

If you need an Array that is filled with undefined, you can use the fact that iteration (as triggered
by the spread operator) converts holes to undefineds:

> [...new Array(3)]

[ undefined, undefined, undefined ]

18.4.4 Removing holes from Arrays

The ES5 method filter() lets you remove holes:

> ['a',,'c'].filter(() => true)

[ 'a', 'c' ]

ES6 iteration (triggered via the spread operator) lets you convert holes to undefined elements:

> [...['a',,'c']]

[ 'a', undefined, 'c' ]



New Array features 314

18.5 Configuring which objects are spread by concat()

(Symbol.isConcatSpreadable)

You can configure how Array.prototype.concat() treats objects by adding an (own or inher-
ited) property whose key is the well-known symbol Symbol.isConcatSpreadable and whose
value is a boolean.

18.5.1 Default for Arrays: spreading

By default, Array.prototype.concat() spreads Arrays into its result: their indexed elements
become elements of the result:

const arr1 = ['c', 'd'];

['a', 'b'].concat(arr1, 'e');

// ['a', 'b', 'c', 'd', 'e']

With Symbol.isConcatSpreadable, you can override the default and avoid spreading for Arrays:

const arr2 = ['c', 'd'];

arr2[Symbol.isConcatSpreadable] = false;

['a', 'b'].concat(arr2, 'e');

// ['a', 'b', ['c','d'], 'e']

18.5.2 Default for non-Arrays: no spreading

For non-Arrays, the default is not to spread:

const arrayLike = {length: 2, 0: 'c', 1: 'd'};

console.log(['a', 'b'].concat(arrayLike, 'e'));

// ['a', 'b', arrayLike, 'e']

console.log(Array.prototype.concat.call(

arrayLike, ['e','f'], 'g'));

// [arrayLike, 'e', 'f', 'g']

You can use Symbol.isConcatSpreadable to force spreading:



New Array features 315

arrayLike[Symbol.isConcatSpreadable] = true;

console.log(['a', 'b'].concat(arrayLike, 'e'));

// ['a', 'b', 'c', 'd', 'e']

console.log(Array.prototype.concat.call(

arrayLike, ['e','f'], 'g'));

// ['c', 'd', 'e', 'f', 'g']

18.5.3 Detecting Arrays

How does concat() determine if a parameter is an Array? It uses the same algorithm as Ar-
ray.isArray(). Whether or not Array.prototype is in the prototype chain makes no difference
for that algorithm. That is important, because, in ES5 and earlier, hacks were used to subclass
Array and those must continue to work (see the section on __proto__ in this book):

> const arr = [];

> Array.isArray(arr)

true

> Object.setPrototypeOf(arr, null);

> Array.isArray(arr)

true

18.5.4 Symbol.isConcatSpreadable in the standard library

No object in the ES6 standard library has a property with the key Symbol.isConcatSpreadable.
This mechanism therefore exists purely for browser APIs and user code.

Consequences:

• Subclasses of Array are spread by default (because their instances are Array objects).
• A subclass of Array can prevent its instances from being spread by setting a property
to false whose key is Symbol.isConcatSpreadable. That property can be a prototype
property or an instance property.

• Other Array-like objects are spread by concat() if property [Symbol.isConcatSpreadable]
is true. That would enable one, for example, to turn on spreading for some Array-like
DOM collections.

• Typed Arrays are not spread. They don’t have a method concat(), either.



New Array features 316

Symbol.isConcatSpreadable in the ES6 spec

• In the description of Array.prototype.concat()⁷, you can see that spreading
requires an object to be Array-like (property length plus indexed elements).

• Whether or not to spread an object is determined via the spec oper-
ation IsConcatSpreadable()⁸. The last step is the default (equivalent to
Array.isArray()) and the property [Symbol.isConcatSpreadable] is retrieved
via a normal Get() operation, meaning that it doesn’t matter whether it is own
or inherited.

18.6 The numeric range of Array indices

For Arrays, ES6 still has the same rules⁹ as ES5:

• Array lengths l are in the range 0 ≤ l ≤ 2³²−1.
• Array indices i are in the range 0 ≤ i < 2³²−1.

However, Typed Arrays have a larger range of indices: 0 ≤ i < 2³²−1 (2⁵³−1 is the largest integer
that JavaScript’s floating point numbers can safely represent). That’s why generic Arraymethods
such as push()¹⁰ and unshift()¹¹ allow a larger range of indices. Range checks appropriate for
Arrays are performed elsewhere¹², whenever length is set.

⁷http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.concat
⁸http://www.ecma-international.org/ecma-262/6.0/#sec-isconcatspreadable
⁹http://www.ecma-international.org/ecma-262/6.0/#sec-array-exotic-objects
¹⁰http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.push
¹¹http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.unshift
¹²http://www.ecma-international.org/ecma-262/6.0/#sec-arraysetlength

http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.concat
http://www.ecma-international.org/ecma-262/6.0/#sec-isconcatspreadable
http://www.ecma-international.org/ecma-262/6.0/#sec-isconcatspreadable
http://www.ecma-international.org/ecma-262/6.0/#sec-array-exotic-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.push
http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.unshift
http://www.ecma-international.org/ecma-262/6.0/#sec-arraysetlength
http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.concat
http://www.ecma-international.org/ecma-262/6.0/#sec-isconcatspreadable
http://www.ecma-international.org/ecma-262/6.0/#sec-array-exotic-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.push
http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.unshift
http://www.ecma-international.org/ecma-262/6.0/#sec-arraysetlength


19. Maps and Sets
19.1 Overview

Among others, the following four data structures are new in ECMAScript 6: Map, WeakMap, Set
and WeakSet.

19.1.1 Maps

The keys of a Map can be arbitrary values:

> const map = new Map(); // create an empty Map

> const KEY = {};

> map.set(KEY, 123);

> map.get(KEY)

123

> map.has(KEY)

true

> map.delete(KEY);

true

> map.has(KEY)

false

You can use an Array (or any iterable) with [key, value] pairs to set up the initial data in the
Map:

const map = new Map([

[ 1, 'one' ],

[ 2, 'two' ],

[ 3, 'three' ], // trailing comma is ignored

]);

19.1.2 Sets

A Set is a collection of unique elements:

const arr = [5, 1, 5, 7, 7, 5];

const unique = [...new Set(arr)]; // [ 5, 1, 7 ]

As you can see, you can initialize a Set with elements if you hand the constructor an iterable
(arr in the example) over those elements.



Maps and Sets 318

19.1.3 WeakMaps

AWeakMap is aMap that doesn’t prevent its keys from being garbage-collected. That means that
you can associate data with objects without having to worry about memory leaks. For example:

//----- Manage listeners

const _objToListeners = new WeakMap();

function addListener(obj, listener) {

if (! _objToListeners.has(obj)) {

_objToListeners.set(obj, new Set());

}

_objToListeners.get(obj).add(listener);

}

function triggerListeners(obj) {

const listeners = _objToListeners.get(obj);

if (listeners) {

for (const listener of listeners) {

listener();

}

}

}

//----- Example: attach listeners to an object

const obj = {};

addListener(obj, () => console.log('hello'));

addListener(obj, () => console.log('world'));

//----- Example: trigger listeners

triggerListeners(obj);

// Output:

// hello

// world

19.2 Map

JavaScript has always had a very spartan standard library. Sorely missing was a data structure
for mapping values to values. The best you can get in ECMAScript 5 is a Map from strings to
arbitrary values, by abusing objects. Even then there are several pitfalls¹ that can trip you up.

¹http://speakingjs.com/es5/ch17.html#_pitfalls_using_an_object_as_a_map

http://speakingjs.com/es5/ch17.html#_pitfalls_using_an_object_as_a_map
http://speakingjs.com/es5/ch17.html#_pitfalls_using_an_object_as_a_map


Maps and Sets 319

The Map data structure in ECMAScript 6 lets you use arbitrary values as keys and is highly
welcome.

19.2.1 Basic operations

Working with single entries:

> const map = new Map();

> map.set('foo', 123);

> map.get('foo')

123

> map.has('foo')

true

> map.delete('foo')

true

> map.has('foo')

false

Determining the size of a Map and clearing it:

> const map = new Map();

> map.set('foo', true);

> map.set('bar', false);

> map.size

2

> map.clear();

> map.size

0

19.2.2 Setting up a Map

You can set up a Map via an iterable over key-value “pairs” (Arrays with 2 elements). One
possibility is to use an Array (which is iterable):

const map = new Map([

[ 1, 'one' ],

[ 2, 'two' ],

[ 3, 'three' ], // trailing comma is ignored

]);

Alternatively, the set() method is chainable:



Maps and Sets 320

const map = new Map()

.set(1, 'one')

.set(2, 'two')

.set(3, 'three');

19.2.3 Keys

Any value can be a key, even an object:

const map = new Map();

const KEY1 = {};

map.set(KEY1, 'hello');

console.log(map.get(KEY1)); // hello

const KEY2 = {};

map.set(KEY2, 'world');

console.log(map.get(KEY2)); // world

19.2.3.1 What keys are considered equal?

Most Map operations need to check whether a value is equal to one of the keys. They do so via
the internal operation SameValueZero², which works like ===, but considers NaN to be equal to
itself.

Let’s first see how === handles NaN:

> NaN === NaN

false

Conversely, you can use NaN as a key in Maps, just like any other value:

> const map = new Map();

> map.set(NaN, 123);

> map.get(NaN)

123

Like ===, -0 and +0 are considered the same value. That is normally the best way to handle the
two zeros (details are explained in “Speaking JavaScript”³).

²http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
³http://speakingjs.com/es5/ch11.html#two_zeros

http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
http://speakingjs.com/es5/ch11.html#two_zeros
http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
http://speakingjs.com/es5/ch11.html#two_zeros


Maps and Sets 321

> map.set(-0, 123);

> map.get(+0)

123

Different objects are always considered different. That is something that can’t be configured
(yet), as explained later, in the FAQ.

> new Map().set({}, 1).set({}, 2).size

2

Getting an unknown key produces undefined:

> new Map().get('asfddfsasadf')

undefined

19.2.4 Iterating over Maps

Let’s set up a Map to demonstrate how one can iterate over it.

const map = new Map([

[false, 'no'],

[true, 'yes'],

]);

Maps record the order in which elements are inserted and honor that order when iterating over
keys, values or entries.

19.2.4.1 Iterables for keys and values

keys() returns an iterable over the keys in the Map:

for (const key of map.keys()) {

console.log(key);

}

// Output:

// false

// true

values() returns an iterable over the values in the Map:



Maps and Sets 322

for (const value of map.values()) {

console.log(value);

}

// Output:

// no

// yes

19.2.4.2 Iterables for entries

entries() returns the entries of the Map as an iterable over [key,value] pairs (Arrays).

for (const entry of map.entries()) {

console.log(entry[0], entry[1]);

}

// Output:

// false no

// true yes

Destructuring enables you to access the keys and values directly:

for (const [key, value] of map.entries()) {

console.log(key, value);

}

The default way of iterating over a Map is entries():

> map[Symbol.iterator] === map.entries

true

Thus, you can make the previous code snippet even shorter:

for (const [key, value] of map) {

console.log(key, value);

}

19.2.4.3 Converting iterables (incl. Maps) to Arrays

The spread operator (...) can turn an iterable into an Array. That lets us convert the result of
Map.prototype.keys() (an iterable) into an Array:



Maps and Sets 323

> const map = new Map().set(false, 'no').set(true, 'yes');

> [...map.keys()]

[ false, true ]

Maps are also iterable, which means that the spread operator can turn Maps into Arrays:

> const map = new Map().set(false, 'no').set(true, 'yes');

> [...map]

[ [ false, 'no' ],

[ true, 'yes' ] ]

19.2.5 Looping over Map entries

The Map method forEach has the following signature:

Map.prototype.forEach((value, key, map) => void, thisArg?) : void

The signature of the first parametermirrors the signature of the callback of Array.prototype.forEach,
which is why the value comes first.

const map = new Map([

[false, 'no'],

[true, 'yes'],

]);

map.forEach((value, key) => {

console.log(key, value);

});

// Output:

// false no

// true yes

19.2.6 Mapping and filtering Maps

You can map() and filter() Arrays, but there are no such operations for Maps. The solution is:

1. Convert the Map into an Array of [key,value] pairs.
2. Map or filter the Array.
3. Convert the result back to a Map.

I’ll use the following Map to demonstrate how that works.



Maps and Sets 324

const originalMap = new Map()

.set(1, 'a')

.set(2, 'b')

.set(3, 'c');

Mapping originalMap:

const mappedMap = new Map( // step 3

[...originalMap] // step 1

.map(([k, v]) => [k * 2, '_' + v]) // step 2

);

// Resulting Map: {2 => '_a', 4 => '_b', 6 => '_c'}

Filtering originalMap:

const filteredMap = new Map( // step 3

[...originalMap] // step 1

.filter(([k, v]) => k < 3) // step 2

);

// Resulting Map: {1 => 'a', 2 => 'b'}

Step 1 is performed by the spread operator (...) which I have explained previously.

19.2.7 Combining Maps

There are no methods for combining Maps, which is why the approach from the previous section
must be used to do so.

Let’s combine the following two Maps:

const map1 = new Map()

.set(1, 'a1')

.set(2, 'b1')

.set(3, 'c1');

const map2 = new Map()

.set(2, 'b2')

.set(3, 'c2')

.set(4, 'd2');

To combine map1 and map2, I turn them into Arrays via the spread operator (...) and concatenate
those Arrays. Afterwards, I convert the result back to a Map. All of that is done in the first line.



Maps and Sets 325

> const combinedMap = new Map([...map1, ...map2])

> [...combinedMap] // convert to Array to display

[ [ 1, 'a1' ],

[ 2, 'b2' ],

[ 3, 'c2' ],

[ 4, 'd2' ] ]

19.2.8 Arbitrary Maps as JSON via Arrays of pairs

If a Map contains arbitrary (JSON-compatible) data, we can convert it to JSON by encoding it as
an Array of key-value pairs (2-element Arrays). Let’s examine first how to achieve that encoding.

19.2.8.1 Converting Maps to and from Arrays of pairs

The spread operator lets you convert a Map to an Array of pairs:

> const myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);

> [...myMap]

[ [ true, 7 ], [ { foo: 3 }, [ 'abc' ] ] ]

The Map constructor lets you convert an Array of pairs to a Map:

> new Map([[true, 7], [{foo: 3}, ['abc']]])

Map {true => 7, Object {foo: 3} => ['abc']}

19.2.8.2 The conversion to and from JSON

Let’s use this knowledge to convert any Map with JSON-compatible data to JSON and back:

function mapToJson(map) {

return JSON.stringify([...map]);

}

function jsonToMap(jsonStr) {

return new Map(JSON.parse(jsonStr));

}

The following interaction demonstrates how these functions are used:



Maps and Sets 326

> const myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);

> mapToJson(myMap)

'[[true,7],[{"foo":3},["abc"]]]'

> jsonToMap('[[true,7],[{"foo":3},["abc"]]]')

Map {true => 7, Object {foo: 3} => ['abc']}

19.2.9 String Maps as JSON via objects

Whenever a Map only has strings as keys, you can convert it to JSON by encoding it as an object.
Let’s examine first how to achieve that encoding.

19.2.9.1 Converting a string Map to and from an object

The following two function convert string Maps to and from objects:

function strMapToObj(strMap) {

const obj = Object.create(null);

for (const [k,v] of strMap) {

// We don’t escape the key '__proto__'

// which can cause problems on older engines

obj[k] = v;

}

return obj;

}

function objToStrMap(obj) {

const strMap = new Map();

for (const k of Object.keys(obj)) {

strMap.set(k, obj[k]);

}

return strMap;

}

Let’s use these two functions:

> const myMap = new Map().set('yes', true).set('no', false);

> strMapToObj(myMap)

{ yes: true, no: false }

> objToStrMap({yes: true, no: false})

[ [ 'yes', true ], [ 'no', false ] ]

19.2.9.2 The conversion to and from JSON

With these helper functions, the conversion to JSON works as follows:



Maps and Sets 327

function strMapToJson(strMap) {

return JSON.stringify(strMapToObj(strMap));

}

function jsonToStrMap(jsonStr) {

return objToStrMap(JSON.parse(jsonStr));

}

This is an example of using these functions:

> const myMap = new Map().set('yes', true).set('no', false);

> strMapToJson(myMap)

'{"yes":true,"no":false}'

> jsonToStrMap('{"yes":true,"no":false}');

Map {'yes' => true, 'no' => false}

19.2.10 Map API

Constructor:

• new Map(entries? : Iterable<[any,any]>)

If you don’t provide the parameter iterable then an empty Map is created. If you do
provide an iterable over [key, value] pairs then those pairs are used to add entries to the
Map. For example:

const map = new Map([

[ 1, 'one' ],

[ 2, 'two' ],

[ 3, 'three' ], // trailing comma is ignored

]);

Handling single entries:

• Map.prototype.get(key) : any

Returns the value that key is mapped to in this Map. If there is no key key in this Map,
undefined is returned.

• Map.prototype.set(key, value) : this

Maps the given key to the given value. If there is already an entry whose key is key, it is
updated. Otherwise, a new entry is created. This method returns this, which means that
you can chain it.

• Map.prototype.has(key) : boolean

Returns whether the given key exists in this Map.



Maps and Sets 328

• Map.prototype.delete(key) : boolean

If there is an entry whose key is key, it is removed and true is returned. Otherwise, nothing
happens and false is returned.

Handling all entries:

• get Map.prototype.size : number

Returns how many entries there are in this Map.
• Map.prototype.clear() : void

Removes all entries from this Map.

Iterating and looping: happens in the order in which entries were added to a Map.

• Map.prototype.entries() : Iterable<[any,any]>

Returns an iterable with one [key,value] pair for each entry in this Map. The pairs are
Arrays of length 2.

• Map.prototype.forEach((value, key, collection) => void, thisArg?) : void

The first parameter is a callback that is invoked once for each entry in this Map. If thisArg
is provided, this is set to it for each invocation. Otherwise, this is set to undefined.

• Map.prototype.keys() : Iterable<any>

Returns an iterable over all keys in this Map.
• Map.prototype.values() : Iterable<any>

Returns an iterable over all values in this Map.
• Map.prototype[Symbol.iterator]() : Iterable<[any,any]>

The default way of iterating over Maps. Refers to Map.prototype.entries.

19.3 WeakMap

WeakMaps work mostly like Maps, with the following differences:

• WeakMap keys are objects (values can be arbitrary values)
• WeakMap keys are weakly held
• You can’t get an overview of the contents of a WeakMap
• You can’t clear a WeakMap

The following sections explain each of these differences.

19.3.1 WeakMap keys are objects

If you add an entry to a WeakMap then the key must be an object:



Maps and Sets 329

const wm = new WeakMap()

wm.set('abc', 123); // TypeError

wm.set({}, 123); // OK

19.3.2 WeakMap keys are weakly held

The keys in aWeakMap areweakly held: Normally, an object that isn’t referred to by any storage
location (variable, property, etc.) can be garbage-collected.WeakMap keys do not count as storage
locations in that sense. In other words: an object being a key in a WeakMap does not prevent the
object being garbage-collected.

Additionally, once a key is gone, its entry will also disappear (eventually, but there is no way to
detect when, anyway).

19.3.3 You can’t get an overview of a WeakMap or clear it

It is impossible to inspect the innards of a WeakMap, to get an overview of them. That includes
not being able to iterate over keys, values or entries. Put differently: to get content out of a
WeakMap, you need a key. There is no way to clear a WeakMap, either (as a work-around, you
can create a completely new instance).

These restrictions enable a security property. Quoting Mark Miller⁴: “The mapping from
weakmap/key pair value can only be observed or affected by someone who has both the
weakmap and the key. With clear(), someone with only the WeakMap would’ve been able
to affect the WeakMap-and-key-to-value mapping.”

Additionally, iteration would be difficult to implement, because you’d have to guarantee that
keys remain weakly held.

19.3.4 Use cases for WeakMaps

WeakMaps are useful for associating data with objects whose life cycle you can’t (or don’t want
to) control. In this section, we look at two examples:

• Caching computed results
• Managing listeners
• Keeping private data

19.3.4.1 Caching computed results via WeakMaps

With WeakMaps, you can associate previously computed results with objects, without having
to worry about memory management. The following function countOwnKeys is an example: it
caches previous results in the WeakMap cache.

⁴https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-11/nov-19.md#412-should-weakmapweakset-have-a-clear-method-
markm

https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-11/nov-19.md#412-should-weakmapweakset-have-a-clear-method-markm
https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-11/nov-19.md#412-should-weakmapweakset-have-a-clear-method-markm
https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-11/nov-19.md#412-should-weakmapweakset-have-a-clear-method-markm


Maps and Sets 330

const cache = new WeakMap();

function countOwnKeys(obj) {

if (cache.has(obj)) {

console.log('Cached');

return cache.get(obj);

} else {

console.log('Computed');

const count = Object.keys(obj).length;

cache.set(obj, count);

return count;

}

}

If we use this function with an object obj, you can see that the result is only computed for the
first invocation, while a cached value is used for the second invocation:

> const obj = { foo: 1, bar: 2};

> countOwnKeys(obj)

Computed

2

> countOwnKeys(obj)

Cached

2

19.3.4.2 Managing listeners

Let’s say we want to attach listeners to objects without changing the objects. You’d be able to
add listeners to an object obj:

const obj = {};

addListener(obj, () => console.log('hello'));

addListener(obj, () => console.log('world'));

And you’d be able to trigger the listeners:

triggerListeners(obj);

// Output:

// hello

// world

The two functions addListener() and triggerListeners() can be implemented as follows.



Maps and Sets 331

const _objToListeners = new WeakMap();

function addListener(obj, listener) {

if (! _objToListeners.has(obj)) {

_objToListeners.set(obj, new Set());

}

_objToListeners.get(obj).add(listener);

}

function triggerListeners(obj) {

const listeners = _objToListeners.get(obj);

if (listeners) {

for (const listener of listeners) {

listener();

}

}

}

The advantage of using a WeakMap here is that, once an object is garbage-collected, its listeners
will be garbage-collected, too. In other words: there won’t be any memory leaks.

19.3.4.3 Keeping private data via WeakMaps

In the following code, the WeakMaps _counter and _action are used to store the data of virtual
properties of instances of Countdown:

const _counter = new WeakMap();

const _action = new WeakMap();

class Countdown {

constructor(counter, action) {

_counter.set(this, counter);

_action.set(this, action);

}

dec() {

let counter = _counter.get(this);

if (counter < 1) return;

counter--;

_counter.set(this, counter);

if (counter === 0) {

_action.get(this)();

}

}

}

More information on this technique is given in the chapter on classes.



Maps and Sets 332

19.3.5 WeakMap API

The constructor and the four methods of WeakMap work the same as their Map equivalents:

new WeakMap(entries? : Iterable<[any,any]>)

WeakMap.prototype.get(key) : any

WeakMap.prototype.set(key, value) : this

WeakMap.prototype.has(key) : boolean

WeakMap.prototype.delete(key) : boolean

19.4 Set

ECMAScript 5 doesn’t have a Set data structure, either. There are two possible work-arounds:

• Use the keys of an object to store the elements of a set of strings.
• Store (arbitrary) set elements in an Array: Check whether it contains an element via
indexOf(), remove elements via filter(), etc. This is not a very fast solution, but it’s
easy to implement. One issue to be aware of is that indexOf() can’t find the value NaN.

ECMAScript 6 has the data structure Set which works for arbitrary values, is fast and handles
NaN correctly.

19.4.1 Basic operations

Managing single elements:

> const set = new Set();

> set.add('red')

> set.has('red')

true

> set.delete('red')

true

> set.has('red')

false

Determining the size of a Set and clearing it:



Maps and Sets 333

> const set = new Set();

> set.add('red')

> set.add('green')

> set.size

2

> set.clear();

> set.size

0

19.4.2 Setting up a Set

You can set up a Set via an iterable over the elements that make up the Set. For example, via an
Array:

const set = new Set(['red', 'green', 'blue']);

Alternatively, the add method is chainable:

const set = new Set().add('red').add('green').add('blue');

19.4.2.1 Pitfall: new Set() has at most one argument

The Set constructor has zero or one arguments:

• Zero arguments: an empty Set is created.
• One argument: the argument needs to be iterable; the iterated items define the elements
of the Set.

Further arguments are ignored, which may lead to unexpected results:

> Array.from(new Set(['foo', 'bar']))

[ 'foo', 'bar' ]

> Array.from(new Set('foo', 'bar'))

[ 'f', 'o' ]

For the second Set, only 'foo' is used (which is iterable) to define the Set.

19.4.3 Comparing Set elements

As with Maps, elements are compared similarly to ===, with the exception of NaN being like any
other value.



Maps and Sets 334

> const set = new Set([NaN]);

> set.size

1

> set.has(NaN)

true

Adding an element a second time has no effect:

> const set = new Set();

> set.add('foo');

> set.size

1

> set.add('foo');

> set.size

1

Similarly to ===, two different objects are never considered equal (which can’t currently be
customized, as explained later, in the FAQ, later):

> const set = new Set();

> set.add({});

> set.size

1

> set.add({});

> set.size

2

19.4.4 Iterating

Sets are iterable and the for-of loop works as you’d expect:

const set = new Set(['red', 'green', 'blue']);

for (const x of set) {

console.log(x);

}

// Output:

// red

// green

// blue

As you can see, Sets preserve iteration order. That is, elements are always iterated over in the
order in which they were inserted.

The previously explained spread operator (...) works with iterables and thus lets you convert a
Set to an Array:



Maps and Sets 335

const set = new Set(['red', 'green', 'blue']);

const arr = [...set]; // ['red', 'green', 'blue']

We now have a concise way to convert an Array to a Set and back, which has the effect of
eliminating duplicates from the Array:

const arr = [3, 5, 2, 2, 5, 5];

const unique = [...new Set(arr)]; // [3, 5, 2]

19.4.5 Mapping and filtering

In contrast to Arrays, Sets don’t have the methods map() and filter(). A work-around is to
convert them to Arrays and back.

Mapping:

const set = new Set([1, 2, 3]);

set = new Set([...set].map(x => x * 2));

// Resulting Set: {2, 4, 6}

Filtering:

const set = new Set([1, 2, 3, 4, 5]);

set = new Set([...set].filter(x => (x % 2) == 0));

// Resulting Set: {2, 4}

19.4.6 Union, intersection, difference

ECMAScript 6 Sets have no methods for computing the union (e.g. addAll), intersection (e.g.
retainAll) or difference (e.g. removeAll). This section explains how to work around that
limitation.

19.4.6.1 Union

Union (a ∪ b): create a Set that contains the elements of both Set a and Set b.

const a = new Set([1,2,3]);

const b = new Set([4,3,2]);

const union = new Set([...a, ...b]);

// {1,2,3,4}

The pattern is always the same:

• Convert one or both Sets to Arrays.
• Perform the operation.
• Convert the result back to a Set.

The spread operator (...) inserts the elements of something iterable (such as a Set) into an
Array. Therefore, [...a, ...b] means that a and b are converted to Arrays and concatenated.
It is equivalent to [...a].concat([...b]).



Maps and Sets 336

19.4.6.2 Intersection

Intersection (a ∩ b): create a Set that contains those elements of Set a that are also in Set b.

const a = new Set([1,2,3]);

const b = new Set([4,3,2]);

const intersection = new Set(

[...a].filter(x => b.has(x)));

// {2,3}

Steps: Convert a to an Array, filter the elements, convert the result to a Set.

19.4.6.3 Difference

Difference (a \ b): create a Set that contains those elements of Set a that are not in Set b. This
operation is also sometimes called minus (-).

const a = new Set([1,2,3]);

const b = new Set([4,3,2]);

const difference = new Set(

[...a].filter(x => !b.has(x)));

// {1}

19.4.7 Set API

Constructor:

• new Set(elements? : Iterable<any>)

If you don’t provide the parameter iterable then an empty Set is created. If you do then
the iterated values are added as elements to the Set. For example:

const set = new Set(['red', 'green', 'blue']);

Single Set elements:

• Set.prototype.add(value) : this

Adds value to this Set. This method returns this, which means that it can be chained.
• Set.prototype.has(value) : boolean

Checks whether value is in this Set.
• Set.prototype.delete(value) : boolean

Removes value from this Set.

All Set elements:



Maps and Sets 337

• get Set.prototype.size : number

Returns how many elements there are in this Set.
• Set.prototype.clear() : void

Removes all elements from this Set.

Iterating and looping:

• Set.prototype.values() : Iterable<any>

Returns an iterable over all elements of this Set.
• Set.prototype[Symbol.iterator]() : Iterable<any>

The default way of iterating over Sets. Points to Set.prototype.values.
• Set.prototype.forEach((value, key, collection) => void, thisArg?)

Loops over the elements of this Set and invokes the callback (first parameter) for each
one. value and key are both set to the element, so that this method works similarly to
Map.prototype.forEach. If thisArg is provided, this is set to it for each call. Otherwise,
this is set to undefined.

Symmetry with Map: The following two methods only exist so that the interface of Sets is similar
to the interface of Maps. Each Set element is handled as if it were a Map entry whose key and
value are the element.

• Set.prototype.entries() : Iterable<[any,any]>

• Set.prototype.keys() : Iterable<any>

entries() allows you to convert a Set to a Map:

const set = new Set(['a', 'b', 'c']);

const map = new Map(set.entries());

// Map { 'a' => 'a', 'b' => 'b', 'c' => 'c' }

19.5 WeakSet

A WeakSet is a Set that doesn’t prevent its elements from being garbage-collected. Consult the
section on WeakMap for an explanation of why WeakSets don’t allow iteration, looping and
clearing.

19.5.1 Use cases for WeakSets

Given that you can’t iterate over their elements, there are not that many use cases for WeakSets.
They do enable you to mark objects.

19.5.1.1 Marking objects created by a factory function

For example, if you have a factory function for proxies, you can use a WeakSet to record which
objects were created by that factory:



Maps and Sets 338

const _proxies = new WeakSet();

function createProxy(obj) {

const proxy = ···;

_proxies.add(proxy);

return proxy;

}

function isProxy(obj) {

return _proxies.has(obj);

}

The complete example is shown in the chapter on proxies.

_proxies must be a WeakSet, because a normal Set would prevent a proxy from being garbage-
collected once it isn’t referred to, anymore.

19.5.1.2 Marking objects as safe to use with a method

Domenic Denicola shows⁵ how a class Foo can ensure that its methods are only applied to
instances that were created by it:

const foos = new WeakSet();

class Foo {

constructor() {

foos.add(this);

}

method() {

if (!foos.has(this)) {

throw new TypeError('Incompatible object!');

}

}

}

19.5.2 WeakSet API

The constructor and the three methods of WeakSet work the same as their Set equivalents:

⁵https://mail.mozilla.org/pipermail/es-discuss/2015-June/043027.html

https://mail.mozilla.org/pipermail/es-discuss/2015-June/043027.html
https://mail.mozilla.org/pipermail/es-discuss/2015-June/043027.html


Maps and Sets 339

new WeakSet(elements? : Iterable<any>)

WeakSet.prototype.add(value)

WeakSet.prototype.has(value)

WeakSet.prototype.delete(value)

19.6 FAQ: Maps and Sets

19.6.1 Why do Maps and Sets have the property size and not
length?

Arrays have the property length to count the number of entries. Maps and Sets have a different
property, size.

The reason for this difference is that length is for sequences, data structures that are indexable
– like Arrays. size is for collections that are primarily unordered – like Maps and Sets.

19.6.2 Why can’t I configure how Maps and Sets compare keys
and values?

It would be nice if there were a way to configure what Map keys and what Set elements are
considered equal. But that feature has been postponed, as it is difficult to implement properly
and efficiently.

19.6.3 Is there a way to specify a default value when getting
something out of a Map?

If you use a key to get something out of a Map, you’d occasionally like to specify a default value
that is returned if the key is not in the Map. ES6 Maps don’t let you do this directly. But you can
use the Or operator (||), as demonstrated in the following code. countChars returns a Map that
maps characters to numbers of occurrences.

function countChars(chars) {

const charCounts = new Map();

for (const ch of chars) {

ch = ch.toLowerCase();

const prevCount = charCounts.get(ch) || 0; // (A)

charCounts.set(ch, prevCount+1);

}

return charCounts;

}

In line A, the default 0 is used if ch is not in the charCounts and get() returns undefined.



Maps and Sets 340

19.6.4 When should I use a Map, when an object?

If you map anything other than strings to any kind of data, you have no choice: you must use a
Map.

If, however, you are mapping strings to arbitrary data, you must decide whether or not to use
an object. A rough general guideline is:

• Is there a fixed set of keys (known at development time)?
Then use an object and access the values via fixed keys: obj.key

• Can the set of keys change at runtime?
Then use a Map and access the values via keys stored in variables: map.get(theKey)

19.6.5 When would I use an object as a key in a Map?

Map keys mainly make sense if they are compared by value (the same “content” means that two
values are considered equal, not the same identity). That excludes objects. There is one use case
– externally attaching data to objects, but that use case is better served by WeakMaps where an
entry goes away when the key disappears.



20. Typed Arrays
20.1 Overview

Typed Arrays are an ECMAScript 6 API for handling binary data.

Code example:

const typedArray = new Uint8Array([0,1,2]);

console.log(typedArray.length); // 3

typedArray[0] = 5;

const normalArray = [...typedArray]; // [5,1,2]

// The elements are stored in typedArray.buffer.

// Get a different view on the same data:

const dataView = new DataView(typedArray.buffer);

console.log(dataView.getUint8(0)); // 5

Instances of ArrayBuffer store the binary data to be processed. Two kinds of views are used to
access the data:

• Typed Arrays (Uint8Array, Int16Array, Float32Array, etc.) interpret the ArrayBuffer as
an indexed sequence of elements of a single type.

• Instances of DataView let you access data as elements of several types (Uint8, Int16,
Float32, etc.), at any byte offset inside an ArrayBuffer.

The following browser APIs support Typed Arrays (details are mentioned in a dedicated section):

• File API
• XMLHttpRequest
• Fetch API
• Canvas
• WebSockets
• And more

20.2 Introduction

Much data one encounters on the web is text: JSON files, HTML files, CSS files, JavaScript code,
etc. For handling such data, JavaScript’s built-in string data type works well. However, until
a few years ago, JavaScript was ill-equipped to handle binary data. On 8 February 2011, the
Typed Array Specification 1.0¹ standardized facilities for handling binary data. By now, Typed
Arrays are well supported² by various engines. With ECMAScript 6, they became part of the

¹https://www.khronos.org/registry/typedarray/specs/1.0/
²http://caniuse.com/#feat=typedarrays

https://www.khronos.org/registry/typedarray/specs/1.0/
https://www.khronos.org/registry/typedarray/specs/1.0/
http://caniuse.com/#feat=typedarrays
https://www.khronos.org/registry/typedarray/specs/1.0/
http://caniuse.com/#feat=typedarrays


Typed Arrays 342

core language and gained many methods in the process that were previously only available for
Arrays (map(), filter(), etc.).

The main uses cases for Typed Arrays are:

• Processing binary data: manipulating image data in HTML Canvas elements, parsing
binary files, handling binary network protocols, etc.

• Interacting with native APIs: Native APIs often receive and return data in a binary format,
which you could neither store nor manipulate well in traditional JavaScript. That meant
that whenever you were communicating with such an API, data had to be converted from
JavaScript to binary and back, for every call. Typed Arrays eliminate this bottleneck. One
example of communicating with native APIs is WebGL, for which Typed Arrays were
initially created. Section “History of Typed Arrays³” of the article “Typed Arrays: Binary
Data in the Browser⁴” (by Ilmari Heikkinen for HTML5 Rocks) has more information.

Two kinds of objects work together in the Typed Array API:

• Buffers: Instances of ArrayBuffer hold the binary data.
• Views: provide the methods for accessing the binary data. There are two kinds of views:

– An instance of a Typed Array constructor (Uint8Array, Float64Array, etc.) works
much like a normal Array, but only allows a single type for its elements and doesn’t
have holes.

– An instance of DataView lets you access data at any byte offset in the buffer, and
interprets that data as one of several types (Uint8, Float64, etc.).

This is a diagram of the structure of the Typed Array API (notable: all Typed Arrays have a
common superclass):

³http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history
⁴http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history

http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history
http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history
http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history
http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history
http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history


Typed Arrays 343

20.2.1 Element types

The following element types are supported by the API:

Element type Bytes Description C type

Int8 1 8-bit signed integer signed char
Uint8 1 8-bit unsigned integer unsigned char
Uint8C 1 8-bit unsigned integer (clamped conversion) unsigned char
Int16 2 16-bit signed integer short
Uint16 2 16-bit unsigned integer unsigned short
Int32 4 32-bit signed integer int
Uint32 4 32-bit unsigned integer unsigned int
Float32 4 32-bit floating point float
Float64 8 64-bit floating point double

The element type Uint8C is special: it is not supported by DataView and only exists to enable
Uint8ClampedArray. This Typed Array is used by the canvas element (where it replaces Can-
vasPixelArray). The only difference between Uint8C and Uint8 is how overflow and underflow
are handled (as explained in the next section). It is recommended to avoid the former – quoting
Brendan Eich⁵:

⁵https://mail.mozilla.org/pipermail/es-discuss/2015-August/043902.html

https://mail.mozilla.org/pipermail/es-discuss/2015-August/043902.html
https://mail.mozilla.org/pipermail/es-discuss/2015-August/043902.html
https://mail.mozilla.org/pipermail/es-discuss/2015-August/043902.html


Typed Arrays 344

Just to be super-clear (and I was around when it was born), Uint8ClampedArray is
totally a historical artifact (of the HTML5 canvas element). Avoid unless you really
are doing canvas-y things.

20.2.2 Handling overflow and underflow

Normally, when a value is out of the range of the element type, modulo arithmetic is used to
convert it to a value within range. For signed and unsigned integers that means that:

• The highest value plus one is converted to the lowest value (0 for unsigned integers).
• The lowest value minus one is converted to the highest value.

Modulo conversion for unsigned 8-bit integers:

> const uint8 = new Uint8Array(1);

> uint8[0] = 255; uint8[0] // highest value within range

255

> uint8[0] = 256; uint8[0] // overflow

0

> uint8[0] = 0; uint8[0] // lowest value within range

0

> uint8[0] = -1; uint8[0] // underflow

255

Modulo conversion for signed 8-bit integers:

> const int8 = new Int8Array(1);

> int8[0] = 127; int8[0] // highest value within range

127

> int8[0] = 128; int8[0] // overflow

-128

> int8[0] = -128; int8[0] // lowest value within range

-128

> int8[0] = -129; int8[0] // underflow

127

Clamped conversion is different:

• All underflowing values are converted to the lowest value.
• All overflowing values are converted to the highest value.



Typed Arrays 345

> const uint8c = new Uint8ClampedArray(1);

> uint8c[0] = 255; uint8c[0] // highest value within range

255

> uint8c[0] = 256; uint8c[0] // overflow

255

> uint8c[0] = 0; uint8c[0] // lowest value within range

0

> uint8c[0] = -1; uint8c[0] // underflow

0

20.2.3 Endianness

Whenever a type (such as Uint16) is stored as multiple bytes, endianness matters:

• Big endian: the most significant byte comes first. For example, the Uint16 value 0xABCD
is stored as two bytes – first 0xAB, then 0xCD.

• Little endian: the least significant byte comes first. For example, the Uint16 value 0xABCD
is stored as two bytes – first 0xCD, then 0xAB.

Endianness tends to be fixed per CPU architecture and consistent across native APIs. Typed
Arrays are used to communicate with those APIs, which is why their endianness follows the
endianness of the platform and can’t be changed.

On the other hand, the endianness of protocols and binary files varies and is fixed across
platforms. Therefore, we must be able to access data with either endianness. DataViews serve
this use case and let you specify endianness when you get or set a value.

Quoting Wikipedia on Endianness⁶:

• Big-endian representation is themost common convention in data networking; fields in the
protocols of the Internet protocol suite, such as IPv4, IPv6, TCP, and UDP, are transmitted
in big-endian order. For this reason, big-endian byte order is also referred to as network
byte order.

• Little-endian storage is popular for microprocessors in part due to significant historical
influence on microprocessor designs by Intel Corporation.

You can use the following function to determine the endianness of a platform.

⁶https://en.wikipedia.org/wiki/Endianness

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness


Typed Arrays 346

const BIG_ENDIAN = Symbol('BIG_ENDIAN');

const LITTLE_ENDIAN = Symbol('LITTLE_ENDIAN');

function getPlatformEndianness() {

const arr32 = Uint32Array.of(0x12345678);

const arr8 = new Uint8Array(arr32.buffer);

switch ((arr8[0]*0x1000000) + (arr8[1]*0x10000) + (arr8[2]*0x100) + (arr8\

[3])) {

case 0x12345678:

return BIG_ENDIAN;

case 0x78563412:

return LITTLE_ENDIAN;

default:

throw new Error('Unknown endianness');

}

}

There are also platforms that arrangewords (pairs of bytes) with a different endianness than bytes
inside words. That is called mixed endianness. Should you want to support such a platform then
it is easy to extend the previous code.

20.2.4 Negative indices

With the bracket operator [ ], you can only use non-negative indices (starting at 0). Themethods
of ArrayBuffers, Typed Arrays and DataViews work differently: every index can be negative. If
it is, it counts backwards from the length. In other words, it is added to the length to produce
a normal index. Therefore -1 refers to the last element, -2 to the second-last, etc. Methods of
normal Arrays work the same way.

> const ui8 = Uint8Array.of(0, 1, 2);

> ui8.slice(-1)

Uint8Array [ 2 ]

Offsets, on the other hand, must be non-negative. If, for example, you pass -1 to:

DataView.prototype.getInt8(byteOffset)

then you get a RangeError.

20.3 ArrayBuffers

ArrayBuffers store the data, views (Typed Arrays and DataViews) let you read and change it.
In order to create a DataView, you need to provide its constructor with an ArrayBuffer. Typed
Array constructors can optionally create an ArrayBuffer for you.

20.3.1 ArrayBuffer constructor

The signature of the constructor is:



Typed Arrays 347

ArrayBuffer(length : number)

Invoking this constructor via new creates an instance whose capacity is length bytes. Each of
those bytes is initially 0.

20.3.2 Static ArrayBuffer methods

• ArrayBuffer.isView(arg)

Returns true if arg is an object and a view for an ArrayBuffer. Only Typed Arrays and
DataViews have the required internal slot [[ViewedArrayBuffer]]. That means that this
check is roughly equivalent to checking whether arg is an instance of a Typed Array or of
DataView.

20.3.3 ArrayBuffer.prototype properties

• get ArrayBuffer.prototype.byteLength

Returns the capacity of this ArrayBuffer in bytes.
• ArrayBuffer.prototype.slice(start, end)

Creates a new ArrayBuffer that contains the bytes of this ArrayBuffer whose indices are
greater than or equal to start and less than end. start and end can be negative (see Sect.
“Negative indices”).

20.4 Typed Arrays

The various kinds of Typed Array are only different w.r.t. to the type of their elements:

• Typed Arrays whose elements are integers: Int8Array, Uint8Array, Uint8ClampedArray,
Int16Array, Uint16Array, Int32Array, Uint32Array

• Typed Arrays whose elements are floats: Float32Array, Float64Array

20.4.1 Typed Arrays versus normal Arrays

Typed Arrays are much like normal Arrays: they have a length, elements can be accessed via the
bracket operator [ ] and they have all of the standard Array methods. They differ from Arrays
in the following ways:

• All of their elements have the same type, setting elements converts values to that type.
• They are contiguous. Normal Arrays can have holes (indices in the range [0, arr.length)
that have no associated element), Typed Arrays can’t.

• Initialized with zeros. This is a consequence of the previous item:
– new Array(10) creates a normal Array without any elements (it only has holes).
– new Uint8Array(10) creates a Typed Array whose 10 elements are all 0.

• An associated buffer. The elements of a Typed Array ta are not stored in ta, they are stored
in an associated ArrayBuffer that can be accessed via ta.buffer.



Typed Arrays 348

20.4.2 Typed Arrays are iterable

Typed Arrays implement a method whose key is Symbol.iterator and are therefore iterable
(consult chapter “Iterables and iterators” for more information). That means that you can use
the for-of loop and similar mechanisms in ES6:

const ui8 = Uint8Array.of(0,1,2);

for (const byte of ui8) {

console.log(byte);

}

// Output:

// 0

// 1

// 2

ArrayBuffers and DataViews are not iterable.

20.4.3 Converting Typed Arrays to and from normal Arrays

To convert a normal Array to a Typed Array, you make it the parameter of a Typed Array
constructor. For example:

> const tarr = new Uint8Array([0,1,2]);

The classic way to convert a Typed Array to an Array is to invoke Array.prototype.slice on it.
This trick works for all Array-like objects (such as arguments) and Typed Arrays are Array-like.

> Array.prototype.slice.call(tarr)

[ 0, 1, 2 ]

In ES6, you can use the spread operator (...), because Typed Arrays are iterable:

> [...tarr]

[ 0, 1, 2 ]

Another ES6 alternative is Array.from(), whichworkswith either iterables or Array-like objects:

> Array.from(tarr)

[ 0, 1, 2 ]



Typed Arrays 349

20.4.4 The Species pattern for Typed Arrays

Some methods create new instances that are similar to this. The species pattern lets you
configure what constructor should be used to do so. For example, if you create a subclass MyArray
of Array then the default is that map() creates instances of MyArray. If you want it to create
instances of Array, you can use the species pattern to make that happen. Details are explained
in Sect “The species pattern” in the chapter on classes.

ArrayBuffers use the species pattern in the following locations:

• ArrayBuffer.prototype.slice()

• Whenever an ArrayBuffer is cloned inside a Typed Array or DataView.

Typed Arrays use the species pattern in the following locations:

• TypedArray<T>.prototype.filter()

• TypedArray<T>.prototype.map()

• TypedArray<T>.prototype.slice()

• TypedArray<T>.prototype.subarray()

DataViews don’t use the species pattern.

20.4.5 The inheritance hierarchy of Typed Arrays

As you could see in the diagram at the beginning of this chapter, all Typed Array classes
(Uint8Array etc.) have a common superclass. I’m calling that superclass TypedArray, but it
is not directly accessible from JavaScript (the ES6 specification calls it the intrinsic object
%TypedArray%). TypedArray.prototype houses all methods of Typed Arrays.

20.4.6 Static TypedArray methods

Both static TypedArray methods are inherited by its subclasses (Uint8Array etc.).

20.4.6.1 TypedArray.of()

This method has the signature:

TypedArray.of(...items)

It creates a new Typed Array that is an instance of this (the class on which of() was invoked).
The elements of that instance are the parameters of of().

You can think of of() as a custom literal for Typed Arrays:



Typed Arrays 350

> Float32Array.of(0.151, -8, 3.7)

Float32Array [ 0.151, -8, 3.7 ]

20.4.6.2 TypedArray.from()

This method has the signature:

TypedArray<U>.from(source : Iterable<T>, mapfn? : T => U, thisArg?)

It converts the iterable source into an instance of this (a Typed Array).

For example, normal Arrays are iterable and can be converted with this method:

> Uint16Array.from([0, 1, 2])

Uint16Array [ 0, 1, 2 ]

Typed Arrays are iterable, too:

> const ui16 = Uint16Array.from(Uint8Array.of(0, 1, 2));

> ui16 instanceof Uint16Array

true

The optional mapfn lets you transform the elements of source before they become elements of the
result. Why perform the two stepsmapping and conversion in one go? Compared to performing
the first step separately, via source.map(), there are two advantages:

1. No intermediate Array or Typed Array is needed.
2. When converting a Typed Array to a Typed Array whose elements have a higher precision,

the mapping step can make use of that higher precision.

To illustrate the second advantage, let’s use map() to double the elements of a Typed Array:

> Int8Array.of(127, 126, 125).map(x => 2 * x)

Int8Array [ -2, -4, -6 ]

As you can see, the values overflow and are coerced into the Int8 range of values. If map via
from(), you can choose the type of the result so that values don’t overflow:

> Int16Array.from(Int8Array.of(127, 126, 125), x => 2 * x)

Int16Array [ 254, 252, 250 ]

According to AllenWirfs-Brock⁷, mapping between Typed Arrays was what motivated the mapfn
parameter of from().

⁷https://twitter.com/awbjs/status/585199958661472257

https://twitter.com/awbjs/status/585199958661472257
https://twitter.com/awbjs/status/585199958661472257


Typed Arrays 351

20.4.7 TypedArray.prototype properties

Indices accepted by Typed Array methods can be negative (they work like traditional Array
methods that way). Offsets must be non-negative. For details, see Sect. “Negative indices”.

20.4.7.1 Methods specific to Typed Arrays

The following properties are specific to Typed Arrays, normal Arrays don’t have them:

• get TypedArray<T>.prototype.buffer : ArrayBuffer

Returns the buffer backing this Typed Array.
• get TypedArray<T>.prototype.byteLength : number

Returns the size in bytes of this Typed Array’s buffer.
• get TypedArray<T>.prototype.byteOffset : number

Returns the offset where this Typed Array “starts” inside its ArrayBuffer.
• TypedArray<T>.prototype.set(arrayOrTypedArray, offset=0) : void

Copies all elements of arrayOrTypedArray to this Typed Array. The element at index 0 of
arrayOrTypedArray is written to index offset of this Typed Array (etc.).

– If arrayOrTypedArray is a normal Array, its elements are converted to numbers who
are then converted to the element type T of this Typed Array.

– If arrayOrTypedArray is a TypedArray then each of its elements is converted directly
to the appropriate type for this Typed Array. If both Typed Arrays have the same
element type then faster, byte-wise copying is used.

• TypedArray<T>.prototype.subarray(begin=0, end=this.length) : TypedArray<T>

Returns a new Typed Array that has the same buffer as this Typed Array, but a (generally)
smaller range. If begin is non-negative then the first element of the resulting Typed Array
is this[begin], the second this[begin+1] (etc.). If begin in negative, it is converted
appropriately.

20.4.7.2 Array methods

The following methods are basically the same as the methods of normal Arrays:

• TypedArray<T>.prototype.copyWithin(target : number, start : number, end = this.length)

: This

Copies the elements whose indices are between start (including) and end (excluding) to
indices starting at target. If the ranges overlap and the former range comes first then
elements are copied in reverse order to avoid overwriting source elements before they are
copied.

• TypedArray<T>.prototype.entries() : Iterable<[number,T]>

Returns an iterable over [index,element] pairs for this Typed Array.
• TypedArray<T>.prototype.every(callbackfn, thisArg?)

Returns true if callbackfn returns true for every element of this Typed Array. Otherwise,
it returns false. every() stops processing the first time callbackfn returns false.



Typed Arrays 352

• TypedArray<T>.prototype.fill(value, start=0, end=this.length) : void

Set the elements whose indices range from start to end to value.
• TypedArray<T>.prototype.filter(callbackfn, thisArg?) : TypedArray<T>

Returns a Typed Array that contains every element of this Typed Array for which
callbackfn returns true. In general, the result is shorter than this Typed Array.

• TypedArray<T>.prototype.find(predicate : T => boolean, thisArg?) : T

Returns the first element for which the function predicate returns true.
• TypedArray<T>.prototype.findIndex(predicate : T => boolean, thisArg?) : number

Returns the index of the first element for which predicate returns true.
• TypedArray<T>.prototype.forEach(callbackfn, thisArg?) : void

Iterates over this Typed Array and invokes callbackfn for each element.
• TypedArray<T>.prototype.indexOf(searchElement, fromIndex=0) : number

Returns the index of the first element that strictly equals searchElement. The search starts
at fromIndex.

• TypedArray<T>.prototype.join(separator : string = ',') : string

Converts all elements to strings and concatenates them, separated by separator.
• TypedArray<T>.prototype.keys() : Iterable<number>

Returns an iterable over the indices of this Typed Array.
• TypedArray<T>.prototype.lastIndexOf(searchElement, fromIndex?) : number

Returns the index of the last element that strictly equals searchElement. The search starts
at fromIndex, backwards.

• get TypedArray<T>.prototype.length : number

Returns the length of this Typed Array.
• TypedArray<T>.prototype.map(callbackfn, thisArg?) : TypedArray<T>

Returns a new Typed Array in which every element is the result of applying callbackfn

to the corresponding element of this Typed Array.
• TypedArray<T>.prototype.reduce(callbackfn : (previousValue : any, currentEle-

ment : T, currentIndex : number, array : TypedArray<T>) => any, initialValue?)

: any

callbackfn is fed one element at a time, together with the result that was computed so far
and computes a new result. Elements are visited from left to right.

• TypedArray<T>.prototype.reduceRight(callbackfn : (previousValue : any, currentEle-

ment : T, currentIndex : number, array : TypedArray<T>) => any, initialValue?)

: any

callbackfn is fed one element at a time, together with the result that was computed so far
and computes a new result. Elements are visited from right to left.

• TypedArray<T>.prototype.reverse() : This

Reverses the order of the elements of this Typed Array and returns this.
• TypedArray<T>.prototype.slice(start=0, end=this.length) : TypedArray<T>

Create a new Typed Array that only has the elements of this Typed Array whose indices
are between start (including) and end (excluding).

• TypedArray<T>.prototype.some(callbackfn, thisArg?)

Returns true if callbackfn returns true for at least one element of this Typed Array.
Otherwise, it returns false. some() stops processing the first time callbackfn returns
true.



Typed Arrays 353

• TypedArray<T>.prototype.sort(comparefn? : (number, number) => number)

Sorts this Typed Array, as specified via comparefn. If comparefn is missing, sorting is done
ascendingly, by comparing via the less-than operator (<).

• TypedArray<T>.prototype.toLocaleString(reserved1?, reserved2?)

• TypedArray<T>.prototype.toString()

• TypedArray<T>.prototype.values() : Iterable<T>

Returns an iterable over the values of this Typed Array.

Due to all of these methods being available for Arrays, you can consult the following two sources
to find out more about how they work:

• The following methods are new in ES6 and explained in chapter “New Array features”:
copyWithin, entries, fill, find, findIndex, keys, values.

• All other methods are explained in chapter “Arrays⁸” of “Speaking JavaScript”.

Note that while normal Array methods are generic (any Array-like this is OK), the methods
listed in this section are not (this must be a Typed Array).

20.4.8 «ElementType»Array constructor

Each Typed Array constructor has a name that follows the pattern «ElementType»Array, where
«ElementType» is one of the element types in the table at the beginning. That means that there
are 9 constructors for Typed Arrays: Int8Array, Uint8Array, Uint8ClampedArray (element type
Uint8C), Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array.

Each constructor has five overloaded versions – it behaves differently depending on how many
arguments it receives and what their types are:

• «ElementType»Array(buffer, byteOffset=0, length?)

Creates a new Typed Array whose buffer is buffer. It starts accessing the buffer at the
given byteOffset and will have the given length. Note that length counts elements of
the Typed Array (with 1–4 bytes each), not bytes.

• «ElementType»Array(length)

Creates a Typed Array with the given length and the appropriate buffer (whose size in
bytes is length * «ElementType»Array.BYTES_PER_ELEMENT).

• «ElementType»Array()

Creates a Typed Array whose length is 0. It also creates an associated empty ArrayBuffer.
• «ElementType»Array(typedArray)

Creates a new Typed Array that has the same length and elements as typedArray. Values
that are too large or small are converted appropriately.

• «ElementType»Array(arrayLikeObject)

Treats arrayLikeObject like an Array and creates a new TypedArray that has the same
length and elements. Values that are too large or small are converted appropriately.

The following code shows three different ways of creating the same Typed Array:

⁸http://speakingjs.com/es5/ch18.html

http://speakingjs.com/es5/ch18.html
http://speakingjs.com/es5/ch18.html


Typed Arrays 354

const tarr1 = new Uint8Array([1,2,3]);

const tarr2 = Uint8Array.of(1,2,3);

const tarr3 = new Uint8Array(3);

tarr3[0] = 0;

tarr3[1] = 1;

tarr3[2] = 2;

20.4.9 Static «ElementType»Array properties

• «ElementType»Array.BYTES_PER_ELEMENT

Counts how many bytes are needed to store a single element:

> Uint8Array.BYTES_PER_ELEMENT

1

> Int16Array.BYTES_PER_ELEMENT

2

> Float64Array.BYTES_PER_ELEMENT

8

20.4.10 «ElementType»Array.prototype properties

• «ElementType»Array.prototype.BYTES_PER_ELEMENT

The same as «ElementType»Array.BYTES_PER_ELEMENT.

20.4.11 Concatenating Typed Arrays

Typed Arrays don’t have a method concat(), like normal Arrays do. The work-around is to use
the method

typedArray.set(arrayOrTypedArray, offset=0)

That method copies an existing Typed Array (or normal Array) into typedArray at index offset.
Then you only have to make sure that typedArray is big enough to hold all (Typed) Arrays you
want to concatenate:



Typed Arrays 355

function concatenate(resultConstructor, ...arrays) {

let totalLength = 0;

for (const arr of arrays) {

totalLength += arr.length;

}

const result = new resultConstructor(totalLength);

let offset = 0;

for (const arr of arrays) {

result.set(arr, offset);

offset += arr.length;

}

return result;

}

console.log(concatenate(Uint8Array,

Uint8Array.of(1, 2), Uint8Array.of(3, 4)));

// Uint8Array [1, 2, 3, 4]

20.5 DataViews

20.5.1 DataView constructor

• DataView(buffer, byteOffset=0, byteLength=buffer.byteLength-byteOffset)

Creates a new DataView whose data is stored in the ArrayBuffer buffer. By default, the
new DataView can access all of buffer, the last two parameters allow you to change that.

20.5.2 DataView.prototype properties

• get DataView.prototype.buffer

Returns the ArrayBuffer of this DataView.
• get DataView.prototype.byteLength

Returns how many bytes can be accessed by this DataView.
• get DataView.prototype.byteOffset

Returns at which offset this DataView starts accessing the bytes in its buffer.
• DataView.prototype.get«ElementType»(byteOffset, littleEndian=false)

Reads a value from the buffer of this DataView.
– «ElementType» can be: Float32, Float64, Int8, Int16, Int32, Uint8, Uint16, Uint32

• DataView.prototype.set«ElementType»(byteOffset, value, littleEndian=false)

Writes value to the buffer of this DataView.
– «ElementType» can be: Float32, Float64, Int8, Int16, Int32, Uint8, Uint16, Uint32

20.6 Browser APIs that support Typed Arrays

Typed Arrays have been around for a while, so there are quite a few browser APIs that support
them.



Typed Arrays 356

20.6.1 File API

The file API⁹ lets you access local files. The following code demonstrates how to get the bytes of
a submitted local file in an ArrayBuffer.

const fileInput = document.getElementById('fileInput');

const file = fileInput.files[0];

const reader = new FileReader();

reader.readAsArrayBuffer(file);

reader.onload = function () {

const arrayBuffer = reader.result;

···

};

20.6.2 XMLHttpRequest

In newer versions of the XMLHttpRequest API¹⁰, you can have the results delivered in an
ArrayBuffer:

const xhr = new XMLHttpRequest();

xhr.open('GET', someUrl);

xhr.responseType = 'arraybuffer';

xhr.onload = function () {

const arrayBuffer = xhr.response;

···

};

xhr.send();

20.6.3 Fetch API

Similarly to XMLHttpRequest, the Fetch API¹¹ lets you request resources. But it is based on
Promises, which makes it more convenient to use. The following code demonstrates how to
download the content pointed to by url as an ArrayBuffer:

fetch(url)

.then(request => request.arrayBuffer())

.then(arrayBuffer => ···);

⁹http://www.w3.org/TR/FileAPI/
¹⁰http://www.w3.org/TR/XMLHttpRequest/
¹¹https://fetch.spec.whatwg.org/

http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/XMLHttpRequest/
https://fetch.spec.whatwg.org/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/XMLHttpRequest/
https://fetch.spec.whatwg.org/


Typed Arrays 357

20.6.4 Canvas

Quoting the HTML5 specification¹²:

The canvas element provides scripts with a resolution-dependent bitmap canvas,
which can be used for rendering graphs, game graphics, art, or other visual images
on the fly.

The 2DContext of canvas¹³ lets you retrieve the bitmap data as an instance of Uint8ClampedArray:

const canvas = document.getElementById('my_canvas');

const context = canvas.getContext('2d');

const imageData = context.getImageData(0, 0, canvas.width, canvas.height);

const uint8ClampedArray = imageData.data;

20.6.5 WebSockets

WebSockets¹⁴ let you send and receive binary data via ArrayBuffers:

const socket = new WebSocket('ws://127.0.0.1:8081');

socket.binaryType = 'arraybuffer';

// Wait until socket is open

socket.addEventListener('open', function (event) {

// Send binary data

const typedArray = new Uint8Array(4);

socket.send(typedArray.buffer);

});

// Receive binary data

socket.addEventListener('message', function (event) {

const arrayBuffer = event.data;

···

});

20.6.6 Other APIs

• WebGL¹⁵ uses the Typed Array API for: accessing buffer data, specifying pixels for texture
mapping, reading pixel data, and more.

• The Web Audio API¹⁶ lets you decode audio data¹⁷ submitted via an ArrayBuffer.

¹²http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
¹³http://www.w3.org/TR/2dcontext/
¹⁴http://www.w3.org/TR/websockets/
¹⁵https://www.khronos.org/registry/webgl/specs/latest/2.0/
¹⁶http://www.w3.org/TR/webaudio/
¹⁷http://www.w3.org/TR/webaudio/#dfn-decodeAudioData

http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
http://www.w3.org/TR/2dcontext/
http://www.w3.org/TR/websockets/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
http://www.w3.org/TR/webaudio/
http://www.w3.org/TR/webaudio/#dfn-decodeAudioData
http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
http://www.w3.org/TR/2dcontext/
http://www.w3.org/TR/websockets/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
http://www.w3.org/TR/webaudio/
http://www.w3.org/TR/webaudio/#dfn-decodeAudioData


Typed Arrays 358

• Media Source Extensions¹⁸: TheHTMLmedia elements are currently <audio> and <video>.
The Media Source Extensions API enables you to create streams to be played via those
elements. You can add binary data to such streams via ArrayBuffers, Typed Arrays or
DataViews.

• Communication with Web Workers¹⁹: If you send data to a Worker via postMessage()²⁰,
either the message (which will be cloned) or the transferable objects can contain Array-
Buffers.

• Cross-document communication²¹: works similarly to communication with Web Workers
and also uses the method postMessage().

20.7 Extended example: JPEG SOF0 decoder

The code of the following example is on GitHub²². And you can run it online²³.

The example is a web pages that lets you upload a JPEG file and parses its structure to determine
the height and the width of the image and more.

20.7.1 The JPEG file format

A JPEG file is a sequence of segments (typed data). Each segment starts with the following four
bytes:

• Marker (two bytes): declares what kind of data is stored in the segment. The first of the
two bytes is always 0xFF. Each of the standard markers has a human readable name. For
example, the marker 0xFFC0 has the name “Start Of Frame (Baseline DCT)”, short: “SOF0”.

• Length of segment (two bytes): how long is this segment (in bytes, including the length
itself)?

JPEG files are big-endian on all platforms. Therefore, this example demonstrates how important
it is that we can specify endianness when using DataViews.

20.7.2 The JavaScript code

The following function processArrayBuffer() is an abridged version of the actual code; I’ve
removed a few error checks to reduce clutter. processArrayBuffer() receives an ArrayBuffer
with the contents of the submitted JPEG file and iterates over its segments.

¹⁸http://www.w3.org/TR/media-source/
¹⁹http://www.w3.org/TR/workers/
²⁰http://www.w3.org/TR/workers/#dom-worker-postmessage
²¹https://html.spec.whatwg.org/multipage/comms.html#crossDocumentMessages
²²https://github.com/rauschma/typed-array-demos
²³http://rauschma.github.io/typed-array-demos/

http://www.w3.org/TR/media-source/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/workers/#dom-worker-postmessage
https://html.spec.whatwg.org/multipage/comms.html#crossDocumentMessages
https://github.com/rauschma/typed-array-demos
http://rauschma.github.io/typed-array-demos/
http://www.w3.org/TR/media-source/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/workers/#dom-worker-postmessage
https://html.spec.whatwg.org/multipage/comms.html#crossDocumentMessages
https://github.com/rauschma/typed-array-demos
http://rauschma.github.io/typed-array-demos/


Typed Arrays 359

// JPEG is big endian

var IS_LITTLE_ENDIAN = false;

function processArrayBuffer(arrayBuffer) {

try {

var dv = new DataView(arrayBuffer);

···

var ptr = 2;

while (true) {

···

var lastPtr = ptr;

enforceValue(0xFF, dv.getUint8(ptr),

'Not a marker');

ptr++;

var marker = dv.getUint8(ptr);

ptr++;

var len = dv.getUint16(ptr, IS_LITTLE_ENDIAN);

ptr += len;

logInfo('Marker: '+hex(marker)+' ('+len+' byte(s))');

···

// Did we find what we were looking for?

if (marker === 0xC0) { // SOF0

logInfo(decodeSOF0(dv, lastPtr));

break;

}

}

} catch (e) {

logError(e.message);

}

}

This code uses the following helper functions (that are not shown here):

• enforceValue() throws an error if the expected value (first parameter) doesn’t match the
actual value (second parameter).

• logInfo() and logError() display messages on the page.
• hex() turns a number into a string with two hexadecimal digits.

decodeSOF0() parses the segment SOF0:



Typed Arrays 360

function decodeSOF0(dv, start) {

// Example (16x16):

// FF C0 00 11 08 00 10 00 10 03 01 22 00 02 11 01 03 11 01

var data = {};

start += 4; // skip marker 0xFFC0 and segment length 0x0011

var data = {

bitsPerColorComponent: dv.getUint8(start), // usually 0x08

imageHeight: dv.getUint16(start+1, IS_LITTLE_ENDIAN),

imageWidth: dv.getUint16(start+3, IS_LITTLE_ENDIAN),

numberOfColorComponents: dv.getUint8(start+5),

};

return JSON.stringify(data, null, 4);

}

More information on the structure of JPEG files:

• “JPEG: Syntax and structure²⁴” (on Wikipedia)
• “JPEG File Interchange Format: File format structure²⁵” (on Wikipedia)

20.8 Availability

Much of the Typed Array API is implemented by all modern JavaScript engines, but several
features are new to ECMAScript 6:

• Static methods borrowed from Arrays: TypedArray<T>.from(), TypedArray<T>.of()
• Prototype methods borrowed from Arrays: TypedArray<T>.prototype.map() etc.
• Typed Arrays are iterable
• Support for the species pattern
• An inheritance hierarchywhere TypedArray<T> is the superclass of all Typed Array classes

It may take a while until these are available everywhere. As usual, kangax’ “ES6 compatibility
table²⁶” describes the status quo.

²⁴https://en.wikipedia.org/wiki/JPEG#Syntax_and_structure
²⁵https://en.wikipedia.org/wiki/JPEG_File_Interchange_Format#File_format_structure
²⁶https://kangax.github.io/compat-table/es6/#typed_arrays

https://en.wikipedia.org/wiki/JPEG#Syntax_and_structure
https://en.wikipedia.org/wiki/JPEG_File_Interchange_Format#File_format_structure
https://kangax.github.io/compat-table/es6/#typed_arrays
https://kangax.github.io/compat-table/es6/#typed_arrays
https://en.wikipedia.org/wiki/JPEG#Syntax_and_structure
https://en.wikipedia.org/wiki/JPEG_File_Interchange_Format#File_format_structure
https://kangax.github.io/compat-table/es6/#typed_arrays


21. Iterables and iterators
21.1 Overview

ES6 introduces a new mechanism for traversing data: iteration. Two concepts are central to
iteration:

• An iterable is a data structure that wants to make its elements accessible to the public.
It does so by implementing a method whose key is Symbol.iterator. That method is a
factory for iterators.

• An iterator is a pointer for traversing the elements of a data structure (think cursors in
databases).

Expressed as interfaces in TypeScript notation, these roles look like this:

interface Iterable {

[Symbol.iterator]() : Iterator;

}

interface Iterator {

next() : IteratorResult;

}

interface IteratorResult {

value: any;

done: boolean;

}

21.1.1 Iterable values

The following values are iterable:

• Arrays
• Strings
• Maps
• Sets
• DOM data structures (work in progress)

Plain objects are not iterable (why is explained in a dedicated section).

21.1.2 Constructs supporting iteration

Language constructs that access data via iteration:

• Destructuring via an Array pattern:



Iterables and iterators 362

const [a,b] = new Set(['a', 'b', 'c']);

• for-of loop:

for (const x of ['a', 'b', 'c']) {

console.log(x);

}

• Array.from():

const arr = Array.from(new Set(['a', 'b', 'c']));

• Spread operator (...):

const arr = [...new Set(['a', 'b', 'c'])];

• Constructors of Maps and Sets:

const map = new Map([[false, 'no'], [true, 'yes']]);

const set = new Set(['a', 'b', 'c']);

• Promise.all(), Promise.race():

Promise.all(iterableOverPromises).then(···);

Promise.race(iterableOverPromises).then(···);

• yield*:

yield* anIterable;

21.2 Iterability

The idea of iterability is as follows.

• Data consumers: JavaScript has language constructs that consume data. For example, for-
of loops over values and the spread operator (...) inserts values into Arrays or function
calls.

• Data sources: The data consumers could get their values from a variety of sources. For
example, you may want to iterate over the elements of an Array, the key-value entries in
a Map or the characters of a string.

It’s not practical for every consumer to support all sources, especially because it should be
possible to create new sources (e.g. via libraries). Therefore, ES6 introduces the interface
Iterable. Data consumers use it, data sources implement it:



Iterables and iterators 363

Given that JavaScript does not have interfaces, Iterable is more of a convention:

• Source: A value is considered iterable if it has a method whose key is the symbol
Symbol.iterator that returns a so-called iterator. The iterator is an object that returns
values via its method next(). We say: it iterates over the items (the content) of the iterable,
one per method call.

• Consumption: Data consumers use the iterator to retrieve the values they are consuming.

Let’s see what consumption looks like for an Array arr. First, you create an iterator via the
method whose key is Symbol.iterator:

> const arr = ['a', 'b', 'c'];

> const iter = arr[Symbol.iterator]();

Then you call the iterator’s method next() repeatedly to retrieve the items “inside” the Array:

> iter.next()

{ value: 'a', done: false }

> iter.next()

{ value: 'b', done: false }

> iter.next()

{ value: 'c', done: false }

> iter.next()

{ value: undefined, done: true }

As you can see, next() returns each item wrapped in an object, as the value of the property
value. The boolean property done indicates when the end of the sequence of items has been
reached.

Iterable and iterators are part of a so-called protocol (interfaces plus rules for using them) for
iteration. A key characteristic of this protocol is that it is sequential: the iterator returns values
one at a time. That means that if an iterable data structure is non-linear (such as a tree), iteration
will linearize it.



Iterables and iterators 364

21.3 Iterable data sources

I’ll use the for-of loop (see Chap. “The for-of loop”) to iterate over various kinds of iterable
data.

21.3.1 Arrays

Arrays (and Typed Arrays) are iterables over their elements:

for (const x of ['a', 'b']) {

console.log(x);

}

// Output:

// 'a'

// 'b'

21.3.2 Strings

Strings are iterable, but they iterate over Unicode code points, each of which may comprise one
or two JavaScript characters:

for (const x of 'a\uD83D\uDC0A') {

console.log(x);

}

// Output:

// 'a'

// '\uD83D\uDC0A' (crocodile emoji)

You have just seen that primitive values can be iterable. A value doesn’t have to be an
object in order to be iterable. That’s because all values are coerced to objects before the
iterator method (property key Symbol.iterator) is accessed.

21.3.3 Maps

Maps are iterables over their entries. Each entry is encoded as a [key, value] pair, an Array with
two elements. The entries are always iterated over deterministically, in the same order in which
they were added to the map.



Iterables and iterators 365

const map = new Map().set('a', 1).set('b', 2);

for (const pair of map) {

console.log(pair);

}

// Output:

// ['a', 1]

// ['b', 2]

Note that WeakMaps are not iterable.

21.3.4 Sets

Sets are iterables over their elements (which are iterated over in the same order in which they
were added to the Set).

const set = new Set().add('a').add('b');

for (const x of set) {

console.log(x);

}

// Output:

// 'a'

// 'b'

Note that WeakSets are not iterable.

21.3.5 arguments

Even though the special variable arguments is more or less obsolete in ECMAScript 6 (due to
rest parameters), it is iterable:

function printArgs() {

for (const x of arguments) {

console.log(x);

}

}

printArgs('a', 'b');

// Output:

// 'a'

// 'b'

21.3.6 DOM data structures

Most DOM data structures will eventually be iterable:



Iterables and iterators 366

for (const node of document.querySelectorAll('div')) {

···

}

Note that implementing this functionality is work in progress. But it is relatively easy to do so,
because the symbol Symbol.iterator can’t clash with existing property keys.

21.3.7 Iterable computed data

Not all iterable content does have to come from data structures, it could also be computed on
the fly. For example, all major ES6 data structures (Arrays, Typed Arrays, Maps, Sets) have three
methods that return iterable objects:

• entries() returns an iterable over entries encoded as [key, value] Arrays. For Arrays, the
values are the Array elements and the keys are their indices. For Sets, each key and value
are the same – the Set element.

• keys() returns an iterable over the keys of the entries.
• values() returns an iterable over the values of the entries.

Let’s see what that looks like. entries() gives you a nice way to get both Array elements and
their indices:

const arr = ['a', 'b', 'c'];

for (const pair of arr.entries()) {

console.log(pair);

}

// Output:

// [0, 'a']

// [1, 'b']

// [2, 'c']

21.3.8 Plain objects are not iterable

Plain objects (as created by object literals) are not iterable:

for (const x of {}) { // TypeError

console.log(x);

}

Why aren’t objects iterable over properties, by default? The reasoning is as follows. There are
two levels at which you can iterate in JavaScript:

1. The program level: iterating over propertiesmeans examining the structure of the program.



Iterables and iterators 367

2. The data level: iterating over a data structure means examining the data managed by the
program.

Making iteration over properties the default would mean mixing those levels, which would have
two disadvantages:

• You can’t iterate over the properties of data structures.
• Once you iterate over the properties of an object, turning that object into a data structure
would break your code.

If engines were to implement iterability via a method Object.prototype[Symbol.iterator]()

then there would be an additional caveat: Objects created via Object.create(null) wouldn’t
be iterable, because Object.prototype is not in their prototype chain.

It is important to remember that iterating over the properties of an object is mainly interesting
if you use objects as Maps¹. But we only do that in ES5 because we have no better alternative.
In ECMAScript 6, we have the built-in data structure Map.

21.3.8.1 How to iterate over properties

The proper (and safe) way to iterate over properties is via a tool function. For example, via
objectEntries(), whose implementation is shown later (future ECMAScript versions may have
something similar built in):

const obj = { first: 'Jane', last: 'Doe' };

for (const [key,value] of objectEntries(obj)) {

console.log(`${key}: ${value}`);

}

// Output:

// first: Jane

// last: Doe

21.4 Iterating language constructs

The following ES6 language constructs make use of the iteration protocol:

• Destructuring via an Array pattern
• for-of loop
• Array.from()

• Spread operator (...)
• Constructors of Maps and Sets
• Promise.all(), Promise.race()
• yield*

The next sections describe each one of them in detail.

¹[Speaking JS] “Pitfalls: Using an Object as a Map”

http://speakingjs.com/es5/ch17.html#_pitfalls_using_an_object_as_a_map


Iterables and iterators 368

21.4.1 Destructuring via an Array pattern

Destructuring via Array patterns works for any iterable:

const set = new Set().add('a').add('b').add('c');

const [x,y] = set;

// x='a'; y='b'

const [first, ...rest] = set;

// first='a'; rest=['b','c'];

21.4.2 The for-of loop

for-of is a new loop in ECMAScript 6. It’s basic form looks like this:

for (const x of iterable) {

···

}

For more information, consult Chap. “The for-of loop”.

Note that the iterability of iterable is required, otherwise for-of can’t loop over a value.
That means that non-iterable values must be converted to something iterable. For example, via
Array.from().

21.4.3 Array.from()

Array.from() converts iterable and Array-like values to Arrays. It is also available for typed
Arrays.

> Array.from(new Map().set(false, 'no').set(true, 'yes'))

[[false,'no'], [true,'yes']]

> Array.from({ length: 2, 0: 'hello', 1: 'world' })

['hello', 'world']

For more information on Array.from(), consult the chapter on Arrays.

21.4.4 The spread operator (...)

The spread operator inserts the values of an iterable into an Array:



Iterables and iterators 369

> const arr = ['b', 'c'];

> ['a', ...arr, 'd']

['a', 'b', 'c', 'd']

That means that it provides you with a compact way to convert any iterable to an Array:

const arr = [...iterable];

The spread operator also turns an iterable into the arguments of a function,method or constructor
call:

> Math.max(...[-1, 8, 3])

8

21.4.5 Maps and Sets

The constructor of a Map turns an iterable over [key, value] pairs into a Map:

> const map = new Map([['uno', 'one'], ['dos', 'two']]);

> map.get('uno')

'one'

> map.get('dos')

'two'

The constructor of a Set turns an iterable over elements into a Set:

> const set = new Set(['red', 'green', 'blue']);

> set.has('red')

true

> set.has('yellow')

false

The constructors of WeakMap and WeakSetwork similarly. Furthermore,Maps and Sets are iterable
themselves (WeakMaps and WeakSets aren’t), which means that you can use their constructors
to clone them.

21.4.6 Promises

Promise.all() and Promise.race() accept iterables over Promises:



Iterables and iterators 370

Promise.all(iterableOverPromises).then(···);

Promise.race(iterableOverPromises).then(···);

21.4.7 yield*

yield* is an operator that is only available inside generators. It yields all items iterated over by
an iterable.

function* yieldAllValuesOf(iterable) {

yield* iterable;

}

The most important use case for yield* is to recursively call a generator (which produces
something iterable).

21.5 Implementing iterables

In this section, I explain in detail how to implement iterables. Note that ES6 generators are usually
much more convenient for this task than doing so “manually”.

The iteration protocol looks as follows.

An object becomes iterable (“implements” the interface Iterable) if it has a method (own or
inherited) whose key is Symbol.iterator. That method must return an iterator, an object that
iterates over the items “inside” the iterable via its method next().

In TypeScript notation, the interfaces for iterables and iterators look as follows².

²Based on “Closing iterators”, slides by David Herman.

https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-06/closing-iterators.pdf


Iterables and iterators 371

interface Iterable {

[Symbol.iterator]() : Iterator;

}

interface Iterator {

next() : IteratorResult;

return?(value? : any) : IteratorResult;

}

interface IteratorResult {

value: any;

done: boolean;

}

return() is an optional method that we’ll get to later³. Let’s first implement a dummy iterable
to get a feeling for how iteration works.

const iterable = {

[Symbol.iterator]() {

let step = 0;

const iterator = {

next() {

if (step <= 2) {

step++;

}

switch (step) {

case 1:

return { value: 'hello', done: false };

case 2:

return { value: 'world', done: false };

default:

return { value: undefined, done: true };

}

}

};

return iterator;

}

};

Let’s check that iterable is, in fact, iterable:

³throw() is also an optional method, but is practically never used for iterators and therefore explained in the chapter on generators)



Iterables and iterators 372

for (const x of iterable) {

console.log(x);

}

// Output:

// hello

// world

The code executes three steps, with the counter step ensuring that everything happens in the
right order. First, we return the value 'hello', then the value 'world' and then we indicate that
the end of the iteration has been reached. Each item is wrapped in an object with the properties:

• value which holds the actual item and
• done which is a boolean flag that indicates whether the end has been reached, yet.

You can omit done if it is false and value if it is undefined. That is, the switch statement could
be written as follows.

switch (step) {

case 1:

return { value: 'hello' };

case 2:

return { value: 'world' };

default:

return { done: true };

}

As is explained in the the chapter on generators, there are cases where you want even the last
item with done: true to have a value. Otherwise, next() could be simpler and return items
directly (without wrapping them in objects). The end of iteration would then be indicated via a
special value (e.g., a symbol).

Let’s look at one more implementation of an iterable. The function iterateOver() returns an
iterable over the arguments that are passed to it:

function iterateOver(...args) {

let index = 0;

const iterable = {

[Symbol.iterator]() {

const iterator = {

next() {

if (index < args.length) {

return { value: args[index++] };

} else {

return { done: true };

}



Iterables and iterators 373

}

};

return iterator;

}

}

return iterable;

}

// Using `iterateOver()`:

for (const x of iterateOver('fee', 'fi', 'fo', 'fum')) {

console.log(x);

}

// Output:

// fee

// fi

// fo

// fum

21.5.1 Iterators that are iterable

The previous function can be simplified if the iterable and the iterator are the same object:

function iterateOver(...args) {

let index = 0;

const iterable = {

[Symbol.iterator]() {

return this;

},

next() {

if (index < args.length) {

return { value: args[index++] };

} else {

return { done: true };

}

},

};

return iterable;

}

Even if the original iterable and the iterator are not the same object, it is still occasionally useful
if an iterator has the following method (which also makes it an iterable):



Iterables and iterators 374

[Symbol.iterator]() {

return this;

}

All built-in ES6 iterators follow this pattern (via a common prototype, see the chapter on
generators). For example, the default iterator for Arrays:

> const arr = [];

> const iterator = arr[Symbol.iterator]();

> iterator[Symbol.iterator]() === iterator

true

Why is it useful if an iterator is also an iterable? for-of only works for iterables, not for iterators.
Because Array iterators are iterable, you can continue an iteration in another loop:

const arr = ['a', 'b'];

const iterator = arr[Symbol.iterator]();

for (const x of iterator) {

console.log(x); // a

break;

}

// Continue with same iterator:

for (const x of iterator) {

console.log(x); // b

}

One use case for continuing an iteration is that you can remove initial items (e.g. a header) before
processing the actual content via for-of.

21.5.2 Optional iterator methods: return() and throw()

Two iterator methods are optional:

• return() gives an iterator the opportunity to clean up if an iteration ends prematurely.
• throw() is about forwarding a method call to a generator that is iterated over via yield*.
It is explained in the chapter on generators.

21.5.2.1 Closing iterators via return()

As mentioned before, the optional iterator method return() is about letting an iterator clean up
if it wasn’t iterated over until the end. It closes an iterator. In for-of loops, premature (or abrupt,
in spec language) termination can be caused by:



Iterables and iterators 375

• break

• continue (if you continue an outer loop, continue acts like a break)
• throw

• return

In each of these cases, for-of lets the iterator know that the loop won’t finish. Let’s look at an
example, a function readLinesSync that returns an iterable of text lines in a file and would like
to close that file no matter what happens:

function readLinesSync(fileName) {

const file = ···;

return {

···

next() {

if (file.isAtEndOfFile()) {

file.close();

return { done: true };

}

···

},

return() {

file.close();

return { done: true };

},

};

}

Due to return(), the file will be properly closed in the following loop:

// Only print first line

for (const line of readLinesSync(fileName)) {

console.log(x);

break;

}

The return() method must return an object. That is due to how generators handle the return
statement and will be explained in the chapter on generators.

The following constructs close iterators that aren’t completely “drained”:

• for-of

• yield*

• Destructuring
• Array.from()

• Map(), Set(), WeakMap(), WeakSet()
• Promise.all(), Promise.race()

A later section has more information on closing iterators.



Iterables and iterators 376

21.6 More examples of iterables

In this section, we look at a few more examples of iterables. Most of these iterables are easier to
implement via generators. The chapter on generators shows how.

21.6.1 Tool functions that return iterables

Tool functions and methods that return iterables are just as important as iterable data structures.
The following is a tool function for iterating over the own properties of an object.

function objectEntries(obj) {

let index = 0;

// In ES6, you can use strings or symbols as property keys,

// Reflect.ownKeys() retrieves both

const propKeys = Reflect.ownKeys(obj);

return {

[Symbol.iterator]() {

return this;

},

next() {

if (index < propKeys.length) {

const key = propKeys[index];

index++;

return { value: [key, obj[key]] };

} else {

return { done: true };

}

}

};

}

const obj = { first: 'Jane', last: 'Doe' };

for (const [key,value] of objectEntries(obj)) {

console.log(`${key}: ${value}`);

}

// Output:

// first: Jane

// last: Doe

Another option is to use an iterator instead of an index to traverse the Array with the property
keys:



Iterables and iterators 377

function objectEntries(obj) {

let iter = Reflect.ownKeys(obj)[Symbol.iterator]();

return {

[Symbol.iterator]() {

return this;

},

next() {

let { done, value: key } = iter.next();

if (done) {

return { done: true };

}

return { value: [key, obj[key]] };

}

};

}

21.6.2 Combinators for iterables

Combinators⁴ are functions that combine existing iterables to create new ones.

21.6.2.1 take(n, iterable)

Let’s start with the combinator function take(n, iterable), which returns an iterable over the
first n items of iterable.

function take(n, iterable) {

const iter = iterable[Symbol.iterator]();

return {

[Symbol.iterator]() {

return this;

},

next() {

if (n > 0) {

n--;

return iter.next();

} else {

return { done: true };

}

}

};

}

const arr = ['a', 'b', 'c', 'd'];

for (const x of take(2, arr)) {

⁴“Combinator” (in HaskellWiki) describes what combinators are.

https://wiki.haskell.org/Combinator


Iterables and iterators 378

console.log(x);

}

// Output:

// a

// b

This version of take() doesn’t close the iterator iter. How to do that is shown later,
after I explain what closing an iterator actually means.

21.6.2.2 zip(...iterables)

zip turns n iterables into an iterable of n-tuples (encoded as Arrays of length n).

function zip(...iterables) {

const iterators = iterables.map(i => i[Symbol.iterator]());

let done = false;

return {

[Symbol.iterator]() {

return this;

},

next() {

if (!done) {

const items = iterators.map(i => i.next());

done = items.some(item => item.done);

if (!done) {

return { value: items.map(i => i.value) };

}

// Done for the first time: close all iterators

for (const iterator of iterators) {

if (typeof iterator.return === 'function') {

iterator.return();

}

}

}

// We are done

return { done: true };

}

}

}

As you can see, the shortest iterable determines the length of the result:



Iterables and iterators 379

const zipped = zip(['a', 'b', 'c'], ['d', 'e', 'f', 'g']);

for (const x of zipped) {

console.log(x);

}

// Output:

// ['a', 'd']

// ['b', 'e']

// ['c', 'f']

21.6.3 Infinite iterables

Some iterable may never be done.

function naturalNumbers() {

let n = 0;

return {

[Symbol.iterator]() {

return this;

},

next() {

return { value: n++ };

}

}

}

With an infinite iterable, you must not iterate over “all” of it. For example, by breaking from a
for-of loop:

for (const x of naturalNumbers()) {

if (x > 2) break;

console.log(x);

}

Or by only accessing the beginning of an infinite iterable:

const [a, b, c] = naturalNumbers();

// a=0; b=1; c=2;

Or by using a combinator. take() is one possibility:



Iterables and iterators 380

for (const x of take(3, naturalNumbers())) {

console.log(x);

}

// Output:

// 0

// 1

// 2

The “length” of the iterable returned by zip() is determined by its shortest input iterable. That
means that zip() and naturalNumbers() provide you with the means to number iterables of
arbitrary (finite) length:

const zipped = zip(['a', 'b', 'c'], naturalNumbers());

for (const x of zipped) {

console.log(x);

}

// Output:

// ['a', 0]

// ['b', 1]

// ['c', 2]

21.7 FAQ: iterables and iterators

21.7.1 Isn’t the iteration protocol slow?

You may be worried about the iteration protocol being slow, because a new object is created for
each invocation of next(). However, memory management for small objects is fast in modern
engines and in the long run, engines can optimize iteration so that no intermediate objects need
to be allocated. A thread on es-discuss⁵ has more information.

21.7.2 Can I reuse the same object several times?

In principle, nothing prevents an iterator from reusing the same iteration result object several
times – I’d expect most things to work well. However, there will be problems if a client caches
iteration results:

⁵https://esdiscuss.org/topic/performance-of-iterator-next-as-specified

https://esdiscuss.org/topic/performance-of-iterator-next-as-specified
https://esdiscuss.org/topic/performance-of-iterator-next-as-specified


Iterables and iterators 381

const iterationResults = [];

const iterator = iterable[Symbol.iterator]();

let iterationResult;

while (!(iterationResult = iterator.next()).done) {

iterationResults.push(iterationResult);

}

If an iterator reuses its iteration result object, iterationResults will, in general, contain the
same object multiple times.

21.7.3 Why doesn’t ECMAScript 6 have iterable combinators?

Youmay be wondering why ECMAScript 6 does not have iterable combinators, tools for working
with iterables or for creating iterables. That is because the plans are to proceed in two steps:

• Step 1: standardize an iteration protocol.
• Step 2: wait for libraries based on that protocol.

Eventually, one such library or pieces from several libraries will be added to the JavaScript
standard library.

If you want to get an impression of what such a library could look like, take a look at the standard
Python module itertools⁶.

21.7.4 Aren’t iterables difficult to implement?

Yes, iterables are difficult to implement – if you implement them manually. The next chapter
will introduce generators that help with this task (among other things).

21.8 The ECMAScript 6 iteration protocol in depth

The iteration protocol comprises the following interfaces (I have omitted throw() from Iterator,
which is only supported by yield* and optional there):

⁶https://docs.python.org/3/library/itertools.html

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html


Iterables and iterators 382

interface Iterable {

[Symbol.iterator]() : Iterator;

}

interface Iterator {

next() : IteratorResult;

return?(value? : any) : IteratorResult;

}

interface IteratorResult {

value : any;

done : boolean;

}

The spec has a section on the iteration protocol⁷.

21.8.1 Iteration

Rules for next():

• As long as the iterator still has values x to produce, next() returns objects { value: x,

done: false }.
• After the last value was iterated over, next() should always return an object whose
property done is true.

21.8.1.1 The IteratorResult

The property done of an iterator result doesn’t have to be true or false, truthy or falsy is enough.
All built-in language mechanisms let you omit done: false.

21.8.1.2 Iterables that return fresh iterators versus those that always
return the same iterator

Some iterables produce a new iterator each time they are asked for one. For example, Arrays:

function getIterator(iterable) {

return iterable[Symbol.iterator]();

}

const iterable = ['a', 'b'];

console.log(getIterator(iterable) === getIterator(iterable)); // false

Other iterables return the same iterator each time. For example, generator objects:

⁷http://www.ecma-international.org/ecma-262/6.0/#sec-iteration

http://www.ecma-international.org/ecma-262/6.0/#sec-iteration
http://www.ecma-international.org/ecma-262/6.0/#sec-iteration


Iterables and iterators 383

function* elements() {

yield 'a';

yield 'b';

}

const iterable = elements();

console.log(getIterator(iterable) === getIterator(iterable)); // true

Whether an iterable produces a fresh iterators or not matter when you iterate over the same
iterable multiple times. For example, via the following function:

function iterateTwice(iterable) {

for (const x of iterable) {

console.log(x);

}

for (const x of iterable) {

console.log(x);

}

}

With fresh iterators, you can iterate over the same iterable multiple times:

iterateTwice(['a', 'b']);

// Output:

// a

// b

// a

// b

If the same iterator is returned each time, you can’t:

iterateTwice(elements());

// Output:

// a

// b

Note that each iterator in the standard library is also an iterable. Itsmethod [Symbol.iterator]()
return this, meaning that it always returns the same iterator (itself).

21.8.2 Closing iterators

The iteration protocol distinguishes two ways of finishing an iterator:

• Exhaustion: the regular way of finishing an iterator is by retrieving all of its values. That
is, one calls next() until it returns an object whose property done is true.



Iterables and iterators 384

• Closing: by calling return(), you tell the iterator that you don’t intend to call next(),
anymore.

Rules for calling return():

• return() is an optional method, not all iterators have it. Iterators that do have it are called
closable.

• return() should only be called if an iterator hasn’t be exhausted. For example, for-of calls
return() whenever it is left “abruptly” (before it is finished). The following operations
cause abrupt exits: break, continue (with a label of an outer block), return, throw.

Rules for implementing return():

• The method call return(x) should normally produce the object { done: true, value:

x }, but language mechanisms only throw an error (source in spec⁸) if the result isn’t an
object.

• After return() was called, the objects returned by next() should be done, too.

The following code illustrates that the for-of loop calls return() if it is aborted before it receives
a done iterator result. That is, return() is even called if you abort after receiving the last value.
This is subtle and you have to be careful to get it right when you iterate manually or implement
iterators.

function createIterable() {

let done = false;

const iterable = {

[Symbol.iterator]() {

return this;

},

next() {

if (!done) {

done = true;

return { done: false, value: 'a' };

} else {

return { done: true, value: undefined };

}

},

return() {

console.log('return() was called!');

},

};

return iterable;

}

⁸http://www.ecma-international.org/ecma-262/6.0/#sec-iteratorclose

http://www.ecma-international.org/ecma-262/6.0/#sec-iteratorclose
http://www.ecma-international.org/ecma-262/6.0/#sec-iteratorclose


Iterables and iterators 385

for (const x of createIterable()) {

console.log(x);

// There is only one value in the iterable and

// we abort the loop after receiving it

break;

}

// Output:

// a

// return() was called!

21.8.2.1 Closable iterators

An iterator is closable if it has a method return(). Not all iterators are closable. For example,
Array iterators are not:

> let iterable = ['a', 'b', 'c'];

> const iterator = iterable[Symbol.iterator]();

> 'return' in iterator

false

Generator objects are closable by default. For example, the ones returned by the following
generator function:

function* elements() {

yield 'a';

yield 'b';

yield 'c';

}

If you invoke return() on the result of elements(), iteration is finished:

> const iterator = elements();

> iterator.next()

{ value: 'a', done: false }

> iterator.return()

{ value: undefined, done: true }

> iterator.next()

{ value: undefined, done: true }

If an iterator is not closable, you can continue iterating over it after an abrupt exit (such as the
one in line A) from a for-of loop:



Iterables and iterators 386

function twoLoops(iterator) {

for (const x of iterator) {

console.log(x);

break; // (A)

}

for (const x of iterator) {

console.log(x);

}

}

function getIterator(iterable) {

return iterable[Symbol.iterator]();

}

twoLoops(getIterator(['a', 'b', 'c']));

// Output:

// a

// b

// c

Conversely, elements() returns a closable iterator and the second loop inside twoLoops() doesn’t
have anything to iterate over:

twoLoops(elements());

// Output:

// a

21.8.2.2 Preventing iterators from being closed

The following class is a generic solution for preventing iterators from being closed. It does so by
wrapping the iterator and forwarding all method calls except return().

class PreventReturn {

constructor(iterator) {

this.iterator = iterator;

}

/** Must also be iterable, so that for-of works */

[Symbol.iterator]() {

return this;

}

next() {

return this.iterator.next();

}

return(value = undefined) {

return { done: false, value };

}

// Not relevant for iterators: `throw()`

}



Iterables and iterators 387

If we use PreventReturn, the result of the generator elements()won’t be closed after the abrupt
exit in the first loop of twoLoops().

function* elements() {

yield 'a';

yield 'b';

yield 'c';

}

function twoLoops(iterator) {

for (const x of iterator) {

console.log(x);

break; // abrupt exit

}

for (const x of iterator) {

console.log(x);

}

}

twoLoops(elements());

// Output:

// a

twoLoops(new PreventReturn(elements()));

// Output:

// a

// b

// c

There is another way of making generators unclosable: All generator objects produced by
the generator function elements() have the prototype object elements.prototype. Via ele-

ments.prototype, you can hide the default implementation of return() (which resides in a
prototype of elements.prototype) as follows:

// Make generator object unclosable

// Warning: may not work in transpilers

elements.prototype.return = undefined;

twoLoops(elements());

// Output:

// a

// b

// c

21.8.2.3 Handling clean-up in generators via try-finally

Some generators need to clean up (release allocated resources, close open files, etc.) after iteration
over them is finished. Naively, this is how we’d implement it:



Iterables and iterators 388

function* genFunc() {

yield 'a';

yield 'b';

console.log('Performing cleanup');

}

In a normal for-of loop, everything is fine:

for (const x of genFunc()) {

console.log(x);

}

// Output:

// a

// b

// Performing cleanup

However, if you exit the loop after the first yield, execution seemingly pauses there forever and
never reaches the cleanup step:

for (const x of genFunc()) {

console.log(x);

break;

}

// Output:

// a

What actually happens is that, whenever one leaves a for-of loop early, for-of sends a return()
to the current iterator. That means that the cleanup step isn’t reached because the generator
function returns beforehand.

Thankfully, this is easily fixed, by performing the cleanup in a finally clause:

function* genFunc() {

try {

yield 'a';

yield 'b';

} finally {

console.log('Performing cleanup');

}

}

Now everything works as desired:



Iterables and iterators 389

for (const x of genFunc()) {

console.log(x);

break;

}

// Output:

// a

// Performing cleanup

The general pattern for using resources that need to be closed or cleaned up in some manner is
therefore:

function* funcThatUsesResource() {

const resource = allocateResource();

try {

···

} finally {

resource.deallocate();

}

}

21.8.2.4 Handling clean-up in manually implemented iterators

const iterable = {

[Symbol.iterator]() {

function hasNextValue() { ··· }

function getNextValue() { ··· }

function cleanUp() { ··· }

let returnedDoneResult = false;

return {

next() {

if (hasNextValue()) {

const value = getNextValue();

return { done: false, value: value };

} else {

if (!returnedDoneResult) {

// Client receives first `done` iterator result

// => won’t call `return()`

cleanUp();

returnedDoneResult = true;

}

return { done: true, value: undefined };

}

},

return() {

cleanUp();

}



Iterables and iterators 390

};

}

}

Note that you must call cleanUp() when you are going to return a done iterator result for the
first time. You must not do it earlier, because then return()may still be called. This can be tricky
to get right.

21.8.2.5 Closing iterators you use

If you use iterators, you should close them properly. In generators, you can let for-of do all the
work for you:

/**

* Converts a (potentially infinite) sequence of

* iterated values into a sequence of length `n`

*/

function* take(n, iterable) {

for (const x of iterable) {

if (n <= 0) {

break; // closes iterable

}

n--;

yield x;

}

}

If you manage things manually, more work is required:

function* take(n, iterable) {

const iterator = iterable[Symbol.iterator]();

while (true) {

const {value, done} = iterator.next();

if (done) break; // exhausted

if (n <= 0) {

// Abrupt exit

maybeCloseIterator(iterator);

break;

}

yield value;

n--;

}

}

function maybeCloseIterator(iterator) {

if (typeof iterator.return === 'function') {



Iterables and iterators 391

iterator.return();

}

}

Even more work is necessary if you don’t use generators:

function take(n, iterable) {

const iter = iterable[Symbol.iterator]();

return {

[Symbol.iterator]() {

return this;

},

next() {

if (n > 0) {

n--;

return iter.next();

} else {

maybeCloseIterator(iter);

return { done: true };

}

},

return() {

n = 0;

maybeCloseIterator(iter);

}

};

}

21.8.3 Checklist

• Documenting an iterable: provide the following information.
– Does it return fresh iterators or the same iterator each time?
– Are its iterators closable?

• Implementing an iterator:
– Clean-up activity must happen if either an iterator is exhausted or if return() is
called.
* In generators, try-finally lets you handle both in a single location.

– After an iterator was closed via return(), it should not produce any more iterator
results via next().

• Using an iterator manually (versus via for-of etc.):
– Don’t forget to close the iterator via return, if – and only if – you don’t exhaust it.
Getting this right can be tricky.

• Continuing to iterate over an iterator after an abrupt exit: The iterator must either be
unclosable or made unclosable (e.g. via a tool class).



22. Generators

The following GitHub repository contains the example code: generator-examples¹

22.1 Overview

22.1.1 What are generators?

You can think of generators as processes (pieces of code) that you can pause and resume:

function* genFunc() {

// (A)

console.log('First');

yield;

console.log('Second');

}

Note the new syntax: function* is a new “keyword” for generator functions (there are also
generator methods). yield is an operator with which a generator can pause itself. Additionally,
generators can also receive input and send output via yield.

When you call a generator function genFunc(), you get a generator object genObj that you can
use to control the process:

const genObj = genFunc();

The process is initially paused in line A. genObj.next() resumes execution, a yield inside
genFunc() pauses execution:

genObj.next();

// Output: First

genObj.next();

// output: Second

22.1.2 Kinds of generators

There are four kinds of generators:

1. Generator function declarations:

¹https://github.com/rauschma/generator-examples

https://github.com/rauschma/generator-examples
https://github.com/rauschma/generator-examples


Generators 393

function* genFunc() { ··· }

const genObj = genFunc();

2. Generator function expressions:

const genFunc = function* () { ··· };

const genObj = genFunc();

3. Generator method definitions in object literals:

const obj = {

* generatorMethod() {

···

}

};

const genObj = obj.generatorMethod();

4. Generator method definitions in class definitions (class declarations or class expressions):

class MyClass {

* generatorMethod() {

···

}

}

const myInst = new MyClass();

const genObj = myInst.generatorMethod();

22.1.3 Use case: implementing iterables

The objects returned by generators are iterable; each yield contributes to the sequence of iterated
values. Therefore, you can use generators to implement iterables, which can be consumed by
various ES6 language mechanisms: for-of loop, spread operator (...), etc.

The following function returns an iterable over the properties of an object, one [key, value] pair
per property:

function* objectEntries(obj) {

const propKeys = Reflect.ownKeys(obj);

for (const propKey of propKeys) {

// `yield` returns a value and then pauses

// the generator. Later, execution continues

// where it was previously paused.

yield [propKey, obj[propKey]];

}

}

objectEntries() is used like this:



Generators 394

const jane = { first: 'Jane', last: 'Doe' };

for (const [key,value] of objectEntries(jane)) {

console.log(`${key}: ${value}`);

}

// Output:

// first: Jane

// last: Doe

How exactly objectEntries()works is explained in a dedicated section. Implementing the same
functionality without generators is much more work.

22.1.4 Use case: simpler asynchronous code

You can use generators to tremendously simplify working with Promises. Let’s look at a Promise-
based function fetchJson() and how it can be improved via generators.

function fetchJson(url) {

return fetch(url)

.then(request => request.text())

.then(text => {

return JSON.parse(text);

})

.catch(error => {

console.log(`ERROR: ${error.stack}`);

});

}

With the library co² and a generator, this asynchronous code looks synchronous:

const fetchJson = co.wrap(function* (url) {

try {

let request = yield fetch(url);

let text = yield request.text();

return JSON.parse(text);

}

catch (error) {

console.log(`ERROR: ${error.stack}`);

}

});

ECMAScript 2017 will have async functions which are internally based on generators. With
them, the code looks like this:

²https://github.com/tj/co

https://github.com/tj/co
https://github.com/tj/co


Generators 395

async function fetchJson(url) {

try {

let request = await fetch(url);

let text = await request.text();

return JSON.parse(text);

}

catch (error) {

console.log(`ERROR: ${error.stack}`);

}

}

All versions can be invoked like this:

fetchJson('http://example.com/some_file.json')

.then(obj => console.log(obj));

22.1.5 Use case: receiving asynchronous data

Generators can receive input from next() via yield. That means that you can wake up a
generator whenever new data arrives asynchronously and to the generator it feels like it receives
the data synchronously.

22.2 What are generators?

Generators are functions that can be paused and resumed (think cooperative multitasking or
coroutines), which enables a variety of applications.

As a first example, consider the following generator function whose name is genFunc:

function* genFunc() {

// (A)

console.log('First');

yield; // (B)

console.log('Second'); // (C)

}

Two things distinguish genFunc from a normal function declaration:

• It starts with the “keyword” function*.
• It can pause itself, via yield (line B).

Calling genFunc does not execute its body. Instead, you get a so-called generator object, with
which you can control the execution of the body:



Generators 396

> const genObj = genFunc();

genFunc() is initially suspended before the body (line A). The method call genObj.next()
continues execution until the next yield:

> genObj.next()

First

{ value: undefined, done: false }

As you can see in the last line, genObj.next() also returns an object. Let’s ignore that for now.
It will matter later.

genFunc is now paused in line B. If we call next() again, execution resumes and line C is
executed:

> genObj.next()

Second

{ value: undefined, done: true }

Afterwards, the function is finished, execution has left the body and further calls of genObj.next()
have no effect.

22.2.1 Roles played by generators

Generators can play three roles:

1. Iterators (data producers): Each yield can return a value via next(), which means that
generators can produce sequences of values via loops and recursion. Due to generator
objects implementing the interface Iterable (which is explained in the chapter on
iteration), these sequences can be processed by any ECMAScript 6 construct that supports
iterables. Two examples are: for-of loops and the spread operator (...).

2. Observers (data consumers): yield can also receive a value from next() (via a parameter).
That means that generators become data consumers that pause until a new value is pushed
into them via next().

3. Coroutines (data producers and consumers): Given that generators are pausable and can
be both data producers and data consumers, not much work is needed to turn them into
coroutines (cooperatively multitasked tasks).

The next sections provide deeper explanations of these roles.



Generators 397

22.3 Generators as iterators (data production)

For this section, you should be familiar with ES6 iteration. The previous chapter has
more information.

As explained before, generator objects can be data producers, data consumers or both. This
section looks at them as data producers, where they implement both the interfaces Iterable and
Iterator (shown below). That means that the result of a generator function is both an iterable
and an iterator. The full interface of generator objects will be shown later.

interface Iterable {

[Symbol.iterator]() : Iterator;

}

interface Iterator {

next() : IteratorResult;

}

interface IteratorResult {

value : any;

done : boolean;

}

I have omitted method return() of interface Iterable, because it is not relevant in this section.

A generator function produces a sequence of values via yield, a data consumer consumes thoses
values via the iterator method next(). For example, the following generator function produces
the values 'a' and 'b':

function* genFunc() {

yield 'a';

yield 'b';

}

This interaction shows how to retrieve the yielded values via the generator object genObj:

> const genObj = genFunc();

> genObj.next()

{ value: 'a', done: false }

> genObj.next()

{ value: 'b', done: false }

> genObj.next() // done: true => end of sequence

{ value: undefined, done: true }

22.3.1 Ways of iterating over a generator

As generator objects are iterable, ES6 language constructs that support iterables can be applied
to them. The following three ones are especially important.

First, the for-of loop:



Generators 398

for (const x of genFunc()) {

console.log(x);

}

// Output:

// a

// b

Second, the spread operator (...), which turns iterated sequences into elements of an array
(consult the chapter on parameter handling for more information on this operator):

const arr = [...genFunc()]; // ['a', 'b']

Third, destructuring:

> const [x, y] = genFunc();

> x

'a'

> y

'b'

22.3.2 Returning from a generator

The previous generator function did not contain an explicit return. An implicit return is
equivalent to returning undefined. Let’s examine a generator with an explicit return:

function* genFuncWithReturn() {

yield 'a';

yield 'b';

return 'result';

}

The returned value shows up in the last object returned by next(), whose property done is true:

> const genObjWithReturn = genFuncWithReturn();

> genObjWithReturn.next()

{ value: 'a', done: false }

> genObjWithReturn.next()

{ value: 'b', done: false }

> genObjWithReturn.next()

{ value: 'result', done: true }

However, most constructs that work with iterables ignore the value inside the done object:



Generators 399

for (const x of genFuncWithReturn()) {

console.log(x);

}

// Output:

// a

// b

const arr = [...genFuncWithReturn()]; // ['a', 'b']

yield*, an operator for making recursive generator calls, does consider values inside done

objects. It is explained later.

22.3.3 Throwing an exception from a generator

If an exception leaves the body of a generator then next() throws it:

function* genFunc() {

throw new Error('Problem!');

}

const genObj = genFunc();

genObj.next(); // Error: Problem!

That means that next() can produce three different “results”:

• For an item x in an iteration sequence, it returns { value: x, done: false }

• For the end of an iteration sequence with a return value z, it returns { value: z, done:

true }

• For an exception that leaves the generator body, it throws that exception.

22.3.4 Example: iterating over properties

Let’s look at an example that demonstrates how convenient generators are for implementing
iterables. The following function, objectEntries(), returns an iterable over the properties of an
object:

function* objectEntries(obj) {

// In ES6, you can use strings or symbols as property keys,

// Reflect.ownKeys() retrieves both

const propKeys = Reflect.ownKeys(obj);

for (const propKey of propKeys) {

yield [propKey, obj[propKey]];

}

}

This function enables you to iterate over the properties of an object jane via the for-of loop:



Generators 400

const jane = { first: 'Jane', last: 'Doe' };

for (const [key,value] of objectEntries(jane)) {

console.log(`${key}: ${value}`);

}

// Output:

// first: Jane

// last: Doe

For comparison – an implementation of objectEntries() that doesn’t use generators is much
more complicated:

function objectEntries(obj) {

let index = 0;

let propKeys = Reflect.ownKeys(obj);

return {

[Symbol.iterator]() {

return this;

},

next() {

if (index < propKeys.length) {

let key = propKeys[index];

index++;

return { value: [key, obj[key]] };

} else {

return { done: true };

}

}

};

}

22.3.5 You can only yield in generators

A significant limitation of generators is that you can only yield while you are (statically) inside
a generator function. That is, yielding in callbacks doesn’t work:

function* genFunc() {

['a', 'b'].forEach(x => yield x); // SyntaxError

}

yield is not allowed inside non-generator functions, which is why the previous code causes a
syntax error. In this case, it is easy to rewrite the code so that it doesn’t use callbacks (as shown
below). But unfortunately that isn’t always possible.



Generators 401

function* genFunc() {

for (const x of ['a', 'b']) {

yield x; // OK

}

}

The upside of this limitation is explained later: it makes generators easier to implement and
compatible with event loops.

22.3.6 Recursion via yield*

You can only use yield within a generator function. Therefore, if you want to implement a
recursive algorithm with generator, you need a way to call one generator from another one.
This section shows that that is more complicated than it sounds, which is why ES6 has a special
operator, yield*, for this. For now, I only explain how yield* works if both generators produce
output, I’ll later explain how things work if input is involved.

How can one generator recursively call another generator? Let’s assume you have written a
generator function foo:

function* foo() {

yield 'a';

yield 'b';

}

How would you call foo from another generator function bar? The following approach does not
work!

function* bar() {

yield 'x';

foo(); // does nothing!

yield 'y';

}

Calling foo() returns an object, but does not actually execute foo(). That’s why ECMAScript 6
has the operator yield* for making recursive generator calls:



Generators 402

function* bar() {

yield 'x';

yield* foo();

yield 'y';

}

// Collect all values yielded by bar() in an array

const arr = [...bar()];

// ['x', 'a', 'b', 'y']

Internally, yield* works roughly as follows:

function* bar() {

yield 'x';

for (const value of foo()) {

yield value;

}

yield 'y';

}

The operand of yield* does not have to be a generator object, it can be any iterable:

function* bla() {

yield 'sequence';

yield* ['of', 'yielded'];

yield 'values';

}

const arr = [...bla()];

// ['sequence', 'of', 'yielded', 'values']

22.3.6.1 yield* considers end-of-iteration values

Most constructs that support iterables ignore the value included in the end-of-iteration object
(whose property done is true). Generators provide that value via return. The result of yield*
is the end-of-iteration value:



Generators 403

function* genFuncWithReturn() {

yield 'a';

yield 'b';

return 'The result';

}

function* logReturned(genObj) {

const result = yield* genObj;

console.log(result); // (A)

}

If we want to get to line A, we first must iterate over all values yielded by logReturned():

> [...logReturned(genFuncWithReturn())]

The result

[ 'a', 'b' ]

22.3.6.2 Iterating over trees

Iterating over a tree with recursion is simple, writing an iterator for a tree with traditional
means is complicated. That’s why generators shine here: they let you implement an iterator
via recursion. As an example, consider the following data structure for binary trees. It is iterable,
because it has a method whose key is Symbol.iterator. That method is a generator method and
returns an iterator when called.

class BinaryTree {

constructor(value, left=null, right=null) {

this.value = value;

this.left = left;

this.right = right;

}

/** Prefix iteration */

* [Symbol.iterator]() {

yield this.value;

if (this.left) {

yield* this.left;

// Short for: yield* this.left[Symbol.iterator]()

}

if (this.right) {

yield* this.right;

}

}

}

The following code creates a binary tree and iterates over it via for-of:



Generators 404

const tree = new BinaryTree('a',

new BinaryTree('b',

new BinaryTree('c'),

new BinaryTree('d')),

new BinaryTree('e'));

for (const x of tree) {

console.log(x);

}

// Output:

// a

// b

// c

// d

// e

22.4 Generators as observers (data consumption)

As consumers of data, generator objects conform to the second half of the generator interface,
Observer:

interface Observer {

next(value? : any) : void;

return(value? : any) : void;

throw(error) : void;

}

As an observer, a generator pauses until it receives input. There are three kinds of input,
transmitted via the methods specified by the interface:

• next() sends normal input.
• return() terminates the generator.
• throw() signals an error.

22.4.1 Sending values via next()

If you use a generator as an observer, you send values to it via next() and it receives those values
via yield:



Generators 405

function* dataConsumer() {

console.log('Started');

console.log(`1. ${yield}`); // (A)

console.log(`2. ${yield}`);

return 'result';

}

Let’s use this generator interactively. First, we create a generator object:

> const genObj = dataConsumer();

We now call genObj.next(), which starts the generator. Execution continues until the first
yield, which is where the generator pauses. The result of next() is the value yielded in line
A (undefined, because yield doesn’t have an operand). In this section, we are not interested in
what next() returns, because we only use it to send values, not to retrieve values.

> genObj.next()

Started

{ value: undefined, done: false }

We call next() two more times, in order to send the value 'a' to the first yield and the value
'b' to the second yield:

> genObj.next('a')

1. a

{ value: undefined, done: false }

> genObj.next('b')

2. b

{ value: 'result', done: true }

The result of the last next() is the value returned from dataConsumer(). done being true

indicates that the generator is finished.

Unfortunately, next() is asymmetric, but that can’t be helped: It always sends a value to the
currently suspended yield, but returns the operand of the following yield.

22.4.1.1 The first next()

When using a generator as an observer, it is important to note that the only purpose of the first
invocation of next() is to start the observer. It is only ready for input afterwards, because this
first invocation advances execution to the first yield. Therefore, any input you send via the first
next() is ignored:



Generators 406

function* gen() {

// (A)

while (true) {

const input = yield; // (B)

console.log(input);

}

}

const obj = gen();

obj.next('a');

obj.next('b');

// Output:

// b

Initially, execution is paused in line A. The first invocation of next():

• Feeds the argument 'a' of next() to the generator, which has no way to receive it (as
there is no yield). That’s why it is ignored.

• Advances to the yield in line B and pauses execution.
• Returns yield’s operand (undefined, because it doesn’t have an operand).

The second invocation of next():

• Feeds the argument 'b' of next() to the generator, which receives it via the yield in line
B and assigns it to the variable input.

• Then execution continues until the next loop iteration, where it is paused again, in line B.
• Then next() returns with that yield’s operand (undefined).

The following utility function fixes this issue:

/**

* Returns a function that, when called,

* returns a generator object that is immediately

* ready for input via `next()`

*/

function coroutine(generatorFunction) {

return function (...args) {

const generatorObject = generatorFunction(...args);

generatorObject.next();

return generatorObject;

};

}

To see how coroutine() works, let’s compare a wrapped generator with a normal one:



Generators 407

const wrapped = coroutine(function* () {

console.log(`First input: ${yield}`);

return 'DONE';

});

const normal = function* () {

console.log(`First input: ${yield}`);

return 'DONE';

};

The wrapped generator is immediately ready for input:

> wrapped().next('hello!')

First input: hello!

The normal generator needs an extra next() until it is ready for input:

> const genObj = normal();

> genObj.next()

{ value: undefined, done: false }

> genObj.next('hello!')

First input: hello!

{ value: 'DONE', done: true }

22.4.2 yield binds loosely

yield binds very loosely, so that we don’t have to put its operand in parentheses:

yield a + b + c;

This is treated as:

yield (a + b + c);

Not as:

(yield a) + b + c;

As a consequence, many operators bind more tightly than yield and you have to put yield in
parentheses if you want to use it as an operand. For example, you get a SyntaxError if you make
an unparenthesized yield an operand of plus:



Generators 408

console.log('Hello' + yield); // SyntaxError

console.log('Hello' + yield 123); // SyntaxError

console.log('Hello' + (yield)); // OK

console.log('Hello' + (yield 123)); // OK

You do not need parens if yield is a direct argument in a function or method call:

foo(yield 'a', yield 'b');

You also don’t need parens if you use yield on the right-hand side of an assignment:

const input = yield;

22.4.2.1 yield in the ES6 grammar

The need for parens around yield can be seen in the following grammar rules in the ECMAScript
6 specification³. These rules describe how expressions are parsed. I list them here from general
(loose binding, lower precedence) to specific (tight binding, higher precedence). Wherever a
certain kind of expression is demanded, you can also use more specific ones. The opposite is not
true. The hierarchy ends with ParenthesizedExpression, which means that you can mention
any expression anywhere, if you put it in parentheses.

Expression :

AssignmentExpression

Expression , AssignmentExpression

AssignmentExpression :

ConditionalExpression

YieldExpression

ArrowFunction

LeftHandSideExpression = AssignmentExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

···

AdditiveExpression :

MultiplicativeExpression

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

MultiplicativeExpression :

UnaryExpression

MultiplicativeExpression MultiplicativeOperator UnaryExpression

³http://www.ecma-international.org/ecma-262/6.0/#sec-expressions

http://www.ecma-international.org/ecma-262/6.0/#sec-expressions
http://www.ecma-international.org/ecma-262/6.0/#sec-expressions
http://www.ecma-international.org/ecma-262/6.0/#sec-expressions


Generators 409

···

PrimaryExpression :

this

IdentifierReference

Literal

ArrayLiteral

ObjectLiteral

FunctionExpression

ClassExpression

GeneratorExpression

RegularExpressionLiteral

TemplateLiteral

ParenthesizedExpression

ParenthesizedExpression :

( Expression )

The operands of an AdditiveExpression are an AdditiveExpression and a Multiplicative-

Expression. Therefore, using a (more specific) ParenthesizedExpression as an operand is OK,
but using a (more general) YieldExpression isn’t.

22.4.3 return() and throw()

Generator objects have two additional methods, return() and throw(), that are similar to
next().

Let’s recap how next(x) works (after the first invocation):

1. The generator is currently suspended at a yield operator.
2. Send the value x to that yield, which means that it evaluates to x.
3. Proceed to the next yield, return or throw:

• yield x leads to next() returning with { value: x, done: false }

• return x leads to next() returning with { value: x, done: true }

• throw err (not caught inside the generator) leads to next() throwing err.

return() and throw() work similarly to next(), but they do something different in step 2:

• return(x) executes return x at the location of yield.
• throw(x) executes throw x at the location of yield.

22.4.4 return() terminates the generator

return() performs a return at the location of the yield that led to the last suspension of the
generator. Let’s use the following generator function to see how that works.



Generators 410

function* genFunc1() {

try {

console.log('Started');

yield; // (A)

} finally {

console.log('Exiting');

}

}

In the following interaction, we first use next() to start the generator and to proceed until the
yield in line A. Then we return from that location via return().

> const genObj1 = genFunc1();

> genObj1.next()

Started

{ value: undefined, done: false }

> genObj1.return('Result')

Exiting

{ value: 'Result', done: true }

22.4.4.1 Preventing termination

You can prevent return() from terminating the generator if you yield inside the finally clause
(using a return statement in that clause is also possible):

function* genFunc2() {

try {

console.log('Started');

yield;

} finally {

yield 'Not done, yet!';

}

}

This time, return() does not exit the generator function. Accordingly, the property done of the
object it returns is false.



Generators 411

> const genObj2 = genFunc2();

> genObj2.next()

Started

{ value: undefined, done: false }

> genObj2.return('Result')

{ value: 'Not done, yet!', done: false }

You can invoke next() one more time. Similarly to non-generator functions, the return value of
the generator function is the value that was queued prior to entering the finally clause.

> genObj2.next()

{ value: 'Result', done: true }

22.4.4.2 Returning from a newborn generator

Returning a value from a newborn generator (that hasn’t started yet) is allowed:

> function* genFunc() {}

> genFunc().return('yes')

{ value: 'yes', done: true }

Further reading
return() is also used to close iterators. The chapter on iteration has a detailed section
on that.

22.4.5 throw() signals an error

throw() throws an exception at the location of the yield that led to the last suspension of the
generator. Let’s examine how that works via the following generator function.

function* genFunc1() {

try {

console.log('Started');

yield; // (A)

} catch (error) {

console.log('Caught: ' + error);

}

}

In the following interaction, we first use next() to start the generator and proceed until the
yield in line A. Then we throw an exception from that location.



Generators 412

> const genObj1 = genFunc1();

> genObj1.next()

Started

{ value: undefined, done: false }

> genObj1.throw(new Error('Problem!'))

Caught: Error: Problem!

{ value: undefined, done: true }

The result of throw() (shown in the last line) stems from us leaving the function with an implicit
return.

22.4.5.1 Throwing from a newborn generator

Throwing an exception in a newborn generator (that hasn’t started yet) is allowed:

> function* genFunc() {}

> genFunc().throw(new Error('Problem!'))

Error: Problem!

22.4.6 Example: processing asynchronously pushed data

The fact that generators-as-observers pause while they wait for input makes them perfect for on-
demand processing of data that is received asynchronously. The pattern for setting up a chain of
generators for processing is as follows:

• Each member of the chain of generators (except the last one) has a parameter target. It
receives data via yield and sends data via target.next().

• The last member of the chain of generators has no parameter target and only receives
data.

The whole chain is prefixed by a non-generator function that makes an asynchronous request
and pushes the results into the chain of generators via next().

As an example, let’s chain generators to process a file that is read asynchronously.

The code of this example is in the file generator-examples/node/readlines.js⁴. It
must be executed via babel-node.

The following code sets up the chain: it contains the generators splitLines, numberLines and
printLines. Data is pushed into the chain via the non-generator function readFile.

⁴https://github.com/rauschma/generator-examples/blob/gh-pages/node/readlines.js

https://github.com/rauschma/generator-examples/blob/gh-pages/node/readlines.js
https://github.com/rauschma/generator-examples/blob/gh-pages/node/readlines.js


Generators 413

readFile(fileName, splitLines(numberLines(printLines())));

I’ll explain what these functions do when I show their code.

As previously explained, if generators receive input via yield, the first invocation of next() on
the generator object doesn’t do anything. That’s why I use the previously shown helper function
coroutine() to create coroutines here. It executes the first next() for us.

readFile() is the non-generator function that starts everything:

import {createReadStream} from 'fs';

/**

* Creates an asynchronous ReadStream for the file whose name

* is `fileName` and feeds it to the generator object `target`.

*

* @see ReadStream https://nodejs.org/api/fs.html#fs_class_fs_readstream

*/

function readFile(fileName, target) {

const readStream = createReadStream(fileName,

{ encoding: 'utf8', bufferSize: 1024 });

readStream.on('data', buffer => {

const str = buffer.toString('utf8');

target.next(str);

});

readStream.on('end', () => {

// Signal end of output sequence

target.return();

});

}

The chain of generators starts with splitLines:

/**

* Turns a sequence of text chunks into a sequence of lines

* (where lines are separated by newlines)

*/

const splitLines = coroutine(function* (target) {

let previous = '';

try {

while (true) {

previous += yield;

let eolIndex;

while ((eolIndex = previous.indexOf('\n')) >= 0) {

const line = previous.slice(0, eolIndex);

target.next(line);



Generators 414

previous = previous.slice(eolIndex+1);

}

}

} finally {

// Handle the end of the input sequence

// (signaled via `return()`)

if (previous.length > 0) {

target.next(previous);

}

// Signal end of output sequence

target.return();

}

});

Note an important pattern:

• readFile uses the generator object method return() to signal the end of the sequence of
chunks that it sends.

• readFile sends that signal while splitLines is waiting for input via yield, inside an
infinite loop. return() breaks from that loop.

• splitLines uses a finally clause to handle the end-of-sequence.

The next generator is numberLines:

//**

* Prefixes numbers to a sequence of lines

*/

const numberLines = coroutine(function* (target) {

try {

for (const lineNo = 0; ; lineNo++) {

const line = yield;

target.next(`${lineNo}: ${line}`);

}

} finally {

// Signal end of output sequence

target.return();

}

});

The last generator is printLines:



Generators 415

/**

* Receives a sequence of lines (without newlines)

* and logs them (adding newlines).

*/

const printLines = coroutine(function* () {

while (true) {

const line = yield;

console.log(line);

}

});

The neat thing about this code is that everything happens lazily (on demand): lines are split,
numbered and printed as they arrive; we don’t have to wait for all of the text before we can start
printing.

22.4.7 yield*: the full story

As a rough rule of thumb, yield* performs (the equivalent of) a function call from one generator
(the caller) to another generator (the callee).

So far, we have only seen one aspect of yield: it propagates yielded values from the callee to the
caller. Now that we are interested in generators receiving input, another aspect becomes relevant:
yield* also forwards input received by the caller to the callee. In a way, the callee becomes the
active generator and can be controlled via the caller’s generator object.

22.4.7.1 Example: yield* forwards next()

The following generator function caller() invokes the generator function callee() via yield*.

function* callee() {

console.log('callee: ' + (yield));

}

function* caller() {

while (true) {

yield* callee();

}

}

callee logs values received via next(), which allows us to check whether it receives the value
'a' and 'b' that we send to caller.



Generators 416

> const callerObj = caller();

> callerObj.next() // start

{ value: undefined, done: false }

> callerObj.next('a')

callee: a

{ value: undefined, done: false }

> callerObj.next('b')

callee: b

{ value: undefined, done: false }

throw() and return() are forwarded in a similar manner.

22.4.7.2 The semantics of yield* expressed in JavaScript

I’ll explain the complete semantics of yield* by showing how you’d implemented it in
JavaScript.

The following statement:

let yieldStarResult = yield* calleeFunc();

is roughly equivalent to:

let yieldStarResult;

const calleeObj = calleeFunc();

let prevReceived = undefined;

while (true) {

try {

// Forward input previously received

const {value,done} = calleeObj.next(prevReceived);

if (done) {

yieldStarResult = value;

break;

}

prevReceived = yield value;

} catch (e) {

// Pretend `return` can be caught like an exception

if (e instanceof Return) {

// Forward input received via return()

calleeObj.return(e.returnedValue);

return e.returnedValue; // “re-throw”

} else {



Generators 417

// Forward input received via throw()

calleeObj.throw(e); // may throw

}

}

}

To keep things simple, several things are missing in this code:

• The operand of yield* can be any iterable value.
• return() and throw() are optional iterator methods. We should only call them if they
exist.

• If an exception is received and throw() does not exist, but return() does then return()

is called (before throwing an exception) to give calleeObject the opportunity to clean up.
• calleeObj can refuse to close, by returning an object whose property done is false. Then
the caller also has to refuse to close and yield* must continue to iterate.

22.5 Generators as coroutines (cooperative
multitasking)

We have seen generators being used as either sources or sinks of data. For many applications, it’s
good practice to strictly separate these two roles, because it keeps things simpler. This section
describes the full generator interface (which combines both roles) and one use case where both
roles are needed: cooperative multitasking, where tasks must be able to both send and receive
information.

22.5.1 The full generator interface

The full interface of generator objects, Generator, handles both output and input:

interface Generator {

next(value? : any) : IteratorResult;

throw(value? : any) : IteratorResult;

return(value? : any) : IteratorResult;

}

interface IteratorResult {

value : any;

done : boolean;

}

This interface is described in the spec in the section “Properties of Generator Proto-
type⁵”.

The interface Generator combines two interfaces that we have seen previously: Iterator for
output and Observer for input.

⁵http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-generator-prototype

http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-generator-prototype
http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-generator-prototype
http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-generator-prototype


Generators 418

interface Iterator { // data producer

next() : IteratorResult;

return?(value? : any) : IteratorResult;

}

interface Observer { // data consumer

next(value? : any) : void;

return(value? : any) : void;

throw(error) : void;

}

22.5.2 Cooperative multitasking

Cooperative multitasking is an application of generators where we need them to handle both
output and input. Before we get into how that works, let’s first review the current state of
parallelism in JavaScript.

JavaScript runs in a single process. There are twoways inwhich this limitation is being abolished:

• Multiprocessing:Web Workers let you run JavaScript in multiple processes. Shared access
to data is one of the biggest pitfalls of multiprocessing.WebWorkers avoid it by not sharing
any data. That is, if you want a Web Worker to have a piece of data, you must send it a
copy or transfer your data to it (after which you can’t access it anymore).

• Cooperative multitasking: There are various patterns and libraries that experiment with
cooperative multitasking. Multiple tasks are run, but only one at a time. Each task must
explicitly suspend itself, giving it full control over when a task switch happens. In these
experiments, data is often shared between tasks. But due to explicit suspension, there are
few risks.

Two use cases benefit from cooperative multitasking, because they involve control flows that are
mostly sequential, anyway, with occasional pauses:

• Streams: A task sequentially processes a stream of data and pauses if there is no data
available.

– For binary streams, WHATWG is currently working on a standard proposal⁶ that is
based on callbacks and Promises.

– For streams of data, Communicating Sequential Processes (CSP) are an interesting
solution. A generator-based CSP library is covered later in this chapter.

• Asynchronous computations: A task blocks (pauses) until it receives the result of a long-
running computation.

– In JavaScript, Promises have become a popular way of handling asynchronous
computations. Support for them is included in ES6. The next section explains how
generators can make using Promises simpler.

⁶https://streams.spec.whatwg.org/

https://streams.spec.whatwg.org/
https://streams.spec.whatwg.org/


Generators 419

22.5.2.1 Simplifying asynchronous computations via generators

Several Promise-based libraries simplify asynchronous code via generators. Generators are ideal
as clients of Promises, because they can be suspended until a result arrives.

The following example demonstrates what that looks like if one uses the library co⁷ by T.J.
Holowaychuk. We need two libraries (if we run Node.js code via babel-node):

import fetch from 'isomorphic-fetch';

const co = require('co');

co is the actual library for cooperative multitasking, isomorphic-fetch is a polyfill for the new
Promise-based fetch API (a replacement of XMLHttpRequest; read “That’s so fetch!⁸” by Jake
Archibald for more information). fetch makes it easy to write a function getFile that returns
the text of a file at a url via a Promise:

function getFile(url) {

return fetch(url)

.then(request => request.text());

}

We now have all the ingredients to use co. The following task reads the texts of two files, parses
the JSON inside them and logs the result.

co(function* () {

try {

const [croftStr, bondStr] = yield Promise.all([ // (A)

getFile('http://localhost:8000/croft.json'),

getFile('http://localhost:8000/bond.json'),

]);

const croftJson = JSON.parse(croftStr);

const bondJson = JSON.parse(bondStr);

console.log(croftJson);

console.log(bondJson);

} catch (e) {

console.log('Failure to read: ' + e);

}

});

Note how nicely synchronous this code looks, even though it makes an asynchronous call in line
A. A generator-as-task makes an async call by yielding a Promise to the scheduler function co.
The yielding pauses the generator. Once the Promise returns a result, the scheduler resumes the
generator by passing it the result via next(). A simple version of co looks as follows.

⁷https://github.com/tj/co
⁸http://jakearchibald.com/2015/thats-so-fetch/

https://github.com/tj/co
http://jakearchibald.com/2015/thats-so-fetch/
https://github.com/tj/co
http://jakearchibald.com/2015/thats-so-fetch/


Generators 420

function co(genFunc) {

const genObj = genFunc();

step(genObj.next());

function step({value,done}) {

if (!done) {

// A Promise was yielded

value

.then(result => {

step(genObj.next(result)); // (A)

})

.catch(error => {

step(genObj.throw(error)); // (B)

});

}

}

}

I have ignored that next() (line A) and throw() (line B) may throw exceptions (whenever an
exception escapes the body of the generator function).

22.5.3 The limitations of cooperative multitasking via
generators

Coroutines are cooperatively multitasked tasks that have no limitations: Inside a coroutine, any
function can suspend the whole coroutine (the function activation itself, the activation of the
function’s caller, the caller’s caller, etc.).

In contrast, you can only suspend a generator from directly within a generator and only the
current function activation is suspended. Due to these limitations, generators are occasionally
called shallow coroutines [3].

22.5.3.1 The benefits of the limitations of generators

The limitations of generators have two main benefits:

• Generators are compatible with event loops, which provide simple cooperative multitask-
ing in browsers. I’ll explain the details momentarily.

• Generators are relatively easy to implement, because only a single function activation
needs to be suspended and because browsers can continue to use event loops.

JavaScript already has a very simple style of cooperative multitasking: the event loop, which
schedules the execution of tasks in a queue. Each task is started by calling a function and finished
once that function is finished. Events, setTimeout() and other mechanisms add tasks to the
queue.



Generators 421

This explanation of the event loop is a simplification that is good enough for now. If
you are interested in details, consult the chapter on asynchronous programming.

This style of multitasking makes one important guarantee: run to completion; every function can
rely on not being interrupted by another task until it is finished. Functions become transactions
and can perform complete algorithms without anyone seeing the data they operate on in an
itermediate state. Concurrent access to shared data makes multitasking complicated and is not
allowed by JavaScript’s concurrency model. That’s why run to completion is a good thing.

Alas, coroutines prevent run to completion, because any function could suspend its caller. For
example, the following algorithm consists of multiple steps:

step1(sharedData);

step2(sharedData);

lastStep(sharedData);

If step2 was to suspend the algorithm, other tasks could run before the last step of the
algorithm is performed. Those tasks could contain other parts of the application which would
see sharedData in an unfinished state. Generators preserve run to completion, they only suspend
themselves and return to their caller.

co and similar libraries give you most of the power of coroutines, without their disadvantages:

• They provide schedulers for tasks defined via generators.
• Tasks “are” generators and can thus be fully suspended.
• A recursive (generator) function call is only suspendable if it is done via yield*. That gives
callers control over suspension.

22.6 Examples of generators

This section gives several examples of what generators can be used for.

The following GitHub repository contains the example code: generator-examples⁹

22.6.1 Implementing iterables via generators

In the chapter on iteration, I implemented several iterables “by hand”. In this section, I use
generators, instead.

22.6.1.1 The iterable combinator take()

take() converts a (potentially infinite) sequence of iterated values into a sequence of length n:

⁹https://github.com/rauschma/generator-examples

https://github.com/rauschma/generator-examples
https://github.com/rauschma/generator-examples


Generators 422

function* take(n, iterable) {

for (const x of iterable) {

if (n <= 0) return;

n--;

yield x;

}

}

The following is an example of using it:

const arr = ['a', 'b', 'c', 'd'];

for (const x of take(2, arr)) {

console.log(x);

}

// Output:

// a

// b

An implementation of take() without generators is more complicated:

function take(n, iterable) {

const iter = iterable[Symbol.iterator]();

return {

[Symbol.iterator]() {

return this;

},

next() {

if (n > 0) {

n--;

return iter.next();

} else {

maybeCloseIterator(iter);

return { done: true };

}

},

return() {

n = 0;

maybeCloseIterator(iter);

}

};

}

function maybeCloseIterator(iterator) {

if (typeof iterator.return === 'function') {

iterator.return();

}

}



Generators 423

Note that the iterable combinator zip() does not profit much from being implemented via a
generator, because multiple iterables are involved and for-of can’t be used.

22.6.1.2 Infinite iterables

naturalNumbers() returns an iterable over all natural numbers:

function* naturalNumbers() {

for (const n=0;; n++) {

yield n;

}

}

This function is often used in conjunction with a combinator:

for (const x of take(3, naturalNumbers())) {

console.log(x);

}

// Output

// 0

// 1

// 2

Here is the non-generator implementation, so you can compare:

function naturalNumbers() {

let n = 0;

return {

[Symbol.iterator]() {

return this;

},

next() {

return { value: n++ };

}

}

}

22.6.1.3 Array-inspired iterable combinators: map, filter

Arrays can be transformed via the methods map and filter. Those methods can be generalized
to have iterables as input and iterables as output.

22.6.1.3.1 A generalized map()

This is the generalized version of map:



Generators 424

function* map(iterable, mapFunc) {

for (const x of iterable) {

yield mapFunc(x);

}

}

map() works with infinite iterables:

> [...take(4, map(naturalNumbers(), x => x * x))]

[ 0, 1, 4, 9 ]

22.6.1.3.2 A generalized filter()

This is the generalized version of filter:

function* filter(iterable, filterFunc) {

for (const x of iterable) {

if (filterFunc(x)) {

yield x;

}

}

}

filter() works with infinite iterables:

> [...take(4, filter(naturalNumbers(), x => (x % 2) === 0))]

[ 0, 2, 4, 6 ]

22.6.2 Generators for lazy evaluation

The next two examples show how generators can be used to process a stream of characters.

• The input is a stream of characters.
• Step 1 – tokenizing (characters → words): The characters are grouped into words, strings
that match the regular expression /ˆ[A-Za-z0-9]+$/. Non-word characters are ignored,
but they separate words. The input of this step is a stream of characters, the output a stream
of words.

• Step 2 – extracting numbers (words→ numbers): only keep words that match the regular
expression /ˆ[0-9]+$/ and convert them to numbers.

• Step 3 – adding numbers (numbers → numbers): for every number received, return the
total received so far.

The neat thing is that everything is computed lazily (incrementally and on demand): computation
starts as soon as the first character arrives. For example, we don’t have to wait until we have all
characters to get the first word.



Generators 425

22.6.2.1 Lazy pull (generators as iterators)

Lazy pull with generators works as follows. The three generators implementing steps 1–3 are
chained as follows:

addNumbers(extractNumbers(tokenize(CHARS)))

Each of the chain members pulls data from a source and yields a sequence of items. Processing
starts with tokenize whose source is the string CHARS.

22.6.2.1.1 Step 1 – tokenizing

The following trick makes the code a bit simpler: the end-of-sequence iterator result (whose
property done is false) is converted into the sentinel value END_OF_SEQUENCE.

/**

* Returns an iterable that transforms the input sequence

* of characters into an output sequence of words.

*/

function* tokenize(chars) {

const iterator = chars[Symbol.iterator]();

let ch;

do {

ch = getNextItem(iterator); // (A)

if (isWordChar(ch)) {

let word = '';

do {

word += ch;

ch = getNextItem(iterator); // (B)

} while (isWordChar(ch));

yield word; // (C)

}

// Ignore all other characters

} while (ch !== END_OF_SEQUENCE);

}

const END_OF_SEQUENCE = Symbol();

function getNextItem(iterator) {

const {value,done} = iterator.next();

return done ? END_OF_SEQUENCE : value;

}

function isWordChar(ch) {

return typeof ch === 'string' && /^[A-Za-z0-9]$/.test(ch);

}

How is this generator lazy? When you ask it for a token via next(), it pulls its iterator (lines
A and B) as often as needed to produce as token and then yields that token (line C). Then it



Generators 426

pauses until it is again asked for a token. That means that tokenization starts as soon as the first
characters are available, which is convenient for streams.

Let’s try out tokenization. Note that the spaces and the dot are non-words. They are ignored,
but they separate words. We use the fact that strings are iterables over characters (Unicode code
points). The result of tokenize() is an iterable over words, which we turn into an array via the
spread operator (...).

> [...tokenize('2 apples and 5 oranges.')]

[ '2', 'apples', 'and', '5', 'oranges' ]

22.6.2.1.2 Step 2 – extracting numbers

This step is relatively simple, we only yield words that contain nothing but digits, after
converting them to numbers via Number().

/**

* Returns an iterable that filters the input sequence

* of words and only yields those that are numbers.

*/

function* extractNumbers(words) {

for (const word of words) {

if (/^[0-9]+$/.test(word)) {

yield Number(word);

}

}

}

You can again see the laziness: If you ask for a number via next(), you get one (via yield) as
soon as one is encountered in words.

Let’s extract the numbers from an Array of words:

> [...extractNumbers(['hello', '123', 'world', '45'])]

[ 123, 45 ]

Note that strings are converted to numbers.

22.6.2.1.3 Step 3 – adding numbers



Generators 427

/**

* Returns an iterable that contains, for each number in

* `numbers`, the total sum of numbers encountered so far.

* For example: 7, 4, -1 --> 7, 11, 10

*/

function* addNumbers(numbers) {

let result = 0;

for (const n of numbers) {

result += n;

yield result;

}

}

Let’s try a simple example:

> [...addNumbers([5, -2, 12])]

[ 5, 3, 15 ]

22.6.2.1.4 Pulling the output

On its own, the chain of generator doesn’t produce output. We need to actively pull the output
via the spread operator:

const CHARS = '2 apples and 5 oranges.';

const CHAIN = addNumbers(extractNumbers(tokenize(CHARS)));

console.log([...CHAIN]);

// [ 2, 7 ]

The helper function logAndYield allows us to examine whether things are indeed computed
lazily:

function* logAndYield(iterable, prefix='') {

for (const item of iterable) {

console.log(prefix + item);

yield item;

}

}

const CHAIN2 = logAndYield(addNumbers(extractNumbers(tokenize(logAndYield(CHA\

RS)))), '-> ');

[...CHAIN2];

// Output:

// 2

//



Generators 428

// -> 2

// a

// p

// p

// l

// e

// s

//

// a

// n

// d

//

// 5

//

// -> 7

// o

// r

// a

// n

// g

// e

// s

// .

The output shows that addNumbers produces a result as soon as the characters '2' and ' ' are
received.

22.6.2.2 Lazy push (generators as observables)

Not much work is needed to convert the previous pull-based algorithm into a push-based one.
The steps are the same. But instead of finishing via pulling, we start via pushing.

As previously explained, if generators receive input via yield, the first invocation of next() on
the generator object doesn’t do anything. That’s why I use the previously shown helper function
coroutine() to create coroutines here. It executes the first next() for us.

The following function send() does the pushing.

/**

* Pushes the items of `iterable` into `sink`, a generator.

* It uses the generator method `next()` to do so.

*/

function send(iterable, sink) {

for (const x of iterable) {

sink.next(x);

}

sink.return(); // signal end of stream

}



Generators 429

When a generator processes a stream, it needs to be aware of the end of the stream, so that it
can clean up properly. For pull, we did this via a special end-of-stream sentinel. For push, the
end-of-stream is signaled via return().

Let’s test send() via a generator that simply outputs everything it receives:

/**

* This generator logs everything that it receives via `next()`.

*/

const logItems = coroutine(function* () {

try {

while (true) {

const item = yield; // receive item via `next()`

console.log(item);

}

} finally {

console.log('DONE');

}

});

Let’s send logItems() three characters via a string (which is an iterable over Unicode code
points).

> send('abc', logItems());

a

b

c

DONE

22.6.2.2.1 Step 1 – tokenize

Note how this generator reacts to the end of the stream (as signaled via return()) in two
finally clauses. We depend on return() being sent to either one of the two yields. Otherwise,
the generator would never terminate, because the infinite loop starting in line A would never
terminate.

/**

* Receives a sequence of characters (via the generator object

* method `next()`), groups them into words and pushes them

* into the generator `sink`.

*/

const tokenize = coroutine(function* (sink) {

try {

while (true) { // (A)

let ch = yield; // (B)

if (isWordChar(ch)) {



Generators 430

// A word has started

let word = '';

try {

do {

word += ch;

ch = yield; // (C)

} while (isWordChar(ch));

} finally {

// The word is finished.

// We get here if

// - the loop terminates normally

// - the loop is terminated via `return()` in line C

sink.next(word); // (D)

}

}

// Ignore all other characters

}

} finally {

// We only get here if the infinite loop is terminated

// via `return()` (in line B or C).

// Forward `return()` to `sink` so that it is also

// aware of the end of stream.

sink.return();

}

});

function isWordChar(ch) {

return /^[A-Za-z0-9]$/.test(ch);

}

This time, the laziness is driven by push: as soon as the generator has received enough characters
for a word (in line C), it pushes the word into sink (line D). That is, the generator does not wait
until it has received all characters.

tokenize() demonstrates that generators work well as implementations of linear state machines.
In this case, the machine has two states: “inside a word” and “not inside a word”.

Let’s tokenize a string:

> send('2 apples and 5 oranges.', tokenize(logItems()));

2

apples

and

5

oranges



Generators 431

22.6.2.2.2 Step 2 – extract numbers

This step is straightforward.

/**

* Receives a sequence of strings (via the generator object

* method `next()`) and pushes only those strings to the generator

* `sink` that are “numbers” (consist only of decimal digits).

*/

const extractNumbers = coroutine(function* (sink) {

try {

while (true) {

const word = yield;

if (/^[0-9]+$/.test(word)) {

sink.next(Number(word));

}

}

} finally {

// Only reached via `return()`, forward.

sink.return();

}

});

Things are again lazy: as soon as a number is encountered, it is pushed to sink.

Let’s extract the numbers from an Array of words:

> send(['hello', '123', 'world', '45'], extractNumbers(logItems()));

123

45

DONE

Note that the input is a sequence of strings, while the output is a sequence of numbers.

22.6.2.2.3 Step 3 – add numbers

This time, we react to the end of the stream by pushing a single value and then closing the sink.



Generators 432

/**

* Receives a sequence of numbers (via the generator object

* method `next()`). For each number, it pushes the total sum

* so far to the generator `sink`.

*/

const addNumbers = coroutine(function* (sink) {

let sum = 0;

try {

while (true) {

sum += yield;

sink.next(sum);

}

} finally {

// We received an end-of-stream

sink.return(); // signal end of stream

}

});

Let’s try out this generator:

> send([5, -2, 12], addNumbers(logItems()));

5

3

15

DONE

22.6.2.2.4 Pushing the input

The chain of generators starts with tokenize and ends with logItems, which logs everything it
receives. We push a sequence of characters into the chain via send:

const INPUT = '2 apples and 5 oranges.';

const CHAIN = tokenize(extractNumbers(addNumbers(logItems())));

send(INPUT, CHAIN);

// Output

// 2

// 7

// DONE

The following code proves that processing really happens lazily:



Generators 433

const CHAIN2 = tokenize(extractNumbers(addNumbers(logItems({ prefix: '-> ' })\

)));

send(INPUT, CHAIN2, { log: true });

// Output

// 2

//

// -> 2

// a

// p

// p

// l

// e

// s

//

// a

// n

// d

//

// 5

//

// -> 7

// o

// r

// a

// n

// g

// e

// s

// .

// DONE

The output shows that addNumbers produces a result as soon as the characters '2' and ' ' are
pushed.

22.6.3 Cooperative multi-tasking via generators

22.6.3.1 Pausing long-running tasks

In this example, we create a counter that is displayed on a web page. We improve an initial
version until we have a cooperatively multitasked version that doesn’t block the main thread
and the user interface.

This is the part of the web page in which the counter should be displayed:



Generators 434

<body>

Counter: <span id="counter"></span>

</body>

This function displays a counter that counts up forever¹⁰:

function countUp(start = 0) {

const counterSpan = document.querySelector('#counter');

while (true) {

counterSpan.textContent = String(start);

start++;

}

}

If you ran this function, it would completely block the user interface thread in which it runs and
its tab would become unresponsive.

Let’s implement the same functionality via a generator that periodically pauses via yield (a
scheduling function for running this generator is shown later):

function* countUp(start = 0) {

const counterSpan = document.querySelector('#counter');

while (true) {

counterSpan.textContent = String(start);

start++;

yield; // pause

}

}

Let’s add one small improvement. We move the update of the user interface to another generator,
displayCounter, which we call via yield*. As it is a generator, it can also take care of pausing.

function* countUp(start = 0) {

while (true) {

start++;

yield* displayCounter(start);

}

}

function* displayCounter(counter) {

const counterSpan = document.querySelector('#counter');

counterSpan.textContent = String(counter);

yield; // pause

}

Lastly, this is a scheduling function that we can use to run countUp(). Each execution step of the
generator is handled by a separate task, which is created via setTimeout(). That means that the
user interface can schedule other tasks in between and will remain responsive.

¹⁰Or rather, the function counts up until the number start overflows and becomes Infinity, at which point it doesn’t change, anymore.



Generators 435

function run(generatorObject) {

if (!generatorObject.next().done) {

// Add a new task to the event queue

setTimeout(function () {

run(generatorObject);

}, 1000);

}

}

With the help of run, we get a (nearly) infinite count-up that doesn’t block the user interface:

run(countUp());

You can run this example online¹¹.

22.6.3.2 Cooperative multitasking with generators and Node.js-style
callbacks

If you call a generator function (or method), it does not have access to its generator object; its
this is the this it would have if it were a non-generator function. A work-around is to pass the
generator object into the generator function via yield.

The following Node.js script uses this technique, but wraps the generator object in a callback
(next, line A). It must be run via babel-node.

import {readFile} from 'fs';

const fileNames = process.argv.slice(2);

run(function* () {

const next = yield;

for (const f of fileNames) {

const contents = yield readFile(f, { encoding: 'utf8' }, next);

console.log('##### ' + f);

console.log(contents);

}

});

In line A, we get a callback that we can use with functions that follow Node.js callback
conventions. The callback uses the generator object to wake up the generator, as you can see
in the implementation of run():

¹¹https://rauschma.github.io/generator-examples/nonblocking-counter/

https://rauschma.github.io/generator-examples/nonblocking-counter/
https://rauschma.github.io/generator-examples/nonblocking-counter/


Generators 436

function run(generatorFunction) {

const generatorObject = generatorFunction();

// Step 1: Proceed to first `yield`

generatorObject.next();

// Step 2: Pass in a function that the generator can use as a callback

function nextFunction(error, result) {

if (error) {

generatorObject.throw(error);

} else {

generatorObject.next(result);

}

}

generatorObject.next(nextFunction);

// Subsequent invocations of `next()` are triggered by `nextFunction`

}

22.6.3.3 Communicating Sequential Processes (CSP)

The library js-csp¹² brings Communicating Sequential Processes (CSP) to JavaScript, a style of
cooperative multitasking that is similar to ClojureScript’s core.async and Go’s goroutines. js-csp
has two abstractions:

• Processes: are cooperatively multitasked tasks and implemented by handing a generator
function to the scheduling function go().

• Channels: are queues for communication between processes. Channels are created by
calling chan().

As an example, let’s use CSP to handle DOM events, in a manner reminiscent of Functional
Reactive Programming. The following code uses the function listen() (which is shown later)
to create a channel that outputs mousemove events. It then continuously retrieves the output via
take, inside an infinite loop. Thanks to yield, the process blocks until the channel has output.

¹²https://github.com/ubolonton/js-csp

https://github.com/ubolonton/js-csp
https://github.com/ubolonton/js-csp


Generators 437

import csp from 'js-csp';

csp.go(function* () {

const element = document.querySelector('#uiElement1');

const channel = listen(element, 'mousemove');

while (true) {

const event = yield csp.take(channel);

const x = event.layerX || event.clientX;

const y = event.layerY || event.clientY;

element.textContent = `${x}, ${y}`;

}

});

listen() is implemented as follows.

function listen(element, type) {

const channel = csp.chan();

element.addEventListener(type,

event => {

csp.putAsync(channel, event);

});

return channel;

}

This example is taken from the blog post “Taming the Asynchronous Beast with CSP
Channels in JavaScript¹³” by James Long. Consult this blog post for more information
on CSP.

22.7 Inheritance within the iteration API (including
generators)

This is a diagram of how various objects are connected in ECMAScript 6 (it is based on Allen
Wirf-Brock’s diagram¹⁴ in the ECMAScript specification):

¹³http://jlongster.com/Taming-the-Asynchronous-Beast-with-CSP-in-JavaScript
¹⁴http://www.ecma-international.org/ecma-262/6.0/#sec-generatorfunction-objects

http://jlongster.com/Taming-the-Asynchronous-Beast-with-CSP-in-JavaScript
http://jlongster.com/Taming-the-Asynchronous-Beast-with-CSP-in-JavaScript
http://www.ecma-international.org/ecma-262/6.0/#sec-generatorfunction-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-generatorfunction-objects
http://jlongster.com/Taming-the-Asynchronous-Beast-with-CSP-in-JavaScript
http://www.ecma-international.org/ecma-262/6.0/#sec-generatorfunction-objects


Generators 438

Legend:

• The white (hollow) arrows express the has-prototype relationship (inheritance) between
objects. In other words: a white arrow from x to ymeans that Object.getPrototypeOf(x)
=== y.

• Parentheses indicate that an object exists, but is not accessible via a global variable.
• An instanceof arrow from x to y means that x instanceof y.

– Remember that o instanceof C is equivalent to C.prototype.isPrototypeOf(o).
• A prototype arrow from x to y means that x.prototype === y.
• The right column shows an instance with its prototypes, the middle column shows a
function and its prototypes, the left column shows classes for functions (metafunctions,
if you will), connected via a subclass-of relationship.

The diagram reveals two interesting facts:

First, a generator function g works very much like a constructor (however, you can’t invoke it
via new; that causes a TypeError): The generator objects it creates are instances of it, methods
added to g.prototype become prototype methods, etc.:



Generators 439

> function* g() {}

> g.prototype.hello = function () { return 'hi!'};

> const obj = g();

> obj instanceof g

true

> obj.hello()

'hi!'

Second, if you want to make methods available for all generator objects, it’s best to add them to
(Generator).prototype. One way of accessing that object is as follows:

const Generator = Object.getPrototypeOf(function* () {});

Generator.prototype.hello = function () { return 'hi!'};

const generatorObject = (function* () {})();

generatorObject.hello(); // 'hi!'

22.7.1 IteratorPrototype

There is no (Iterator) in the diagram, because no such object exists. But, given how instanceof

works and because (IteratorPrototype) is a prototype of g1(), you could still say that g1() is
an instance of Iterator.

All iterators in ES6 have (IteratorPrototype) in their prototype chain. That object is iterable,
because it has the following method. Therefore, all ES6 iterators are iterable (as a consequence,
you can apply for-of etc. to them).

[Symbol.iterator]() {

return this;

}

The specification recommends to use the following code to access (IteratorPrototype):

const proto = Object.getPrototypeOf.bind(Object);

const IteratorPrototype = proto(proto([][Symbol.iterator]()));

You could also use:

const IteratorPrototype = proto(proto(function* () {}.prototype));

Quoting the ECMAScript 6 specification:

ECMAScript code may also define objects that inherit from IteratorPrototype.
The IteratorPrototype object provides a place where additional methods that are
applicable to all iterator objects may be added.

IteratorPrototype will probably become directly accessible in an upcoming version of EC-
MAScript and contain tool methods such as map() and filter() (source¹⁵).

¹⁵https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-07/jul-30.md#47-revisit-comprehension-decision-from-last-meeting

https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-07/jul-30.md#47-revisit-comprehension-decision-from-last-meeting
https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-07/jul-30.md#47-revisit-comprehension-decision-from-last-meeting


Generators 440

22.7.2 The value of this in generators

A generator function combines two concerns:

1. It is a function that sets up and returns a generator object.
2. It contains the code that the generator object steps through.

That’s why it’s not immediately obvious what the value of this should be inside a generator.

In function calls and method calls, this is what it would be if gen()wasn’t a generator function,
but a normal function:

function* gen() {

'use strict'; // just in case

yield this;

}

// Retrieve the yielded value via destructuring

const [functionThis] = gen();

console.log(functionThis); // undefined

const obj = { method: gen };

const [methodThis] = obj.method();

console.log(methodThis === obj); // true

If you access this in a generator that was invoked via new, you get a ReferenceError (source:
ES6 spec¹⁶):

function* gen() {

console.log(this); // ReferenceError

}

new gen();

A work-around is to wrap the generator in a normal function that hands the generator its
generator object via next(). That means that the generator must use its first yield to retrieve its
generator object:

const generatorObject = yield;

¹⁶http://www.ecma-international.org/ecma-262/6.0/#sec-generator-function-definitions-runtime-semantics-evaluatebody

http://www.ecma-international.org/ecma-262/6.0/#sec-generator-function-definitions-runtime-semantics-evaluatebody
http://www.ecma-international.org/ecma-262/6.0/#sec-generator-function-definitions-runtime-semantics-evaluatebody
http://www.ecma-international.org/ecma-262/6.0/#sec-generator-function-definitions-runtime-semantics-evaluatebody


Generators 441

22.8 Style consideration: whitespace before and
after the asterisk

Reasonable – and legal – variations of formatting the asterisk are:

• A space before and after it:
function * foo(x, y) { ··· }

• A space before it:
function *foo(x, y) { ··· }

• A space after it:
function* foo(x, y) { ··· }

• No whitespace before and after it:
function*foo(x, y) { ··· }

Let’s figure out which of these variations make sense for which constructs and why.

22.8.1 Generator function declarations and expressions

Here, the star is only used because generator (or something similar) isn’t available as a keyword.
If it were, then a generator function declaration would look like this:

generator foo(x, y) {

···

}

Instead of generator, ECMAScript 6 marks the function keyword with an asterisk. Thus,
function* can be seen as a synonym for generator, which suggests writing generator function
declarations as follows.

function* foo(x, y) {

···

}

Anonymous generator function expressions would be formatted like this:

const foo = function* (x, y) {

···

}

22.8.2 Generator method definitions

When writing generator method definitions, I recommend to format the asterisk as follows.



Generators 442

const obj = {

* generatorMethod(x, y) {

···

}

};

There are three arguments in favor of writing a space after the asterisk.

First, the asterisk shouldn’t be part of themethod name. On one hand, it isn’t part of the name of a
generator function. On the other hand, the asterisk is only mentioned when defining a generator,
not when using it.

Second, a generator method definition is an abbreviation for the following syntax. (To make my
point, I’m redundantly giving the function expression a name, too.)

const obj = {

generatorMethod: function* generatorMethod(x, y) {

···

}

};

If method definitions are about omitting the function keyword then the asterisk should be
followed by a space.

Third, generator method definitions are syntactically similar to getters and setters (which are
already available in ECMAScript 5):

const obj = {

get foo() {

···

}

set foo(value) {

···

}

};

The keywords get and set can be seen as modifiers of a normal method definition. Arguably,
an asterisk is also such a modifier.

22.8.3 Formatting recursive yield

The following is an example of a generator function yielding its own yielded values recursively:



Generators 443

function* foo(x) {

···

yield* foo(x - 1);

···

}

The asterisk marks a different kind of yield operator, which is why the above way of writing it
makes sense.

22.8.4 Documenting generator functions and methods

Kyle Simpson (@getify) proposed something interesting: Given that we often append parentheses
when we write about functions and methods such as Math.max(), wouldn’t it make sense to
prepend an asterisk when writing about generator functions and methods? For example: should
we write *foo() to refer to the generator function in the previous subsection? Let me argue
against that.

When it comes to writing a function that returns an iterable, a generator is only one of the several
options. I think it is better to not give away this implementation detail via marked function
names.

Furthermore, you don’t use the asterisk when calling a generator function, but you do use
parentheses.

Lastly, the asterisk doesn’t provide useful information – yield* can also be used with functions
that return an iterable. But it may make sense to mark the names of functions and methods
(including generators) that return iterables. For example, via the suffix Iter.

22.9 FAQ: generators

22.9.1 Why use the keyword function* for generators and not
generator?

Due to backward compatibility, using the keyword generatorwasn’t an option. For example, the
following code (a hypothetical ES6 anonymous generator expression) could be an ES5 function
call followed by a code block.

generator (a, b, c) {

···

}

I find that the asterisk naming scheme extends nicely to yield*.

22.9.2 Is yield a keyword?

yield is only a reserved word in strict mode. A trick is used to bring it to ES6 sloppy mode: it
becomes a contextual keyword, one that is only available inside generators.



Generators 444

22.10 Conclusion

I hope that this chapter convinced you that generators are a useful and versatile tool.

I like that generators let you implement cooperatively multitasked tasks that block while making
asynchronous function calls. In my opinion that’s the right mental model for async calls.
Hopefully, JavaScript goes further in this direction in the future.

22.11 Further reading

Sources of this chapter:

[1] “Async Generator Proposal¹⁷” by Jafar Husain

[2] “A Curious Course on Coroutines and Concurrency¹⁸” by David Beazley

[3] “Why coroutines won’t work on the web¹⁹” by David Herman

¹⁷https://github.com/jhusain/asyncgenerator
¹⁸http://www.dabeaz.com/coroutines/
¹⁹http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-the-web/

https://github.com/jhusain/asyncgenerator
http://www.dabeaz.com/coroutines/
http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-the-web/
https://github.com/jhusain/asyncgenerator
http://www.dabeaz.com/coroutines/
http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-the-web/


V Standard library



23. New regular expression features
This chapter explains new regular expression features in ECMAScript 6. It helps if you are
familiar with ES5 regular expression features and Unicode. Consult the following two chapters
of “Speaking JavaScript” if necessary:

• “Regular Expressions¹”
• “Unicode and JavaScript²”

23.1 Overview

The following regular expression features are new in ECMAScript 6:

• The new flag /y (sticky) anchors each match of a regular expression to the end of the
previous match.

• The new flag /u (unicode) handles surrogate pairs (such as \uD83D\uDE80) as code points
and lets you use Unicode code point escapes (such as \u{1F680}) in regular expressions.

• The new data property flags gives you access to the flags of a regular expression, just like
source already gives you access to the pattern in ES5:

> /abc/ig.source // ES5

'abc'

> /abc/ig.flags // ES6

'gi'

• You can use the constructor RegExp() to make a copy of a regular expression:

> new RegExp(/abc/ig).flags

'gi'

> new RegExp(/abc/ig, 'i').flags // change flags

'i'

23.2 New flag /y (sticky)

The new flag /y changes two things while matching a regular expression re against a string:

• Anchored to re.lastIndex: The match must start at re.lastIndex (the index after the
previous match). This behavior is similar to the ˆ anchor, but with that anchor, matches
must always start at index 0.

¹http://speakingjs.com/es5/ch19.html
²http://speakingjs.com/es5/ch24.html

http://speakingjs.com/es5/ch19.html
http://speakingjs.com/es5/ch24.html
http://speakingjs.com/es5/ch19.html
http://speakingjs.com/es5/ch24.html


New regular expression features 447

• Match repeatedly: If a match was found, re.lastIndex is set to the index after the match.
This behavior is similar to the /g flag. Like /g, /y is normally used to match multiple times.

The main use case for this matching behavior is tokenizing, where you want each match to
immediately follow its predecessor. An example of tokenizing via a sticky regular expression
and exec() is given later.

Let’s look at how various regular expression operations react to the /y flag. The following tables
give an overview. I’ll provide more details afterwards.

Methods of regular expressions (re is the regular expression that a method is invoked on):

Flags Start matching Anchored to Result if match No match re.lastIndex

exec() – 0 – Match object null unchanged
/g re.lastIndex – Match object null index after match
/y re.lastIndex re.lastIndex Match object null index after match
/gy re.lastIndex re.lastIndex Match object null index after match

test() (Any) (like exec()) (like exec()) true false (like exec())

Methods of strings (str is the string that a method is invoked on, r is the regular expression
parameter):

Flags Start matching Anchored to Result if match No match r.lastIndex

search() –, /g 0 – Index of match -1 unchanged
/y, /gy 0 0 Index of match -1 unchanged

match() – 0 – Match object null unchanged
/y r.lastIndex r.lastIndex Match object null index after

match
/g After prev. – Array with matches null 0

match (loop)
/gy After prev. After prev. Array with matches null 0

match (loop) match
split() –, /g After prev. – Array with strings [str] unchanged

match (loop) between matches
/y, /gy After prev. After prev. Arr. w/ empty strings [str] unchanged

match (loop) match between matches
replace() – 0 – First match replaced No repl. unchanged

/y 0 0 First match replaced No repl. unchanged
/g After prev. – All matches replaced No repl. unchanged

match (loop)
/gy After prev. After prev. All matches replaced No repl. unchanged

match (loop) match

23.2.1 RegExp.prototype.exec(str)

If /g is not set, matching always starts at the beginning, but skips ahead until a match is found.
REGEX.lastIndex is not changed.



New regular expression features 448

const REGEX = /a/;

REGEX.lastIndex = 7; // ignored

const match = REGEX.exec('xaxa');

console.log(match.index); // 1

console.log(REGEX.lastIndex); // 7 (unchanged)

If /g is set, matching starts at REGEX.lastIndex and skips ahead until a match is found.
REGEX.lastIndex is set to the position after the match. That means that you receive all matches
if you loop until exec() returns null.

const REGEX = /a/g;

REGEX.lastIndex = 2;

const match = REGEX.exec('xaxa');

console.log(match.index); // 3

console.log(REGEX.lastIndex); // 4 (updated)

// No match at index 4 or later

console.log(REGEX.exec('xaxa')); // null

If only /y is set, matching starts at REGEX.lastIndex and is anchored to that position (no skipping
ahead until a match is found). REGEX.lastIndex is updated similarly to when /g is set.

const REGEX = /a/y;

// No match at index 2

REGEX.lastIndex = 2;

console.log(REGEX.exec('xaxa')); // null

// Match at index 3

REGEX.lastIndex = 3;

const match = REGEX.exec('xaxa');

console.log(match.index); // 3

console.log(REGEX.lastIndex); // 4

Setting both /y and /g is the same as only setting /y.

23.2.2 RegExp.prototype.test(str)

test()works the same as exec(), but it returns true or false (instead of a match object or null)
when matching succeeds or fails:



New regular expression features 449

const REGEX = /a/y;

REGEX.lastIndex = 2;

console.log(REGEX.test('xaxa')); // false

REGEX.lastIndex = 3;

console.log(REGEX.test('xaxa')); // true

console.log(REGEX.lastIndex); // 4

23.2.3 String.prototype.search(regex)

search() ignores the flag /g and lastIndex (which is not changed, either). Starting at the
beginning of the string, it looks for the first match and returns its index (or -1 if there was
no match):

const REGEX = /a/;

REGEX.lastIndex = 2; // ignored

console.log('xaxa'.search(REGEX)); // 1

If you set the flag /y, lastIndex is still ignored, but the regular expression is now anchored to
index 0.

const REGEX = /a/y;

REGEX.lastIndex = 1; // ignored

console.log('xaxa'.search(REGEX)); // -1 (no match)

23.2.4 String.prototype.match(regex)

match() has two modes:

• If /g is not set, it works like exec().
• If /g is set, it returns an Array with the string parts that matched, or null.

If the flag /g is not set, match() captures groups like exec():



New regular expression features 450

{

const REGEX = /a/;

REGEX.lastIndex = 7; // ignored

console.log('xaxa'.match(REGEX).index); // 1

console.log(REGEX.lastIndex); // 7 (unchanged)

}

{

const REGEX = /a/y;

REGEX.lastIndex = 2;

console.log('xaxa'.match(REGEX)); // null

REGEX.lastIndex = 3;

console.log('xaxa'.match(REGEX).index); // 3

console.log(REGEX.lastIndex); // 4

}

If only the flag /g is set then match() returns all matching substrings in an Array (or null).
Matching always starts at position 0.

const REGEX = /a|b/g;

REGEX.lastIndex = 7;

console.log('xaxb'.match(REGEX)); // ['a', 'b']

console.log(REGEX.lastIndex); // 0

If you additionally set the flag /y, then matching is still performed repeatedly, while anchoring
the regular expression to the index after the previous match (or 0).

const REGEX = /a|b/gy;

REGEX.lastIndex = 0; // ignored

console.log('xab'.match(REGEX)); // null

REGEX.lastIndex = 1; // ignored

console.log('xab'.match(REGEX)); // null

console.log('ab'.match(REGEX)); // ['a', 'b']

console.log('axb'.match(REGEX)); // ['a']

23.2.5 String.prototype.split(separator, limit)

The complete details of split() are explained in Speaking JavaScript³.

For ES6, it is interesting to see how things change if you use the flag /y.

With /y, the string must start with a separator:

³http://speakingjs.com/es5/ch19.html#String.prototype.match

http://speakingjs.com/es5/ch19.html#String.prototype.match
http://speakingjs.com/es5/ch19.html#String.prototype.match


New regular expression features 451

> 'x##'.split(/#/y) // no match

[ 'x##' ]

> '##x'.split(/#/y) // 2 matches

[ '', '', 'x' ]

Subsequent separators are only recognized if they immediately follow the first separator:

> '#x#'.split(/#/y) // 1 match

[ '', 'x#' ]

> '##'.split(/#/y) // 2 matches

[ '', '', '' ]

That means that the string before the first separator and the strings between separators are
always empty.

As usual, you can use groups to put parts of the separators into the result array:

> '##'.split(/(#)/y)

[ '', '#', '', '#', '' ]

23.2.6 String.prototype.replace(search, replacement)

Without the flag /g, replace() only replaces the first match:

const REGEX = /a/;

// One match

console.log('xaxa'.replace(REGEX, '-')); // 'x-xa'

If only /y is set, you also get at most one match, but that match is always anchored to the
beginning of the string. lastIndex is ignored and unchanged.

const REGEX = /a/y;

// Anchored to beginning of string, no match

REGEX.lastIndex = 1; // ignored

console.log('xaxa'.replace(REGEX, '-')); // 'xaxa'

console.log(REGEX.lastIndex); // 1 (unchanged)

// One match

console.log('axa'.replace(REGEX, '-')); // '-xa'

With /g set, replace() replaces all matches:



New regular expression features 452

const REGEX = /a/g;

// Multiple matches

console.log('xaxa'.replace(REGEX, '-')); // 'x-x-'

With /gy set, replace() replaces all matches, but each match is anchored to the end of the
previous match:

const REGEX = /a/gy;

// Multiple matches

console.log('aaxa'.replace(REGEX, '-')); // '--xa'

The parameter replacement can also be a function, consult “Speaking JavaScript” for details⁴.

23.2.7 Example: using sticky matching for tokenizing

The main use case for sticky matching is tokenizing, turning a text into a sequence of tokens.
One important trait about tokenizing is that tokens are fragments of the text and that there must
be no gaps between them. Therefore, sticky matching is perfect here.

function tokenize(TOKEN_REGEX, str) {

const result = [];

let match;

while (match = TOKEN_REGEX.exec(str)) {

result.push(match[1]);

}

return result;

}

const TOKEN_GY = /\s*(\+|[0-9]+)\s*/gy;

const TOKEN_G = /\s*(\+|[0-9]+)\s*/g;

In a legal sequence of tokens, sticky matching and non-sticky matching produce the same output:

> tokenize(TOKEN_GY, '3 + 4')

[ '3', '+', '4' ]

> tokenize(TOKEN_G, '3 + 4')

[ '3', '+', '4' ]

If, however, there is non-token text in the string then sticky matching stops tokenizing, while
non-sticky matching skips the non-token text:

⁴http://speakingjs.com/es5/ch19.html#String.prototype.replace

http://speakingjs.com/es5/ch19.html#String.prototype.replace
http://speakingjs.com/es5/ch19.html#String.prototype.replace


New regular expression features 453

> tokenize(TOKEN_GY, '3x + 4')

[ '3' ]

> tokenize(TOKEN_G, '3x + 4')

[ '3', '+', '4' ]

The behavior of sticky matching during tokenizing helps with error handling.

23.2.8 Example: manually implementing sticky matching

If you wanted to manually implement sticky matching, you’d do it as follows: The function
execSticky() works like RegExp.prototype.exec() in sticky mode.

function execSticky(regex, str) {

// Anchor the regex to the beginning of the string

let matchSource = regex.source;

if (!matchSource.startsWith('^')) {

matchSource = '^' + matchSource;

}

// Ensure that instance property `lastIndex` is updated

let matchFlags = regex.flags; // ES6 feature!

if (!regex.global) {

matchFlags = matchFlags + 'g';

}

const matchRegex = new RegExp(matchSource, matchFlags);

// Ensure we start matching `str` at `regex.lastIndex`

const matchOffset = regex.lastIndex;

const matchStr = str.slice(matchOffset);

let match = matchRegex.exec(matchStr);

// Translate indices from `matchStr` to `str`

regex.lastIndex = matchRegex.lastIndex + matchOffset;

match.index = match.index + matchOffset;

return match;

}

23.3 New flag /u (unicode)

The flag /u switches on a special Unicode mode for a regular expression. That mode has two
features:

1. You can use Unicode code point escape sequences such as \u{1F42A} for specifying
characters via code points. Normal Unicode escapes such as \u03B1 only have a range
of four hexadecimal digits (which equals the basic multilingual plane).



New regular expression features 454

2. “characters” in the regular expression pattern and the string are code points (not UTF-16
code units). Code units are converted into code points.

A section in the chapter on Unicode has more information on escape sequences. I’ll explain the
consequences of feature 2 next. Instead of Unicode code point escapes (e.g., \u{1F680}), I’m using
two UTF-16 code units (e.g., \uD83D\uDE80). That makes it clear that surrogate pairs are grouped
in Unicode mode and works in both Unicode mode and non-Unicode mode.

> '\u{1F680}' === '\uD83D\uDE80' // code point vs. surrogate pairs

true

23.3.1 Consequence: lone surrogates in the regular expression
only match lone surrogates

In non-Unicode mode, a lone surrogate in a regular expression is even found inside (surrogate
pairs encoding) code points:

> /\uD83D/.test('\uD83D\uDC2A')

true

In Unicode mode, surrogate pairs become atomic units and lone surrogates are not found “inside”
them:

> /\uD83D/u.test('\uD83D\uDC2A')

false

Actual lone surrogate are still found:

> /\uD83D/u.test('\uD83D \uD83D\uDC2A')

true

> /\uD83D/u.test('\uD83D\uDC2A \uD83D')

true

23.3.2 Consequence: you can put code points in character
classes

In Unicode mode, you can put code points into character classes and they won’t be interpreted
as two characters, anymore.



New regular expression features 455

> /^[\uD83D\uDC2A]$/u.test('\uD83D\uDC2A')

true

> /^[\uD83D\uDC2A]$/.test('\uD83D\uDC2A')

false

> /^[\uD83D\uDC2A]$/u.test('\uD83D')

false

> /^[\uD83D\uDC2A]$/.test('\uD83D')

true

23.3.3 Consequence: the dot operator (.) matches code points,
not code units

In Unicode mode, the dot operator matches code points (one or two code units). In non-Unicode
mode, it matches single code units. For example:

> '\uD83D\uDE80'.match(/./gu).length

1

> '\uD83D\uDE80'.match(/./g).length

2

23.3.4 Consequence: quantifiers apply to code points, not code
units

In Unicode mode, quantifiers apply to code points (one or two code units). In non-Unicode mode,
they apply to single code units. For example:

> /\uD83D\uDE80{2}/u.test('\uD83D\uDE80\uD83D\uDE80')

true

> /\uD83D\uDE80{2}/.test('\uD83D\uDE80\uD83D\uDE80')

false

> /\uD83D\uDE80{2}/.test('\uD83D\uDE80\uDE80')

true

23.4 New data property flags

In ECMAScript 6, regular expressions have the following data properties:

• The pattern: source
• The flags: flags
• Individual flags: global, ignoreCase, multiline, sticky, unicode
• Other: lastIndex



New regular expression features 456

As an aside, lastIndex is the only instance property now, all other data properties are imple-
mented via internal instance properties and getters such as get RegExp.prototype.global⁵.

The property source (which already existed in ES5) contains the regular expression pattern as a
string:

> /abc/ig.source

'abc'

The property flags is new, it contains the flags as a string, with one character per flag:

> /abc/ig.flags

'gi'

You can’t change the flags of an existing regular expression (ignoreCase etc. have always been
immutable), but flags allows you to make a copy where the flags are changed:

function copyWithIgnoreCase(regex) {

return new RegExp(regex.source, regex.flags+'i');

}

The next section explains another way to make modified copies of regular expressions.

23.5 RegExp() can be used as a copy constructor

In ES6 there are two variants of the constructor RegExp() (the second one is new):

• new RegExp(pattern : string, flags = '')

A new regular expression is created as specified via pattern. If flags is missing, the empty
string '' is used.

• new RegExp(regex : RegExp, flags = regex.flags)

regex is cloned. If flags is provided then it determines the flags of the copy.

The following interaction demonstrates the latter variant:

> new RegExp(/abc/ig).flags

'gi'

> new RegExp(/abc/ig, 'i').flags // change flags

'i'

Therefore, the RegExp constructor gives us another way to change flags:

⁵http://www.ecma-international.org/ecma-262/6.0/#sec-get-regexp.prototype.global

http://www.ecma-international.org/ecma-262/6.0/#sec-get-regexp.prototype.global
http://www.ecma-international.org/ecma-262/6.0/#sec-get-regexp.prototype.global


New regular expression features 457

function copyWithIgnoreCase(regex) {

return new RegExp(regex, regex.flags+'i');

}

23.5.1 Example: an iterable version of exec()

The following function execAll() is an iterable version of exec() that fixes several issues with
using exec() to retrieve all matches of a regular expression:

• Looping over the matches is unnecessarily complicated (you call exec() until it returns
null).

• exec() mutates the regular expression, which means that side effects can become a
problem.

• The flag /g must be set. Otherwise, only the first match is returned.

function* execAll(regex, str) {

// Make sure flag /g is set and regex.index isn’t changed

const localCopy = new RegExp(regex, regex.flags+'g');

let match;

while (match = localCopy.exec(str)) {

yield match;

}

}

Using execAll():

const str = '"fee" "fi" "fo" "fum"';

const regex = /"([^"]*)"/;

// Access capture of group #1 via destructuring

for (const [, group1] of execAll(regex, str)) {

console.log(group1);

}

// Output:

// fee

// fi

// fo

// fum

23.6 String methods that delegate to regular
expression methods

The following string methods now delegate some of their work to regular expression methods:



New regular expression features 458

• String.prototype.match calls RegExp.prototype[Symbol.match].
• String.prototype.replace calls RegExp.prototype[Symbol.replace].
• String.prototype.search calls RegExp.prototype[Symbol.search].
• String.prototype.split calls RegExp.prototype[Symbol.split].

For more information, consult Sect. “String methods that delegate regular expression work to
their parameters” in the chapter on strings.

Further reading
If you want to know in more detail how the regular expression flag /u works, I
recommend the article “Unicode-aware regular expressions in ECMAScript 6⁶” by
Mathias Bynens.

⁶https://mathiasbynens.be/notes/es6-unicode-regex

https://mathiasbynens.be/notes/es6-unicode-regex
https://mathiasbynens.be/notes/es6-unicode-regex


24. Asynchronous programming
(background)

This chapter explains foundations of asynchronous programming in JavaScript. It provides
background knowledge for the next chapter on ES6 Promises.

24.1 The JavaScript call stack

When a function f calls a function g, g needs to know where to return to (inside f) after it is
done. This information is usually managed with a stack, the call stack. Let’s look at an example.

function h(z) {

// Print stack trace

console.log(new Error().stack); // (A)

}

function g(y) {

h(y + 1); // (B)

}

function f(x) {

g(x + 1); // (C)

}

f(3); // (D)

return; // (E)

Initially, when the program above is started, the call stack is empty. After the function call f(3)
in line D, the stack has one entry:

• Location in global scope

After the function call g(x + 1) in line C, the stack has two entries:

• Location in f

• Location in global scope

After the function call h(y + 1) in line B, the stack has three entries:

• Location in g

• Location in f

• Location in global scope

The stack trace printed in line A shows you what the call stack looks like:



Asynchronous programming (background) 460

Error

at h (stack_trace.js:2:17)

at g (stack_trace.js:6:5)

at f (stack_trace.js:9:5)

at <global> (stack_trace.js:11:1)

Next, each of the functions terminates and each time the top entry is removed from the stack.
After function f is done, we are back in global scope and the call stack is empty. In line E we
return and the stack is empty, which means that the program terminates.

24.2 The browser event loop

Simplifyingly, each browser tab runs (in) a single process: the event loop¹. This loop executes
browser-related things (so-called tasks) that it is fed via a task queue. Examples of tasks are:

1. Parsing HTML
2. Executing JavaScript code in script elements
3. Reacting to user input (mouse clicks, key presses, etc.)
4. Processing the result of an asynchronous network request

Items 2–4 are tasks that run JavaScript code, via the engine built into the browser. They terminate
when the code terminates. Then the next task from the queue can be executed. The following
diagram (inspired by a slide by Philip Roberts [1]) gives an overview of how all thesemechanisms
are connected.

¹https://html.spec.whatwg.org/multipage/webappapis.html#event-loop

https://html.spec.whatwg.org/multipage/webappapis.html#event-loop
https://html.spec.whatwg.org/multipage/webappapis.html#event-loop


Asynchronous programming (background) 461

The event loop is surrounded by other processes running in parallel to it (timers, input handling,
etc.). These processes communicate with it by adding tasks to its queue.

24.2.1 Timers

Browsers have timers². setTimeout() creates a timer, waits until it fires and then adds a task to
the queue. It has the signature:

setTimeout(callback, ms)

After ms milliseconds, callback is added to the task queue. It is important to note that ms only
specifies when the callback is added, not when it actually executed. That may happen much later,
especially if the event loop is blocked (as demonstrated later in this chapter).

²https://html.spec.whatwg.org/multipage/webappapis.html#timers

https://html.spec.whatwg.org/multipage/webappapis.html#timers
https://html.spec.whatwg.org/multipage/webappapis.html#timers


Asynchronous programming (background) 462

setTimeout()with ms set to zero is a commonly used work-around to add something to the task
queue right away. However, some browsers do not allow ms to be below a minimum (4 ms in
Firefox); they set it to that minimum if it is.

24.2.2 Displaying DOM changes

For most DOM changes (especially those involving a re-layout), the display isn’t updated right
away. “Layout happens off a refresh tick every 16ms” (@bz_moz³) and must be given a chance
to run via the event loop.

There are ways to coordinate frequent DOM updates with the browser, to avoid clashing with
its layout rhythm. Consult the documentation⁴ on requestAnimationFrame() for details.

24.2.3 Run-to-completion semantics

JavaScript has so-called run-to-completion semantics: The current task is always finished before
the next task is executed. That means that each task has complete control over all current state
and doesn’t have to worry about concurrent modification.

Let’s look at an example:

setTimeout(function () { // (A)

console.log('Second');

}, 0);

console.log('First'); // (B)

The function starting in line A is added to the task queue immediately, but only executed after
the current piece of code is done (in particular line B!). That means that this code’s output will
always be:

First

Second

24.2.4 Blocking the event loop

As we have seen, each tab (in some browers, the complete browser) is managed by a single
process – both the user interface and all other computations. That means that you can freeze the
user interface by performing a long-running computation in that process. The following code
demonstrates that.

³https://twitter.com/bz_moz/status/513777809287028736
⁴https://developer.mozilla.org/en/docs/Web/API/window.requestAnimationFrame

https://twitter.com/bz_moz/status/513777809287028736
https://developer.mozilla.org/en/docs/Web/API/window.requestAnimationFrame
https://twitter.com/bz_moz/status/513777809287028736
https://developer.mozilla.org/en/docs/Web/API/window.requestAnimationFrame


Asynchronous programming (background) 463

<a id="block" href="">Block for 5 seconds</a>

<p>

<button>This is a button</button>

<div id="statusMessage"></div>

<script>

document.getElementById('block')

.addEventListener('click', onClick);

function onClick(event) {

event.preventDefault();

setStatusMessage('Blocking...');

// Call setTimeout(), so that browser has time to display

// status message

setTimeout(function () {

sleep(5000);

setStatusMessage('Done');

}, 0);

}

function setStatusMessage(msg) {

document.getElementById('statusMessage').textContent = msg;

}

function sleep(milliseconds) {

var start = Date.now();

while ((Date.now() - start) < milliseconds);

}

</script>

You can try out the code online⁵.

Whenever the link at the beginning is clicked, the function onClick() is triggered. It uses the –
synchronous – sleep() function to block the event loop for five seconds. During those seconds,
the user interface doesn’t work. For example, you can’t click the “Simple button”.

24.2.5 Avoiding blocking

You avoid blocking the event loop in two ways:

First, you don’t perform long-running computations in the main process, you move them to a
different process. This can be achieved via the Worker API⁶.

⁵http://rauschma.github.io/async-examples/blocking.html
⁶https://developer.mozilla.org/en/docs/Web/API/Worker

http://rauschma.github.io/async-examples/blocking.html
https://developer.mozilla.org/en/docs/Web/API/Worker
http://rauschma.github.io/async-examples/blocking.html
https://developer.mozilla.org/en/docs/Web/API/Worker


Asynchronous programming (background) 464

Second, you don’t (synchronously) wait for the results of a long-running computation (your
own algorithm in a Worker process, a network request, etc.), you carry on with the event loop
and let the computation notify you when it is finished. In fact, you usually don’t even have a
choice in browsers and have to do things this way. For example, there is no built-in way to sleep
synchronously (like the previously implemented sleep()). Instead, setTimeout() lets you sleep
asynchronously.

The next section explains techniques for waiting asynchronously for results.

24.3 Receiving results asynchronously

Two common patterns for receiving results asynchronously are: events and callbacks.

24.3.1 Asynchronous results via events

In this pattern for asynchronously receiving results, you create an object for each request and
register event handlers with it: one for a successful computation, another one for handling errors.
The following code shows how that works with the XMLHttpRequest API:

var req = new XMLHttpRequest();

req.open('GET', url);

req.onload = function () {

if (req.status == 200) {

processData(req.response);

} else {

console.log('ERROR', req.statusText);

}

};

req.onerror = function () {

console.log('Network Error');

};

req.send(); // Add request to task queue

Note that the last line doesn’t actually perform the request, it adds it to the task queue. Therefore,
you could also call that method right after open(), before setting up onload and onerror. Things
would work the same, due to JavaScript’s run-to-completion semantics.

24.3.1.1 Implicit requests

The browser API IndexedDB has a slightly peculiar style of event handling:



Asynchronous programming (background) 465

var openRequest = indexedDB.open('test', 1);

openRequest.onsuccess = function (event) {

console.log('Success!');

var db = event.target.result;

};

openRequest.onerror = function (error) {

console.log(error);

};

You first create a request object, to which you add event listeners that are notified of results.
However, you don’t need to explicitly queue the request, that is done by open(). It is executed
after the current task is finished. That is why you can (and in fact must) register event handlers
after calling open().

If you are used to multi-threaded programming languages, this style of handling requests
probably looks strange, as if it may be prone to race conditions. But, due to run to completion,
things are always safe.

24.3.1.2 Events don’t work well for single results

This style of handling asynchronously computed results is OK if you receive results multiple
times. If, however, there is only a single result then the verbosity becomes a problem. For that
use case, callbacks have become popular.

24.3.2 Asynchronous results via callbacks

If you handle asynchronous results via callbacks, you pass callback functions as trailing
parameters to asynchronous function or method calls.

The following is an example in Node.js. We read the contents of a text file via an asynchronous
call to fs.readFile():

// Node.js

fs.readFile('myfile.txt', { encoding: 'utf8' },

function (error, text) { // (A)

if (error) {

// ...

}

console.log(text);

});

If readFile() is successful, the callback in line A receives a result via the parameter text. If
it isn’t, the callback gets an error (often an instance of Error or a sub-constructor) via its first
parameter.

The same code in classic functional programming style would look like this:



Asynchronous programming (background) 466

// Functional

readFileFunctional('myfile.txt', { encoding: 'utf8' },

function (text) { // success

console.log(text);

},

function (error) { // failure

// ...

});

24.3.3 Continuation-passing style

The programming style of using callbacks (especially in the functional manner shown previously)
is also called continuation-passing style (CPS), because the next step (the continuation) is
explicitly passed as a parameter. This gives an invoked function more control over what happens
next and when.

The following code illustrates CPS:

console.log('A');

identity('B', function step2(result2) {

console.log(result2);

identity('C', function step3(result3) {

console.log(result3);

});

console.log('D');

});

console.log('E');

// Output: A E B D C

function identity(input, callback) {

setTimeout(function () {

callback(input);

}, 0);

}

For each step, the control flow of the program continues inside the callback. This leads to
nested functions, which are sometimes referred to as callback hell. However, you can often avoid
nesting, because JavaScript’s function declarations are hoisted (their definitions are evaluated at
the beginning of their scope). That means that you can call ahead and invoke functions defined
later in the program. The following code uses hoisting to flatten the previous example.



Asynchronous programming (background) 467

console.log('A');

identity('B', step2);

function step2(result2) {

// The program continues here

console.log(result2);

identity('C', step3);

console.log('D');

}

function step3(result3) {

console.log(result3);

}

console.log('E');

More information on CPS is given in [3].

24.3.4 Composing code in CPS

In normal JavaScript style, you compose pieces of code via:

1. Putting them one after another. This is blindingly obvious, but it’s good to remind ourselves
that concatenating code in normal style is sequential composition.

2. Array methods such as map(), filter() and forEach()

3. Loops such as for and while

The library Async.js⁷ provides combinators to let you do similar things in CPS, with Node.js-style
callbacks. It is used in the following example to load the contents of three files, whose names are
stored in an Array.

var async = require('async');

var fileNames = [ 'foo.txt', 'bar.txt', 'baz.txt' ];

async.map(fileNames,

function (fileName, callback) {

fs.readFile(fileName, { encoding: 'utf8' }, callback);

},

// Process the result

function (error, textArray) {

if (error) {

console.log(error);

return;

}

console.log('TEXTS:\n' + textArray.join('\n----\n'));

});

⁷https://github.com/caolan/async

https://github.com/caolan/async
https://github.com/caolan/async


Asynchronous programming (background) 468

24.3.5 Pros and cons of callbacks

Using callbacks results in a radically different programming style, CPS. The main advantage of
CPS is that its basic mechanisms are easy to understand. But there are also disadvantages:

• Error handling becomes more complicated: There are now two ways in which errors
are reported – via callbacks and via exceptions. You have to be careful to combine both
properly.

• Less elegant signatures: In synchronous functions, there is a clear separation of concerns
between input (parameters) and output (function result). In asynchronous functions that
use callbacks, these concerns are mixed: the function result doesn’t matter and some
parameters are used for input, others for output.

• Composition is more complicated: Because the concern “output” shows up in the param-
eters, it is more complicated to compose code via combinators.

Callbacks in Node.js style have three disadvantages (compared to those in a functional style):

• The if statement for error handling adds verbosity.
• Reusing error handlers is harder.
• Providing a default error handler is also harder. A default error handler is useful if you
make a function call and don’t want to write your own handler. It could also be used by a
function if a caller doesn’t specify a handler.

24.4 Looking ahead

The next chapter covers Promises and the ES6 Promise API. Promises aremore complicated under
the hood than callbacks. In exchange, they bring several significant advantages and eliminate
most of the aforementioned cons of callbacks.

24.5 Further reading

[1] “Help, I’m stuck in an event-loop⁸” by Philip Roberts (video).

[2] “Event loops⁹” in the HTML Specification.

[3] “Asynchronous programming and continuation-passing style in JavaScript¹⁰” byAxel Rauschmayer.

⁸http://vimeo.com/96425312
⁹https://html.spec.whatwg.org/multipage/webappapis.html#event-loops
¹⁰http://www.2ality.com/2012/06/continuation-passing-style.html

http://vimeo.com/96425312
https://html.spec.whatwg.org/multipage/webappapis.html#event-loops
http://www.2ality.com/2012/06/continuation-passing-style.html
http://vimeo.com/96425312
https://html.spec.whatwg.org/multipage/webappapis.html#event-loops
http://www.2ality.com/2012/06/continuation-passing-style.html


25. Promises for asynchronous
programming

This chapter is an introduction to asynchronous programming via Promises in general and the
ECMAScript 6 Promise API in particular. The previous chapter explains the foundations of
asynchronous programming in JavaScript. You can consult it whenever there is something that
you don’t understand in this chapter.

25.1 Overview

Promises are an alternative to callbacks for delivering the results of an asynchronous computa-
tion. They require more effort from implementors of asynchronous functions, but provide several
benefits for users of those functions.

The following function returns a result asynchronously, via a Promise:

function asyncFunc() {

return new Promise(

function (resolve, reject) {

···

resolve(result);

···

reject(error);

});

}

You call asyncFunc() as follows:

asyncFunc()

.then(result => { ··· })

.catch(error => { ··· });

25.1.1 Chaining then() calls

then() always returns a Promise, which enables you to chain method calls:



Promises for asynchronous programming 470

asyncFunc1()

.then(result1 => {

// Use result1

return asyncFunction2(); // (A)

})

.then(result2 => { // (B)

// Use result2

})

.catch(error => {

// Handle errors of asyncFunc1() and asyncFunc2()

});

How the Promise P returned by then() is settled depends on what its callback does:

• If it returns a Promise (as in line A), the settlement of that Promise is forwarded to P. That’s
why the callback from line B can pick up the settlement of asyncFunction2’s Promise.

• If it returns a different value, that value is used to settle P.
• If throws an exception then P is rejected with that exception.

Furthermore, note how catch() handles the errors of two asynchronous function calls (asyncFunction1()
and asyncFunction2()). That is, uncaught errors are passed on until there is an error handler.

25.1.2 Executing asynchronous functions in parallel

If you chain asynchronous function calls via then(), they are executed sequentially, one at a
time:

asyncFunc1()

.then(() => asyncFunc2());

If you don’t do that and call all of them immediately, they are basically executed in parallel (a
fork in Unix process terminology):

asyncFunc1();

asyncFunc2();

Promise.all() enables you to be notified once all results are in (a join in Unix process
terminology). Its input is an Array of Promises, its output a single Promise that is fulfilled with
an Array of the results.



Promises for asynchronous programming 471

Promise.all([

asyncFunc1(),

asyncFunc2(),

])

.then(([result1, result2]) => {

···

})

.catch(err => {

// Receives first rejection among the Promises

···

});

25.1.3 Glossary: Promises

The Promise API is about delivering results asynchronously. A Promise object (short: Promise)
is a stand-in for the result, which is delivered via that object.

States:

• A Promise is always in one of three mutually exclusive states:
– Before the result is ready, the Promise is pending.
– If a result is available, the Promise is fulfilled.
– If an error happened, the Promise is rejected.

• A Promise is settled if “things are done” (if it is either fulfilled or rejected).
• A Promise is settled exactly once and then remains unchanged.

Reacting to state changes:

• Promise reactions are callbacks that you register with the Promise method then(), to be
notified of a fulfillment or a rejection.

• A thenable is an object that has a Promise-style then() method. Whenever the API
is only interested in being notified of settlements, it only demands thenables (e.g. the
values returned from then() and catch(); or the values handed to Promise.all() and
Promise.race()).

Changing states: There are two operations for changing the state of a Promise. After you have
invoked either one of them once, further invocations have no effect.

• Rejecting a Promise means that the Promise becomes rejected.
• Resolving a Promise has different effects, depending on what value you are resolving with:

– Resolving with a normal (non-thenable) value fulfills the Promise.
– Resolving a Promise P with a thenable T means that P can’t be resolved anymore and
will now follow T’s state, including its fulfillment or rejection value. The appropriate
P reactions will get called once T settles (or are called immediately if T is already
settled).



Promises for asynchronous programming 472

25.2 Introduction: Promises

Promises are a pattern that helps with one particular kind of asynchronous programming: a
function (or method) that returns a single result asynchronously. One popular way of receiving
such a result is via a callback (“callbacks as continuations”):

asyncFunction(arg1, arg2,

result => {

console.log(result);

});

Promises provide a better way of working with callbacks: Now an asynchronous function returns
a Promise, an object that serves as a placeholder and container for the final result. Callbacks
registered via the Promise method then() are notified of the result:

asyncFunction(arg1, arg2)

.then(result => {

console.log(result);

});

Compared to callbacks as continuations, Promises have the following advantages:

• No inversion of control: similarly to synchronous code, Promise-based functions return
results, they don’t (directly) continue – and control – execution via callbacks. That is, the
caller stays in control.

• Chaining is simpler: If the callback of then() returns a Promise (e.g. the result of calling
another Promise-based function) then then() returns that Promise (how this really works
is more complicated and explained later). As a consequence, you can chain then()method
calls:

asyncFunction1(a, b)

.then(result1 => {

console.log(result1);

return asyncFunction2(x, y);

})

.then(result2 => {

console.log(result2);

});

• Composing asynchronous calls (loops, mapping, etc.): is a little easier, because you have
data (Promise objects) you can work with.

• Error handling: Aswe shall see later, error handling is simpler with Promises, because, once
again, there isn’t an inversion of control. Furthermore, both exceptions and asynchronous
errors are managed the same way.



Promises for asynchronous programming 473

• Cleaner signatures: With callbacks, the parameters of a function are mixed; some are input
for the function, others are responsible for delivering its output. With Promises, function
signatures become cleaner; all parameters are input.

• Standardized: Prior to Promises, there were several incompatible ways of handling asyn-
chronous results (Node.js callbacks, XMLHttpRequest, IndexedDB, etc.). With Promises,
there is a clearly defined standard: ECMAScript 6. ES6 follows the standard Promises/A+
[1]. Since ES6, an increasing number of APIs is based on Promises.

25.3 A first example

Let’s look at a first example, to give you a taste of what working with Promises is like.

With Node.js-style callbacks, reading a file asynchronously looks like this:

fs.readFile('config.json',

function (error, text) {

if (error) {

console.error('Error while reading config file');

} else {

try {

const obj = JSON.parse(text);

console.log(JSON.stringify(obj, null, 4));

} catch (e) {

console.error('Invalid JSON in file');

}

}

});

With Promises, the same functionality is used like this:

readFilePromisified('config.json')

.then(function (text) { // (A)

const obj = JSON.parse(text);

console.log(JSON.stringify(obj, null, 4));

})

.catch(function (error) { // (B)

// File read error or JSON SyntaxError

console.error('An error occurred', error);

});

There are still callbacks, but they are provided via methods that are invoked on the result (then()
and catch()). The error callback in line B is convenient in two ways: First, it’s a single style
of handling errors (versus if (error) and try-catch in the previous example). Second, you
can handle the errors of both readFilePromisified() and the callback in line A from a single
location.

The code of readFilePromisified() is shown later.



Promises for asynchronous programming 474

25.4 Three ways of understanding Promises

Let’s look at three ways of understanding Promises.

The following code contains a Promise-based function asyncFunc() and its invocation.

function asyncFunc() {

return new Promise((resolve, reject) => { // (A)

setTimeout(() => resolve('DONE'), 100); // (B)

});

}

asyncFunc()

.then(x => console.log('Result: '+x));

// Output:

// Result: DONE

asyncFunc() returns a Promise. Once the actual result 'DONE' of the asynchronous computation
is ready, it is delivered via resolve() (line B), which is a parameter of the callback that starts in
line A.

So what is a Promise?

• Conceptually, invoking asyncFunc() is a blocking function call.
• A Promise is both a container for a value and an event emitter.

25.4.1 Conceptually: calling a Promise-based function is
blocking

The following code invokes asyncFunc() from the async function main(). Async functions¹ are
a feature of ECMAScript 2017.

async function main() {

const x = await asyncFunc(); // (A)

console.log('Result: '+x); // (B)

// Same as:

// asyncFunc()

// .then(x => console.log('Result: '+x));

}

main();

The body of main() expresses well what’s going on conceptually, how we usually think about
asynchronous computations. Namely, asyncFunc() is a blocking function call:

¹http://exploringjs.com/es2016-es2017/ch_async-functions.html

http://exploringjs.com/es2016-es2017/ch_async-functions.html
http://exploringjs.com/es2016-es2017/ch_async-functions.html


Promises for asynchronous programming 475

• Line A: Wait until asyncFunc() is finished.
• Line B: Then log its result x.

Prior to ECMAScript 6 and generators, you couldn’t suspend and resume code. That’s why, for
Promises, you put everything that happens after the code is resumed into a callback. Invoking
that callback is the same as resuming the code.

25.4.2 A Promise is a container for an asynchronously delivered
value

If a function returns a Promise then that Promise is like a blank into which the function will
(usually) fill in its result, once it has computed it. You can simulate a simple version of this
process via an Array:

function asyncFunc() {

const blank = [];

setTimeout(() => blank.push('DONE'), 100);

return blank;

}

const blank = asyncFunc();

// Wait until the value has been filled in

setTimeout(() => {

const x = blank[0]; // (A)

console.log('Result: '+x);

}, 200);

With Promises, you don’t access the eventual value via [0] (as in line A), you use method then()
and a callback.

25.4.3 A Promise is an event emitter

Another way to view a Promise is as an object that emits events.

function asyncFunc() {

const eventEmitter = { success: [] };

setTimeout(() => { // (A)

for (const handler of eventEmitter.success) {

handler('DONE');

}

}, 100);

return eventEmitter;

}

asyncFunc()

.success.push(x => console.log('Result: '+x)); // (B)



Promises for asynchronous programming 476

Registering the event listener (line B) can be done after calling asyncFunc(), because the callback
handed to setTimeout() (line A) is executed asynchronously (after this piece of code is finished).

Normal event emitters specialize in delivering multiple events, starting as soon as you register.

In contrast, Promises specialize in delivering exactly one value and come with built-in protection
against registering too late: the result of a Promise is cached and passed to event listeners that
are registered after the Promise was settled.

25.5 Creating and using Promises

Let’s look at how Promises are operated from the producer and the consumer side.

25.5.1 Producing a Promise

As a producer, you create a Promise and send a result via it:

const p = new Promise(

function (resolve, reject) { // (A)

···

if (···) {

resolve(value); // success

} else {

reject(reason); // failure

}

});

25.5.2 The states of Promises

Once a result was delivered via a Promise, the Promise stays locked in to that result. That means
each Promise is always in either one of three (mutually exclusive) states:

• Pending: the result hasn’t been computed, yet (the initial state of each Promise)
• Fulfilled: the result was computed successfully
• Rejected: a failure occurred during computation

A Promise is settled (the computation it represents has finished) if it is either fulfilled or rejected.
A Promise can only be settled once and then stays settled. Subsequent attempts to settle have no
effect.



Promises for asynchronous programming 477

The parameter of new Promise() (starting in line A) is called an executor :

• Resolving: If the computation went well, the executor sends the result via resolve(). That
usually fulfills the Promise p. But it may not – resolvingwith a Promise q leads to p tracking
q: If q is still pending then so is p. However q is settled, p will be settled the same way.

• Rejecting: If an error happened, the executor notifies the Promise consumer via reject().
That always rejects the Promise.

If an exception is thrown inside the executor, p is rejected with that exception.

25.5.3 Consuming a Promise

As a consumer of promise, you are notified of a fulfillment or a rejection via reactions – callbacks
that you register with the methods then() and catch():

promise

.then(value => { /* fulfillment */ })

.catch(error => { /* rejection */ });

What makes Promises so useful for asynchronous functions (with one-off results) is that once a
Promise is settled, it doesn’t change anymore. Furthermore, there are never any race conditions,
because it doesn’t matter whether you invoke then() or catch() before or after a Promise is
settled:

• Reactions that are registered with a Promise before it is settled, are notified of the
settlement once it happens.

• Reactions that are registered with a Promise after it is settled, receive the cached settled
value “immediately” (their invocations are queued as tasks).

Note that catch() is simply a more convenient (and recommended) alternative to calling then().
That is, the following two invocations are equivalent:



Promises for asynchronous programming 478

promise.then(

null,

error => { /* rejection */ });

promise.catch(

error => { /* rejection */ });

25.5.4 Promises are always asynchronous

A Promise library has complete control over whether results are delivered to Promise reactions
synchronously (right away) or asynchronously (after the current continuation, the current piece
of code, is finished). However, the Promises/A+ specification demands that the latter mode
of execution be always used. It states so via the following requirement² (2.2.4) for the then()

method:

onFulfilled or onRejected must not be called until the execution context stack
contains only platform code.

That means that your code can rely on run-to-completion semantics (as explained in the previous
chapter) and that chaining Promises won’t starve other tasks of processing time.

Additionally, this constraint prevents you from writing functions that sometimes return results
immediately, sometimes asynchronously. This is an anti-pattern, because it makes code unpre-
dictable. For more information, consult “Designing APIs for Asynchrony³” by Isaac Z. Schlueter.

25.6 Examples

Before we dig deeper into Promises, let’s use what we have learned so far in a few examples.

Some of the examples in this section are available in the GitHub repository
promise-examples⁴.

25.6.1 Example: promisifying fs.readFile()

The following code is a Promise-based version of the built-in Node.js function fs.readFile()⁵.

²http://promisesaplus.com/#point-34
³http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony
⁴https://github.com/rauschma/promise-examples
⁵https://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback

http://promisesaplus.com/#point-34
http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony
https://github.com/rauschma/promise-examples
https://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
http://promisesaplus.com/#point-34
http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony
https://github.com/rauschma/promise-examples
https://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback


Promises for asynchronous programming 479

import {readFile} from 'fs';

function readFilePromisified(filename) {

return new Promise(

function (resolve, reject) {

readFile(filename, { encoding: 'utf8' },

(error, data) => {

if (error) {

reject(error);

} else {

resolve(data);

}

});

});

}

readFilePromisified() is used like this:

readFilePromisified(process.argv[2])

.then(text => {

console.log(text);

})

.catch(error => {

console.log(error);

});

25.6.2 Example: promisifying XMLHttpRequest

The following is a Promise-based function that performs an HTTP GET via the event-based
XMLHttpRequest⁶ API:

function httpGet(url) {

return new Promise(

function (resolve, reject) {

const request = new XMLHttpRequest();

request.onload = function () {

if (this.status === 200) {

// Success

resolve(this.response);

} else {

// Something went wrong (404 etc.)

reject(new Error(this.statusText));

}

⁶https://xhr.spec.whatwg.org/

https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/


Promises for asynchronous programming 480

};

request.onerror = function () {

reject(new Error(

'XMLHttpRequest Error: '+this.statusText));

};

request.open('GET', url);

request.send();

});

}

This is how you use httpGet():

httpGet('http://example.com/file.txt')

.then(

function (value) {

console.log('Contents: ' + value);

},

function (reason) {

console.error('Something went wrong', reason);

});

25.6.3 Example: delaying an activity

Let’s implement setTimeout() as the Promise-based function delay() (similar to Q.delay()⁷).

function delay(ms) {

return new Promise(function (resolve, reject) {

setTimeout(resolve, ms); // (A)

});

}

// Using delay():

delay(5000).then(function () { // (B)

console.log('5 seconds have passed!')

});

Note that in line A, we are calling resolve with zero parameters, which is the same as calling
resolve(undefined). We don’t need the fulfillment value in line B, either and simply ignore it.
Just being notified is enough here.

25.6.4 Example: timing out a Promise

⁷https://github.com/kriskowal/q/wiki/API-Reference#qdelayms

https://github.com/kriskowal/q/wiki/API-Reference#qdelayms
https://github.com/kriskowal/q/wiki/API-Reference#qdelayms


Promises for asynchronous programming 481

function timeout(ms, promise) {

return new Promise(function (resolve, reject) {

promise.then(resolve);

setTimeout(function () {

reject(new Error('Timeout after '+ms+' ms')); // (A)

}, ms);

});

}

Note that the rejection after the timeout (in line A) does not cancel the request, but it does prevent
the Promise being fulfilled with its result.

Using timeout() looks like this:

timeout(5000, httpGet('http://example.com/file.txt'))

.then(function (value) {

console.log('Contents: ' + value);

})

.catch(function (reason) {

console.error('Error or timeout', reason);

});

25.7 Other ways of creating Promises

Now we are ready to dig deeper into the features of Promises. Let’s first explore two more ways
of creating Promises.

25.7.1 Promise.resolve()

Promise.resolve(x) works as follows:

• For most values x, it returns a Promise that is fulfilled with x:

Promise.resolve('abc')

.then(x => console.log(x)); // abc

• If x is a Promise whose constructor is the receiver (Promise if you call Promise.resolve())
then x is returned unchanged:

const p = new Promise(() => null);

console.log(Promise.resolve(p) === p); // true

• If x is a thenable, it is converted to a Promise: the settlement of the thenable will
also become the settlement of the Promise. The following code demonstrates that. ful-
filledThenable behaves roughly like a Promise that was fulfilled with the string 'hello'.
After converting it to the Promise promise, method then() works as expected (last line).



Promises for asynchronous programming 482

const fulfilledThenable = {

then(reaction) {

reaction('hello');

}

};

const promise = Promise.resolve(fulfilledThenable);

console.log(promise instanceof Promise); // true

promise.then(x => console.log(x)); // hello

That means that you can use Promise.resolve() to convert any value (Promise, thenable or
other) to a Promise. In fact, it is used by Promise.all() and Promise.race() to convert Arrays
of arbitrary values to Arrays of Promises.

25.7.2 Promise.reject()

Promise.reject(err) returns a Promise that is rejected with err:

const myError = new Error('Problem!');

Promise.reject(myError)

.catch(err => console.log(err === myError)); // true

25.8 Chaining Promises

In this section, we take a closer look at how Promises can be chained. The result of the method
call:

P.then(onFulfilled, onRejected)

is a new Promise Q. That means that you can keep the Promise-based control flow going by
invoking then() on Q:

• Q is resolved with what is returned by either onFulfilled or onRejected.
• Q is rejected if either onFulfilled or onRejected throw an exception.

25.8.1 Resolving Q with a normal value

If you resolve the Promise Q returned by then()with a normal value, you can pick up that value
via a subsequent then():



Promises for asynchronous programming 483

asyncFunc()

.then(function (value1) {

return 123;

})

.then(function (value2) {

console.log(value2); // 123

});

25.8.2 Resolving Q with a thenable

You can also resolve the Promise Q returned by then() with a thenable R. A thenable is any
object that has a method then() that works like Promise.prototype.then(). Thus, Promises
are thenables. Resolving with R (e.g. by returning it from onFulfilled) means that it is inserted
“after” Q: R’s settlement is forwarded to Q’s onFulfilled and onRejected callbacks. In a way,
Q becomes R.

The main use for this mechanism is to flatten nested then() calls, like in the following example:

asyncFunc1()

.then(function (value1) {

asyncFunc2()

.then(function (value2) {

···

});

})

The flat version looks like this:

asyncFunc1()

.then(function (value1) {

return asyncFunc2();

})

.then(function (value2) {

···

})

25.8.3 Resolving Q from onRejected

Whatever you return in an error handler becomes a fulfillment value (not rejection value!). That
allows you to specify default values that are used in case of failure:



Promises for asynchronous programming 484

retrieveFileName()

.catch(function () {

// Something went wrong, use a default value

return 'Untitled.txt';

})

.then(function (fileName) {

···

});

25.8.4 Rejecting Q by throwing an exception

Exceptions that are thrown in the callbacks of then() and catch() are passed on to the next
error handler, as rejections:

asyncFunc()

.then(function (value) {

throw new Error();

})

.catch(function (reason) {

// Handle error here

});

25.8.5 Chaining and errors

There can be one or more then() method calls that don’t have error handlers. Then the error is
passed on until there is an error handler.

asyncFunc1()

.then(asyncFunc2)

.then(asyncFunc3)

.catch(function (reason) {

// Something went wrong above

});

25.9 Common Promise chaining mistakes

25.9.1 Mistake: losing the tail of a Promise chain

In the following code, a chain of two Promises is built, but only the first part of it is returned. As
a consequence, the tail of the chain is lost.



Promises for asynchronous programming 485

// Don’t do this

function foo() {

const promise = asyncFunc();

promise.then(result => {

···

});

return promise;

}

This can be fixed by returning the tail of the chain:

function foo() {

const promise = asyncFunc();

return promise.then(result => {

···

});

}

If you don’t need the variable promise, you can simplify this code further:

function foo() {

return asyncFunc()

.then(result => {

···

});

}

25.9.2 Mistake: nesting Promises

In the following code, the invocation of asyncFunc2() is nested:

// Don’t do this

asyncFunc1()

.then(result1 => {

asyncFunc2()

.then(result2 => {

···

});

});

The fix is to un-nest this code by returning the second Promise from the first then() and handling
it via a second, chained, then():



Promises for asynchronous programming 486

asyncFunc1()

.then(result1 => {

return asyncFunc2();

})

.then(result2 => {

···

});

25.9.3 Mistake: creating Promises instead of chaining

In the following code, method insertInto() creates a new Promise for its result (line A):

// Don’t do this

class Model {

insertInto(db) {

return new Promise((resolve, reject) => { // (A)

db.insert(this.fields) // (B)

.then(resultCode => {

this.notifyObservers({event: 'created', model: this});

resolve(resultCode); // (C)

}).catch(err => {

reject(err); // (D)

})

});

}

···

}

If you look closely, you can see that the result Promise is mainly used to forward the fulfillment
(line C) and the rejection (line D) of the asynchronous method call db.insert() (line B).

The fix is to not create a Promise, by relying on then() and chaining:

class Model {

insertInto(db) {

return db.insert(this.fields) // (A)

.then(resultCode => {

this.notifyObservers({event: 'created', model: this});

return resultCode; // (B)

});

}

···

}

Explanations:



Promises for asynchronous programming 487

• We return resultCode (line B) and let then() create the Promise for us.
• We return the Promise chain (line A) and then() will pass on any rejection produced by
db.insert().

25.9.4 Mistake: using then() for error handling

In principle, catch(cb) is an abbreviation for then(null, cb). But using both parameters of
then() at the same time can cause problems:

// Don’t do this

asyncFunc1()

.then(

value => { // (A)

doSomething(); // (B)

return asyncFunc2(); // (C)

},

error => { // (D)

···

});

The rejection callback (line D) receives all rejections of asyncFunc1(), but it does not receive
rejections created by the fulfillment callback (line A). For example, the synchronous function
call in line B may throw an exception or the asynchronous function call in line C may produce
a rejection.

Therefore, it is better to move the rejection callback to a chained catch():

asyncFunc1()

.then(value => {

doSomething();

return asyncFunc2();

})

.catch(error => {

···

});

25.10 Tips for error handling

25.10.1 Operational errors versus programmer errors

In programs, there are two kinds of errors:

• Operational errors happen when a correct program encounters an exceptional situation
that requires deviating from the “normal” algorithm. For example, a storage device may
run out of memory while the program is writing data to it. This kind of error is expected.

• Programmer errors happenwhen code does somethingwrong. For example, a functionmay
require a parameter to be a string, but receives a number. This kind of error is unexpected.



Promises for asynchronous programming 488

25.10.1.1 Operational errors: don’t mix rejections and exceptions

For operational errors, each function should support exactly one way of signaling errors. For
Promise-based functions that means not mixing rejections and exceptions, which is the same as
saying that they shouldn’t throw exceptions.

25.10.1.2 Programmer errors: fail quickly

For programmer errors, it can make sense to fail as quickly as possible, by throwing an exception:

function downloadFile(url) {

if (typeof url !== 'string') {

throw new Error('Illegal argument: ' + url);

}

return new Promise(···).

}

If you do this, you must make sure that your asynchronous code can handle exceptions. I find
throwing exceptions acceptable for assertions and similar things that could, in theory, be checked
statically (e.g. via a linter that analyzes the source code).

25.10.2 Handling exceptions in Promise-based functions

If exceptions are thrown inside the callbacks of then() and catch() then that’s not a problem,
because these two methods convert them to rejections.

However, things are different if you start your async function by doing something synchronous:

function asyncFunc() {

doSomethingSync(); // (A)

return doSomethingAsync()

.then(result => {

···

});

}

If an exception is thrown in line A then the whole function throws an exception. There are two
solutions to this problem.

25.10.2.1 Solution 1: returning a rejected Promise

You can catch exceptions and return them as rejected Promises:



Promises for asynchronous programming 489

function asyncFunc() {

try {

doSomethingSync();

return doSomethingAsync()

.then(result => {

···

});

} catch (err) {

return Promise.reject(err);

}

}

25.10.2.2 Solution 2: executing the sync code inside a callback

You can also start a chain of then() method calls via Promise.resolve() and execute the
synchronous code inside a callback:

function asyncFunc() {

return Promise.resolve()

.then(() => {

doSomethingSync();

return doSomethingAsync();

})

.then(result => {

···

});

}

An alternative is to start the Promise chain via the Promise constructor:

function asyncFunc() {

return new Promise((resolve, reject) => {

doSomethingSync();

resolve(doSomethingAsync());

})

.then(result => {

···

});

}

This approach saves you a tick (the synchronous code is executed right away), but it makes your
code less regular.



Promises for asynchronous programming 490

25.10.3 Further reading

Sources of this section:

• Chaining:
– “Promise Anti-patterns⁸” on Tao of Code.

• Error handling:
– “Error Handling in Node.js⁹” by Joyent
– A post by user Mörre Noseshine¹⁰ in the “Exploring ES6” Google Group
– Feedback to a tweet¹¹ asking whether it is OK to throw exceptions from Promise-
based functions.

25.11 Composing Promises

Composing means creating new things out of existing pieces. We have already encountered
sequential composition of Promises: Given two Promises P and Q, the following code produces
a new Promise that executes Q after P is fulfilled.

P.then(() => Q)

Note that this is similar to the semicolon for synchronous code: Sequential composition of the
synchronous operations f() and g() looks as follows.

f(); g()

This section describes additional ways of composing Promises.

25.11.1 Manually forking and joining computations

Let’s assume you want to perform two asynchronous computations, asyncFunc1() and async-

Func2() in parallel:

⁸http://taoofcode.net/promise-anti-patterns/
⁹https://www.joyent.com/developers/node/design/errors
¹⁰https://groups.google.com/d/topic/exploring-es6/vZDdN8dCx0w/discussion
¹¹https://twitter.com/rauschma/status/713371400686473216

http://taoofcode.net/promise-anti-patterns/
https://www.joyent.com/developers/node/design/errors
https://groups.google.com/d/topic/exploring-es6/vZDdN8dCx0w/discussion
https://twitter.com/rauschma/status/713371400686473216
http://taoofcode.net/promise-anti-patterns/
https://www.joyent.com/developers/node/design/errors
https://groups.google.com/d/topic/exploring-es6/vZDdN8dCx0w/discussion
https://twitter.com/rauschma/status/713371400686473216


Promises for asynchronous programming 491

// Don’t do this

asyncFunc1()

.then(result1 => {

handleSuccess({result1});

});

.catch(handleError);

asyncFunc2()

.then(result2 => {

handleSuccess({result2});

})

.catch(handleError);

const results = {};

function handleSuccess(props) {

Object.assign(results, props);

if (Object.keys(results).length === 2) {

const {result1, result2} = results;

···

}

}

let errorCounter = 0;

function handleError(err) {

errorCounter++;

if (errorCounter === 1) {

// One error means that everything failed,

// only react to first error

···

}

}

The two function calls asyncFunc1() and asyncFunc2() are made without then() chaining.
As a consequence, they are both executed immediately and more or less in parallel. Execution
is now forked; each function call spawned a separate “thread”. Once both threads are finished
(with a result or an error), execution is joined into a single thread in either handleSuccess() or
handleError().

The problem with this approach is that it involves too much manual and error-prone work. The
fix is to not do this yourself, by relying on the built-in method Promise.all().

25.11.2 Forking and joining computations via Promise.all()

Promise.all(iterable) takes an iterable over Promises (thenables and other values are con-
verted to Promises via Promise.resolve()). Once all of them are fulfilled, it fulfills with anArray
of their values. If iterable is empty, the Promise returned by all() is fulfilled immediately.



Promises for asynchronous programming 492

Promise.all([

asyncFunc1(),

asyncFunc2(),

])

.then(([result1, result2]) => {

···

})

.catch(err => {

// Receives first rejection among the Promises

···

});

25.11.3 map() via Promise.all()

One nice thing about Promises is that many synchronous tools still work, because Promise-based
functions return results. For example, you can use the Array method map():

const fileUrls = [

'http://example.com/file1.txt',

'http://example.com/file2.txt',

];

const promisedTexts = fileUrls.map(httpGet);

promisedTexts is an Array of Promises. We can use Promise.all(), which we have already
encountered in the previous section, to convert that Array to a Promise that fulfills with an
Array of results.

Promise.all(promisedTexts)

.then(texts => {

for (const text of texts) {

console.log(text);

}

})

.catch(reason => {

// Receives first rejection among the Promises

});

25.11.4 Timing out via Promise.race()

Promise.race(iterable) takes an iterable over Promises (thenables and other values are
converted to Promises via Promise.resolve()) and returns a Promise P. The first of the input
Promises that is settled passes its settlement on to the output Promise. If iterable is empty then
the Promise returned by race() is never settled.

As an example, let’s use Promise.race() to implement a timeout:



Promises for asynchronous programming 493

Promise.race([

httpGet('http://example.com/file.txt'),

delay(5000).then(function () {

throw new Error('Timed out')

});

])

.then(function (text) { ··· })

.catch(function (reason) { ··· });

25.12 Two useful additional Promise methods

This section describes two useful methods for Promises that many Promise libraries pro-
vide. They are only shown to further demonstrate Promises, you should not add them to
Promise.prototype (this kind of patching should only be done by polyfills).

25.12.1 done()

When you chain several Promise method calls, you risk silently discarding errors. For example:

function doSomething() {

asyncFunc()

.then(f1)

.catch(r1)

.then(f2); // (A)

}

If then() in line A produces a rejection, it will never be handled anywhere. The Promise library
Q provides a method done(), to be used as the last element in a chain of method calls. It either
replaces the last then() (and has one to two arguments):

function doSomething() {

asyncFunc()

.then(f1)

.catch(r1)

.done(f2);

}

Or it is inserted after the last then() (and has zero arguments):



Promises for asynchronous programming 494

function doSomething() {

asyncFunc()

.then(f1)

.catch(r1)

.then(f2)

.done();

}

Quoting the Q documentation¹²:

The Golden Rule of done versus then usage is: either return your promise to someone
else, or if the chain ends with you, call done to terminate it. Terminating with catch

is not sufficient because the catch handler may itself throw an error.

This is how you would implement done() in ECMAScript 6:

Promise.prototype.done = function (onFulfilled, onRejected) {

this.then(onFulfilled, onRejected)

.catch(function (reason) {

// Throw an exception globally

setTimeout(() => { throw reason }, 0);

});

};

While done’s functionality is clearly useful, it has not been added to ECMAScript 6. The idea
was to first explore how much engines can detect automatically. Depending on how well that
works, it may to be necessary to introduce done().

25.12.2 finally()

Sometimes you want to perform an action independently of whether an error happened or not.
For example, to clean up after you are done with a resource. That’s what the Promise method
finally() is for, which works much like the finally clause in exception handling. Its callback
receives no arguments, but is notified of either a resolution or a rejection.

¹²https://github.com/kriskowal/q/wiki/API-Reference#promisedoneonfulfilled-onrejected-onprogress

https://github.com/kriskowal/q/wiki/API-Reference#promisedoneonfulfilled-onrejected-onprogress
https://github.com/kriskowal/q/wiki/API-Reference#promisedoneonfulfilled-onrejected-onprogress


Promises for asynchronous programming 495

createResource(···)

.then(function (value1) {

// Use resource

})

.then(function (value2) {

// Use resource

})

.finally(function () {

// Clean up

});

This is how Domenic Denicola proposes¹³ to implement finally():

Promise.prototype.finally = function (callback) {

const P = this.constructor;

// We don’t invoke the callback in here,

// because we want then() to handle its exceptions

return this.then(

// Callback fulfills => continue with receiver’s fulfillment or rejec\

tion

// Callback rejects => pass on that rejection (then() has no 2nd para\

meter!)

value => P.resolve(callback()).then(() => value),

reason => P.resolve(callback()).then(() => { throw reason })

);

};

The callback determines how the settlement of the receiver (this) is handled:

• If the callback throws an exception or returns a rejected Promise then that becomes/con-
tributes the rejection value.

• Otherwise, the settlement (fulfillment or rejection) of the receiver becomes the settlement
of the Promise returned by finally(). In a way, we take finally() out of the chain of
methods.

Example 1 (by Jake Archibald¹⁴): using finally() to hide a spinner. Simplified version:

¹³https://github.com/domenic/promises-unwrapping/issues/18
¹⁴https://gist.github.com/jakearchibald/785f79b0dea5bfe0c448

https://github.com/domenic/promises-unwrapping/issues/18
https://gist.github.com/jakearchibald/785f79b0dea5bfe0c448
https://github.com/domenic/promises-unwrapping/issues/18
https://gist.github.com/jakearchibald/785f79b0dea5bfe0c448


Promises for asynchronous programming 496

showSpinner();

fetchGalleryData()

.then(data => updateGallery(data))

.catch(showNoDataError)

.finally(hideSpinner);

Example 2 (by Kris Kowal¹⁵): using finally() to tear down a test.

const HTTP = require("q-io/http");

const server = HTTP.Server(app);

return server.listen(0)

.then(function () {

// run test

})

.finally(server.stop);

25.13 Node.js: using callback-based sync functions
with Promises

The Promise library Q has tool functions¹⁶ for interfacing with Node.js-style (err, result)

callback APIs. For example, denodeify converts a callback-based function to a Promise-based
one:

const readFile = Q.denodeify(FS.readFile);

readFile('foo.txt', 'utf-8')

.then(function (text) {

···

});

denodify¹⁷ is a micro-library that only provides the functionality of Q.denodeify() and complies
with the ECMAScript 6 Promise API.

25.14 ES6-compatible Promise libraries

There are many Promise libraries out there. The following ones conform to the ECMAScript 6
API, which means that you can use them now and easily migrate to native ES6 later.

Minimal polyfills:

¹⁵https://github.com/domenic/promises-unwrapping/issues/18#issuecomment-27707922
¹⁶https://github.com/kriskowal/q/wiki/API-Reference#interfacing-with-nodejs-callbacks
¹⁷https://github.com/matthew-andrews/denodeify/

https://github.com/domenic/promises-unwrapping/issues/18#issuecomment-27707922
https://github.com/kriskowal/q/wiki/API-Reference#interfacing-with-nodejs-callbacks
https://github.com/matthew-andrews/denodeify/
https://github.com/domenic/promises-unwrapping/issues/18#issuecomment-27707922
https://github.com/kriskowal/q/wiki/API-Reference#interfacing-with-nodejs-callbacks
https://github.com/matthew-andrews/denodeify/


Promises for asynchronous programming 497

• “ES6-Promises¹⁸” by Jake Archibald extracts just the ES6 API out of RSVP.js.
• “Native Promise Only (NPO)¹⁹” by Kyle Simpson is “a polyfill for native ES6 promises, as
close as possible (no extensions) to the strict spec definitions”.

• “Lie²⁰” by Calvin Metcalf is “a small, performant, promise library implementing the
Promises/A+ spec”.

Larger Promise libraries:

• “RSVP.js²¹” by Stefan Penner is a superset of the ES6 Promise API.
• “Bluebird²²” by Petka Antonov is a popular Promises library that passes the ES2015 tests
(Test262) and is thus an alternative to ES6 Promises.

• Q.Promise²³ by Kris Kowal implements the ES6 API.

ES6 standard library polyfills:

• “ES6 Shim²⁴” by Paul Millr includes Promise.
• “core-js²⁵” by Denis Pushkarev, the ES6+ polyfill used by Babel, includes Promise.

25.15 Promises and generators

25.16 Next step: using Promises via generators

Implementing asynchronous functions via Promises is more convenient than via events or
callbacks, but it’s still not ideal:

• Asynchronous code and synchronous code work completely differently. As a consequence,
mixing those execution styles and switching between them for a function or method is
cumbersome.

• Conceptually, invoking an asynchronous function is a blocking call: The code making the
call is suspended during the asynchronous computation and resumed once the result is in.
However, the code does not reflect this as much as it could.

The solution is to bring blocking calls to JavaScript. Generators let us do that, via libraries: In
the following code, I use the control flow library co²⁶ to asynchronously retrieve two JSON files.

¹⁸https://github.com/jakearchibald/es6-promise
¹⁹https://github.com/getify/native-promise-only
²⁰https://github.com/calvinmetcalf/lie
²¹https://github.com/tildeio/rsvp.js/
²²https://github.com/petkaantonov/bluebird
²³https://github.com/kriskowal/q#using-qpromise
²⁴https://github.com/paulmillr/es6-shim
²⁵https://github.com/zloirock/core-js
²⁶https://github.com/tj/co

https://github.com/jakearchibald/es6-promise
https://github.com/getify/native-promise-only
https://github.com/calvinmetcalf/lie
https://github.com/tildeio/rsvp.js/
https://github.com/petkaantonov/bluebird
https://github.com/kriskowal/q#using-qpromise
https://github.com/paulmillr/es6-shim
https://github.com/zloirock/core-js
https://github.com/tj/co
https://github.com/jakearchibald/es6-promise
https://github.com/getify/native-promise-only
https://github.com/calvinmetcalf/lie
https://github.com/tildeio/rsvp.js/
https://github.com/petkaantonov/bluebird
https://github.com/kriskowal/q#using-qpromise
https://github.com/paulmillr/es6-shim
https://github.com/zloirock/core-js
https://github.com/tj/co


Promises for asynchronous programming 498

co(function* () {

try {

const [croftStr, bondStr] = yield Promise.all([ // (A)

getFile('http://localhost:8000/croft.json'),

getFile('http://localhost:8000/bond.json'),

]);

const croftJson = JSON.parse(croftStr);

const bondJson = JSON.parse(bondStr);

console.log(croftJson);

console.log(bondJson);

} catch (e) {

console.log('Failure to read: ' + e);

}

});

In line A, execution blocks (waits) via yield until the result of Promise.all() is ready. That
means that the code looks synchronous while performing asynchronous operations.

Details are explained in the chapter on generators.

25.17 Promises in depth: a simple implementation

In this section, we will approach Promises from a different angle: Instead of learning how to use
the API, we will look at a simple implementation of it. This different angle helped me greatly
with making sense of Promises.

The Promise implementation is called DemoPromise. In order to be easier to understand, it doesn’t
completely match the API. But it is close enough to still give youmuch insight into the challenges
that actual implementations face.

DemoPromise is available on GitHub, in the repository demo_promise²⁷.

DemoPromise is a class with three prototype methods:

• DemoPromise.prototype.resolve(value)

• DemoPromise.prototype.reject(reason)

• DemoPromise.prototype.then(onFulfilled, onRejected)

That is, resolve and reject are methods (versus functions handed to a callback parameter of
the constructor).

²⁷https://github.com/rauschma/demo_promise

https://github.com/rauschma/demo_promise
https://github.com/rauschma/demo_promise


Promises for asynchronous programming 499

25.17.1 A stand-alone Promise

Our first implementation is a stand-alone Promise with minimal functionality:

• You can create a Promise.
• You can resolve or reject a Promise and you can only do it once.
• You can register reactions (callbacks) via then(). It must work independently of whether
the Promise has already been settled or not.

– This method does not support chaining, yet – it does not return anything.

This is how this first implementation is used:

const dp = new DemoPromise();

dp.resolve('abc');

dp.then(function (value) {

console.log(value); // abc

});

The following diagram illustrates how our first DemoPromise works:

25.17.1.1 DemoPromise.prototype.then()

Let’s examine then() first. It has to handle two cases:

• If the Promise is still pending, it queues invocations of onFulfilled and onRejected, to
be used when the Promise is settled.

• If the Promise is already fulfilled or rejected, onFulfilled or onRejected can be invoked
right away.



Promises for asynchronous programming 500

then(onFulfilled, onRejected) {

const self = this;

const fulfilledTask = function () {

onFulfilled(self.promiseResult);

};

const rejectedTask = function () {

onRejected(self.promiseResult);

};

switch (this.promiseState) {

case 'pending':

this.fulfillReactions.push(fulfilledTask);

this.rejectReactions.push(rejectedTask);

break;

case 'fulfilled':

addToTaskQueue(fulfilledTask);

break;

case 'rejected':

addToTaskQueue(rejectedTask);

break;

}

}

The previous code snippet uses the following helper function:

function addToTaskQueue(task) {

setTimeout(task, 0);

}

25.17.1.2 DemoPromise.prototype.resolve()

resolve() works as follows: If the Promise is already settled, it does nothing (ensuring that a
Promise can only be settled once). Otherwise, the state of the Promise changes to 'fulfilled'

and the result is cached in this.promiseResult. Next, all fulfillment reactions, that have been
enqueued so far, are be triggered.

resolve(value) {

if (this.promiseState !== 'pending') return;

this.promiseState = 'fulfilled';

this.promiseResult = value;

this._clearAndEnqueueReactions(this.fulfillReactions);

return this; // enable chaining

}

_clearAndEnqueueReactions(reactions) {

this.fulfillReactions = undefined;

this.rejectReactions = undefined;

reactions.map(addToTaskQueue);

}



Promises for asynchronous programming 501

reject() is similar to resolve().

25.17.2 Chaining

The next feature we implement is chaining:

• then() returns a Promise that is resolved with what either onFulfilled or onRejected
return.

• If onFulfilled or onRejected are missing, whatever they would have received is passed
on to the Promise returned by then().

Obviously, only then() changes:

then(onFulfilled, onRejected) {

const returnValue = new Promise(); // (A)

const self = this;

let fulfilledTask;

if (typeof onFulfilled === 'function') {

fulfilledTask = function () {

const r = onFulfilled(self.promiseResult);

returnValue.resolve(r); // (B)

};

} else {

fulfilledTask = function () {

returnValue.resolve(self.promiseResult); // (C)

};

}

let rejectedTask;

if (typeof onRejected === 'function') {



Promises for asynchronous programming 502

rejectedTask = function () {

const r = onRejected(self.promiseResult);

returnValue.resolve(r); // (D)

};

} else {

rejectedTask = function () {

// `onRejected` has not been provided

// => we must pass on the rejection

returnValue.reject(self.promiseResult); // (E)

};

}

···

return returnValue; // (F)

}

then() creates and returns a new Promise (lines A and F). Additionally, fulfilledTask and
rejectedTask are set up differently: After a settlement…

• The result of onFulfilled is used to resolve returnValue (line B).
– If onFulfilled is missing, we use the fulfillment value to resolve returnValue (line
C).

• The result of onRejected is used to resolve (not reject!) returnValue (line D).
– If onRejected is missing, we use pass on the rejection value to returnValue (line E).

25.17.3 Flattening

Flattening is mostly about making chaining more convenient: Normally, returning a value from
a reaction passes it on to the next then(). If we return a Promise, it would be nice if it could be
“unwrapped” for us, like in the following example:

asyncFunc1()

.then(function (value1) {

return asyncFunc2(); // (A)

})

.then(function (value2) {

// value2 is fulfillment value of asyncFunc2() Promise

console.log(value2);

});

We returned a Promise in line A and didn’t have to nest a call to then() inside the current
method, we could invoke then() on the method’s result. Thus: no nested then(), everything
remains flat.

We implement this by letting the resolve() method do the flattening:



Promises for asynchronous programming 503

• Resolving a Promise P with a Promise Q means that Q’s settlement is forwarded to P’s
reactions.

• P becomes “locked in” on Q: it can’t be resolved (incl. rejected), anymore. And its state
and result are always the same as Q’s.

We can make flattening more generic if we allow Q to be a thenable (instead of only a Promise).

To implement locking-in, we introduce a new boolean flag this.alreadyResolved. Once it is
true, this is locked and can’t be resolved anymore. Note that thismay still be pending, because
its state is now the same as the Promise it is locked in on.

resolve(value) {

if (this.alreadyResolved) return;

this.alreadyResolved = true;

this._doResolve(value);

return this; // enable chaining

}

The actual resolution now happens in the private method _doResolve():

_doResolve(value) {

const self = this;

// Is `value` a thenable?

if (typeof value === 'object' && value !== null && 'then' in value) {

// Forward fulfillments and rejections from `value` to `this`.

// Added as a task (versus done immediately) to preserve async semant\

ics.

addToTaskQueue(function () { // (A)

value.then(



Promises for asynchronous programming 504

function onFulfilled(result) {

self._doResolve(result);

},

function onRejected(error) {

self._doReject(error);

});

});

} else {

this.promiseState = 'fulfilled';

this.promiseResult = value;

this._clearAndEnqueueReactions(this.fulfillReactions);

}

}

The flattening is performed in line A: If value is fulfilled, we want self to be fulfilled and if
value is rejected, we want self to be rejected. The forwarding happens via the private methods
_doResolve and _doReject, to get around the protection via alreadyResolved.

25.17.4 Promise states in more detail

With chaining, the states of Promises become more complex (as covered by Sect. 25.4²⁸ of the
ECMAScript 6 specification):

²⁸http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects

http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects


Promises for asynchronous programming 505

If you are only using Promises, you can normally adopt a simplified worldview and ignore
locking-in. The most important state-related concept remains “settledness”: a Promise is settled
if it is either fulfilled or rejected. After a Promise is settled, it doesn’t change, anymore (state and
fulfillment or rejection value).

If you want to implement Promises then “resolving” matters, too and is now harder to
understand:

• Intuitively, “resolved” means “can’t be (directly) resolved anymore”. A Promise is resolved
if it is either settled or locked in. Quoting the spec: “An unresolved Promise is always in
the pending state. A resolved Promise may be pending, fulfilled or rejected.”

• Resolving does not necessarily lead to settling: you can resolve a Promise with another
one that is always pending.

• Resolving now includes rejecting (i.e., it is more general): you can reject a Promise by
resolving it with a rejected Promise.

25.17.5 Exceptions

As our final feature, we’d like our Promises to handle exceptions in user code as rejections. For
now, “user code” means the two callback parameters of then().



Promises for asynchronous programming 506

The following excerpt shows how we turn exceptions inside onFulfilled into rejections – by
wrapping a try-catch around its invocation in line A.

then(onFulfilled, onRejected) {

···

let fulfilledTask;

if (typeof onFulfilled === 'function') {

fulfilledTask = function () {

try {

const r = onFulfilled(self.promiseResult); // (A)

returnValue.resolve(r);

} catch (e) {

returnValue.reject(e);

}

};

} else {

fulfilledTask = function () {

returnValue.resolve(self.promiseResult);

};

}

···

}

25.17.6 Revealing constructor pattern

If we wanted to turn DemoPromise into an actual Promise implementation, we’d still need to
implement the revealing constructor pattern [2]: ES6 Promises are not resolved and rejected
via methods, but via functions that are handed to the executor, the callback parameter of the
constructor.



Promises for asynchronous programming 507

If the executor throws an exception then “its” Promise must be rejected.

25.18 Advantages and limitations of Promises

25.18.1 Advantages of Promises

25.18.1.1 Unifying asynchronous APIs

One important advantage of Promises is that they will increasingly be used by asynchronous
browser APIs and unify currently diverse and incompatible patterns and conventions. Let’s look
at two upcoming Promise-based APIs.

The fetch API²⁹ is a Promise-based alternative to XMLHttpRequest:

fetch(url)

.then(request => request.text())

.then(str => ···)

fetch() returns a Promise for the actual request, text() returns a Promise for the content as a
string.

The ECMAScript 6 API for programmatically importing modules is based on Promises, too:

²⁹http://jakearchibald.com/2015/thats-so-fetch/

http://jakearchibald.com/2015/thats-so-fetch/
http://jakearchibald.com/2015/thats-so-fetch/


Promises for asynchronous programming 508

System.import('some_module.js')

.then(some_module => {

···

})

25.18.1.2 Promises versus events

Compared to events, Promises are better for handling one-off results. It doesn’t matter whether
you register for a result before or after it has been computed, you will get it. This advantage of
Promises is fundamental in nature. On the flip side, you can’t use them for handling recurring
events. Chaining is another advantage of Promises, but one that could be added to event handling.

25.18.1.3 Promises versus callbacks

Compared to callbacks, Promises have cleaner function (or method) signatures. With callbacks,
parameters are used for input and output:

fs.readFile(name, opts?, (err, string | Buffer) => void)

With Promises, all parameters are used for input:

readFilePromisified(name, opts?) : Promise<string | Buffer>

Additional Promise advantages include:

• Unified handling of both asynchronous errors and normal exceptions.
• Easier composition, because you can reuse synchronous tools such as Array.prototype.map().
• Chaining of then() and catch().
• Guarding against notifying callbacks more than once. Some development environments
also warn about rejections that are never handled.

25.18.2 Promises are not always the best choice

Promises work well for for single asynchronous results. They are not suited for:

• Recurring events: If you are interested in those, take a look at reactive programming³⁰,
which add a clever way of chaining to normal event handling.

• Streams of data: A standard³¹ for supporting those is currently in development.

ECMAScript 6 Promises lack two features that are sometimes useful:

³⁰https://github.com/Reactive-Extensions/RxJS
³¹https://streams.spec.whatwg.org/

https://github.com/Reactive-Extensions/RxJS
https://streams.spec.whatwg.org/
https://github.com/Reactive-Extensions/RxJS
https://streams.spec.whatwg.org/


Promises for asynchronous programming 509

• You can’t cancel them.
• You can’t query them for how far along they are (e.g. to display a progress bar in a client-
side user interface).

The Q Promise library has support³² for the latter and there are plans³³ to add both capabilities
to Promises/A+.

25.19 Reference: the ECMAScript 6 Promise API

This section gives an overview of the ECMAScript 6 Promise API, as described in the specifica-
tion³⁴.

25.19.1 Promise constructor

The constructor for Promises is invoked as follows:

const p = new Promise(function (resolve, reject) { ··· });

The callback of this constructor is called an executor. The executor can use its parameters to
resolve or reject the new Promise p:

• resolve(x) resolves p with x:
– If x is thenable, its settlement is forwarded to p (which includes triggering reactions
registered via then()).

– Otherwise, p is fulfilled with x.
• reject(e) rejects p with the value e (often an instance of Error³⁵).

25.19.2 Static Promise methods

25.19.2.1 Creating Promises

The following two static methods create new instances of their receivers:

• Promise.resolve(x): converts arbitrary values to Promises, with an awareness of Promises.
– If the constructor of x is the receiver, x is returned unchanged.
– Otherwise, return a new instance of the receiver that is fulfilled with x.

• Promise.reject(reason): creates a new instance of the receiver that is rejected with the
value reason.

³²https://github.com/kriskowal/q#progress-notification
³³https://github.com/promises-aplus
³⁴http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
³⁵http://speakingjs.com/es5/ch14.html#error_constructors

https://github.com/kriskowal/q#progress-notification
https://github.com/promises-aplus
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
http://speakingjs.com/es5/ch14.html#error_constructors
https://github.com/kriskowal/q#progress-notification
https://github.com/promises-aplus
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
http://speakingjs.com/es5/ch14.html#error_constructors


Promises for asynchronous programming 510

25.19.2.2 Composing Promises

Intuitively, the staticmethods Promise.all() and Promise.race() compose iterables of Promises
to a single Promise. That is:

• They take an iterable. The elements of the iterable are converted to Promises via
this.resolve().

• They return a new Promise. That Promise is a new instance of the receiver.

The methods are:

• Promise.all(iterable): returns a Promise that…
– is fulfilled if all elements in iterable are fulfilled.
Fulfillment value: Array with fulfillment values.

– is rejected if any of the elements are rejected.
Rejection value: first rejection value.

• Promise.race(iterable): the first element of iterable that is settled is used to settle the
returned Promise.

25.19.3 Promise.prototype methods

25.19.3.1 Promise.prototype.then(onFulfilled, onRejected)

• The callbacks onFulfilled and onRejected are called reactions.
• onFulfilled is called immediately if the Promise is already fulfilled or as soon as it
becomes fulfilled. Similarly, onRejected is informed of rejections.

• then() returns a new Promise Q (created via the species of the constructor of the receiver):
– If either of the reactions returns a value, Q is resolved with it.
– If either of the reactions throws an exception, Q is rejected with it.

• Omitted reactions:
– If onFulfilled has been omitted, a fulfillment of the receiver is forwarded to the
result of then().

– If onRejected has been omitted, a rejection of the receiver is forwarded to the result
of then().

Default values for omitted reactions could be implemented like this:

function defaultOnFulfilled(x) {

return x;

}

function defaultOnRejected(e) {

throw e;

}



Promises for asynchronous programming 511

25.19.3.2 Promise.prototype.catch(onRejected)

• p.catch(onRejected) is the same as p.then(null, onRejected).

25.20 Further reading

[1] “Promises/A+³⁶”, edited by Brian Cavalier and Domenic Denicola (the de-facto standard for
JavaScript Promises)

[2] “The Revealing Constructor Pattern³⁷” by Domenic Denicola (this pattern is used by the
Promise constructor)

³⁶http://promisesaplus.com/
³⁷http://domenic.me/2014/02/13/the-revealing-constructor-pattern/

http://promisesaplus.com/
http://domenic.me/2014/02/13/the-revealing-constructor-pattern/
http://promisesaplus.com/
http://domenic.me/2014/02/13/the-revealing-constructor-pattern/


VI Miscellaneous



26. Unicode in ES6
This chapter explains the improved support for Unicode that ECMAScript 6 brings. For a general
introduction to Unicode, read Chap. “Unicode and JavaScript¹” in “Speaking JavaScript”.

26.1 Unicode is better supported in ES6

There are three areas in which ECMAScript 6 has improved support for Unicode:

• Unicode escapes for code points beyond 16 bits: \u{···}
Can be used in identifiers, string literals, template literals and regular expression literals.
They are explained in the next section.

• Strings:
– Iteration honors Unicode code points.
– Read code point values via String.prototype.codePointAt().
– Create a string from code point values via String.fromCodePoint().

• Regular expressions:
– New flag /u (plus boolean property unicode) improves handling of surrogate pairs.

Additionally, ES6 is based on Unicode version 5.1.0, whereas ES5 is based on Unicode version
3.0.

26.2 Escape sequences in ES6

There are three parameterized escape sequences for representing characters in JavaScript:

• Hex escape (exactly two hexadecimal digits): \xHH

> '\x7A' === 'z'

true

• Unicode escape (exactly four hexadecimal digits): \uHHHH

> '\u007A' === 'z'

true

• Unicode code point escape (1 or more hexadecimal digits): \u{···}

¹http://speakingjs.com/es5/ch24.html

http://speakingjs.com/es5/ch24.html
http://speakingjs.com/es5/ch24.html


Unicode in ES6 514

> '\u{7A}' === 'z'

true

Unicode code point escapes are new in ES6. They let you specify code points beyond 16 bits. If
you wanted to do that in ECMAScript 5, you had to encode each code point as two UTF-16 code
units (a surrogate pair). These code units could be expressed via Unicode escapes. For example,
the following statement logs a rocket (code point 0x1F680) to most consoles:

console.log('\uD83D\uDE80');

With a Unicode code point escape you can specify code points greater than 16 bits directly:

console.log('\u{1F680}');

26.2.1 Where can escape sequences be used?

The escape sequences can be used in the following locations:

\uHHHH \u{···} \xHH

Identifiers ✔ ✔
String literals ✔ ✔ ✔
Template literals ✔ ✔ ✔
Regular expression literals ✔ Only with flag /u ✔

Identifiers:

• A 4-digit Unicode escape \uHHHH becomes a single code point.
• A Unicode code point escape \u{···} becomes a single code point.

> const hello = 123;

> hell\u{6F}

123

String literals:

• Strings are internally stored as UTF-16 code units.
• A hex escape \xHH contributes a UTF-16 code unit.
• A 4-digit Unicode escape \uHHHH contributes a UTF-16 code unit.
• A Unicode code point escape \u{···} contributes the UTF-16 encoding of its code point
(one or two UTF-16 code units).

Template literals:



Unicode in ES6 515

• In template literals, escape sequences are handled like in string literals.
• In tagged templates, how escape sequences are interpreted depends on the tag function. It
can choose between two interpretations:

– Cooked: escape sequences are handled like in string literals.
– Raw: escape sequences are handled as a sequence of characters.

> `hell\u{6F}` // cooked

'hello'

> String.raw`hell\u{6F}` // raw

'hell\\u{6F}'

Regular expressions:

• Unicode code point escapes are only allowed if the flag /u is set, because \u{3} is
interpreted as three times the character u, otherwise:

> /^\u{3}$/.test('uuu')

true

26.2.2 Escape sequences in the ES6 spec

Various information:

• The spec treats source code as a sequence of Unicode code points: “Source Text²”
• Unicode escape sequences sequences in identifiers: “Names and Keywords³”
• Strings are internally stored as sequences of UTF-16 code units: “String Literals⁴”
• Strings – how various escape sequences are translated to UTF-16 code units: “Static
Semantics: SV⁵”

• Template literals – how various escape sequences are translated to UTF-16 code units:
“Static Semantics: TV and TRV⁶”

26.2.2.1 Regular expressions

The spec distinguishes between BMP patterns (flag /u not set) and Unicode patterns (flag /u set).
Sect. “Pattern Semantics⁷” explains that they are handled differently and how.

As a reminder, here is how grammar rules are be parameterized in the spec:

²http://www.ecma-international.org/ecma-262/6.0/#sec-source-text
³http://www.ecma-international.org/ecma-262/6.0/#sec-names-and-keywords
⁴http://www.ecma-international.org/ecma-262/6.0/#sec-literals-string-literals
⁵http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-sv
⁶http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv
⁷http://www.ecma-international.org/ecma-262/6.0/#sec-pattern-semantics

http://www.ecma-international.org/ecma-262/6.0/#sec-source-text
http://www.ecma-international.org/ecma-262/6.0/#sec-names-and-keywords
http://www.ecma-international.org/ecma-262/6.0/#sec-literals-string-literals
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-sv
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-sv
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv
http://www.ecma-international.org/ecma-262/6.0/#sec-pattern-semantics
http://www.ecma-international.org/ecma-262/6.0/#sec-source-text
http://www.ecma-international.org/ecma-262/6.0/#sec-names-and-keywords
http://www.ecma-international.org/ecma-262/6.0/#sec-literals-string-literals
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-sv
http://www.ecma-international.org/ecma-262/6.0/#sec-static-semantics-tv-and-trv
http://www.ecma-international.org/ecma-262/6.0/#sec-pattern-semantics


Unicode in ES6 516

• If a grammar rule R has the subscript [U] then that means there are two versions of it: R
and R_U.

• Parts of the rule can pass on the subscript via [?U].
• If a part of a rule has the prefix [+U] it only exists if the subscript [U] is present.
• If a part of a rule has the prefix [∼U] it only exists if the subscript [U] is not present.

You can see this parameterization in action in Sect. “Patterns⁸”, where the subscript [U] creates
separate grammars for BMP patterns and Unicode patterns:

• IdentityEscape: In BMP patterns, many characters can be prefixed with a backslash and are
interpreted as themselves (for example: if \u is not followed by four hexadecimal digits,
it is interpreted as u). In Unicode patterns that only works for the following characters
(which frees up \u for Unicode code point escapes): ˆ $ \ . * + ? ( ) [ ] { } |

• RegExpUnicodeEscapeSequence: "\u{" HexDigits "}" is only allowed in Unicode pat-
terns. In those patterns, lead and trail surrogates are also grouped to help with UTF-16
decoding.

Sect. “CharacterEscape⁹” explains how various escape sequences are translated to characters
(roughly: either code units or code points).

Further reading
“JavaScript has a Unicode problem¹⁰” (by Mathias Bynens) explains new Unicode
features in ES6.

⁸http://www.ecma-international.org/ecma-262/6.0/#sec-patterns
⁹http://www.ecma-international.org/ecma-262/6.0/#sec-characterescape
¹⁰https://mathiasbynens.be/notes/javascript-unicode

http://www.ecma-international.org/ecma-262/6.0/#sec-patterns
http://www.ecma-international.org/ecma-262/6.0/#sec-characterescape
https://mathiasbynens.be/notes/javascript-unicode
http://www.ecma-international.org/ecma-262/6.0/#sec-patterns
http://www.ecma-international.org/ecma-262/6.0/#sec-characterescape
https://mathiasbynens.be/notes/javascript-unicode


27. Tail call optimization
ECMAScript 6 offers tail call optimization, where you can make some function calls without
growing the call stack. This chapter explains how that works and what benefits it brings.

27.1 What is tail call optimization?

Roughly, whenever the last thing a function does is to call another function then the latter does
not need to return to its caller. As a consequence, no information needs to be stored on the call
stack and the function call is more of a goto (a jump). This kind of call is named tail call; not
growing the stack is named tail call optimization (TCO).

Let’s look at an example to better understand TCO. I’ll first explain how it is executed without
TCO and then with TCO.

function id(x) {

return x; // (A)

}

function f(a) {

const b = a + 1;

return id(b); // (B)

}

console.log(f(2)); // (C)

27.1.1 Normal execution

Let’s assume there is a JavaScript engine that manages function calls by storing local variables
and return addresses on a stack. How would such an engine execute the code?

Step 1. Initially, there are only the global variables id and f on the stack.

The block of stack entries encodes the state (local variables, including parameters) of the current
scope and is called a stack frame.



Tail call optimization 518

Step 2. In line C, f() is called: First, the location to return to is saved on the stack. Then f’s
parameters are allocated and execution jumps to its body. The stack now looks as follows.

There are now two frames on the stack: One for the global scope (bottom) and one for f() (top).
f’s stack frame includes the return address, line C.

Step 3. id() is called in line B. Again, a stack frame is created that contains the return address
and id’s parameter.



Tail call optimization 519

Step 4. In line A, the result x is returned. id’s stack frame is removed and execution jumps to
the return address, line B. (There are several ways in which returning a value could be handled.
Two common solutions are to leave the result on a stack or to hand it over in a register. I ignore
this part of execution here.)

The stack now looks as follows:

Step 5. In line B, the value that was returned by id is returned to f’s caller. Again, the topmost



Tail call optimization 520

stack frame is removed and execution jumps to the return address, line C.

Step 6. Line C receives the value 3 and logs it.

27.1.2 Tail call optimization

function id(x) {

return x; // (A)

}

function f(a) {

const b = a + 1;

return id(b); // (B)

}

console.log(f(2)); // (C)

If you look at the previous section then there is one step that is unnecessary – step 5. All that
happens in line B is that the value returned by id() is passed on to line C. Ideally, id() could do
that itself and the intermediate step could be skipped.

We can make this happen by implementing the function call in line B differently. Before the call
happens, the stack looks as follows.



Tail call optimization 521

If we examine the call we see that it is the very last action in f(). Once id() is done, the only
remaining action performed by f() is to pass id’s result to f’s caller. Therefore, f’s variables
are not needed, anymore and its stack frame can be removed before making the call. The return
address given to id() is f’s return address, line C. During the execution of id(), the stack looks
like this:

Then id() returns the value 3. You could say that it returns that value for f(), because it
transports it to f’s caller, line C.

Let’s review: The function call in line B is a tail call. Such a call can be done with zero stack
growth. To find out whether a function call is a tail call, we must check whether it is in a tail
position (i.e., the last action in a function). How that is done is explained in the next section.



Tail call optimization 522

27.2 Checking whether a function call is in a tail
position

We have just learned that tail calls are function calls that can be executed more efficiently. But
what counts as a tail call?

First, the way in which you call a function does not matter. The following calls can all be
optimized if they appear in a tail position:

• Function call: func(···)
• Dispatched method call: obj.method(···)
• Direct method call via call(): func.call(···)
• Direct method call via apply(): func.apply(···)

27.2.1 Tail calls in expressions

Arrow functions can have expressions as bodies. For tail call optimization, we therefore have to
figure out where function calls are in tail positions in expressions. Only the following expressions
can contain tail calls:

• The conditional operator (? :)
• The logical Or operator (||)
• The logical And operator (&&)
• The comma operator (,)

Let’s look at an example for each one of them.

27.2.1.1 The conditional operator (? :)

const a = x => x ? f() : g();

Both f() and g() are in tail position.

27.2.1.2 The logical Or operator (||)

const a = () => f() || g();

f() is not in a tail position, but g() is in a tail position. To see why, take a look at the following
code, which is equivalent to the previous code:



Tail call optimization 523

const a = () => {

const fResult = f(); // not a tail call

if (fResult) {

return fResult;

} else {

return g(); // tail call

}

};

The result of the logical Or operator depends on the result of f(), which is why that function
call is not in a tail position (the caller does something with it other than returning it). However,
g() is in a tail position.

27.2.1.3 The logical And operator

const a = () => f() && g();

f() is not in a tail position, but g() is in a tail position. To see why, take a look at the following
code, which is equivalent to the previous code:

const a = () => {

const fResult = f(); // not a tail call

if (!fResult) {

return fResult;

} else {

return g(); // tail call

}

};

The result of the logical And operator depends on the result of f(), which is why that function
call is not in a tail position (the caller does something with it other than returning it). However,
g() is in a tail position.

27.2.1.4 The comma operator (,)

const a = () => (f() , g());

f() is not in a tail position, but g() is in a tail position. To see why, take a look at the following
code, which is equivalent to the previous code:



Tail call optimization 524

const a = () => {

f();

return g();

}

27.2.2 Tail calls in statements

For statements, the following rules apply.

Only these compound statements can contain tail calls:

• Blocks (as delimited by {}, with or without a label)
• if: in either the “then” clause or the “else” clause.
• do-while, while, for: in their bodies.
• switch: in its body.
• try-catch: only in the catch clause. The try clause has the catch clause as a context that
can’t be optimized away.

• try-finally, try-catch-finally: only in the finally clause, which is a context of the
other clauses that can’t be optimized away.

Of all the atomic (non-compound) statements, only return can contain a tail call. All other
statements have context that can’t be optimized away. The following statement contains a tail
call if expr contains a tail call.

return «expr»;

27.2.3 Tail call optimization can only be made in strict mode

In non-strict mode, most engines have the following two properties that allow you to examine
the call stack:

• func.arguments: contains the arguments of the most recent invocation of func.
• func.caller: refers to the function that most recently called func.

With tail call optimization, these properties don’t work, because the information that they rely
on may have been removed. Therefore, strict mode forbids these properties (as described in the
language specification¹) and tail call optimization only works in strict mode.

27.2.4 Pitfall: solo function calls are never in tail position

The function call bar() in the following code is not in tail position:

¹http://www.ecma-international.org/ecma-262/6.0/#sec-addrestrictedfunctionproperties

http://www.ecma-international.org/ecma-262/6.0/#sec-addrestrictedfunctionproperties
http://www.ecma-international.org/ecma-262/6.0/#sec-addrestrictedfunctionproperties
http://www.ecma-international.org/ecma-262/6.0/#sec-addrestrictedfunctionproperties


Tail call optimization 525

function foo() {

bar(); // this is not a tail call in JS

}

The reason is that the last action of foo() is not the function call bar(), it is (implicitly) returning
undefined. In other words, foo() behaves like this:

function foo() {

bar();

return undefined;

}

Callers can rely on foo() always returning undefined. If bar()were to return a result for foo(),
due to tail call optimization, then that would change foo’s behavior.

Therefore, if we want bar() to be a tail call, we have to change foo() as follows.

function foo() {

return bar(); // tail call

}

27.3 Tail-recursive functions

A function is tail-recursive if the main recursive calls it makes are in tail positions.

For example, the following function is not tail recursive, because the main recursive call in line
A is not in a tail position:

function factorial(x) {

if (x <= 0) {

return 1;

} else {

return x * factorial(x-1); // (A)

}

}

factorial() can be implemented via a tail-recursive helper function facRec(). The main
recursive call in line A is in a tail position.



Tail call optimization 526

function factorial(n) {

return facRec(n, 1);

}

function facRec(x, acc) {

if (x <= 1) {

return acc;

} else {

return facRec(x-1, x*acc); // (A)

}

}

That is, some non-tail-recursive functions can be transformed into tail-recursive functions.

27.3.1 Tail-recursive loops

Tail call optimization makes it possible to implement loops via recursion without growing the
stack. The following are two examples.

27.3.1.1 forEach()

function forEach(arr, callback, start = 0) {

if (0 <= start && start < arr.length) {

callback(arr[start], start, arr);

return forEach(arr, callback, start+1); // tail call

}

}

forEach(['a', 'b'], (elem, i) => console.log(`${i}. ${elem}`));

// Output:

// 0. a

// 1. b

27.3.1.2 findIndex()

function findIndex(arr, predicate, start = 0) {

if (0 <= start && start < arr.length) {

if (predicate(arr[start])) {

return start;

}

return findIndex(arr, predicate, start+1); // tail call

}

}

findIndex(['a', 'b'], x => x === 'b'); // 1



28. Metaprogramming with proxies
28.1 Overview

Proxies enable you to intercept and customize operations performed on objects (such as getting
properties). They are a metaprogramming feature.

In the following example, proxy is the object whose operations we are intercepting and handler is
the object that handles the interceptions. In this case, we are only intercepting a single operation,
get (getting properties).

const target = {};

const handler = {

get(target, propKey, receiver) {

console.log('get ' + propKey);

return 123;

}

};

const proxy = new Proxy(target, handler);

When we get the property proxy.foo, the handler intercepts that operation:

> proxy.foo

get foo

123

Consult the reference for the complete API for a list of operations that can be intercepted.

28.2 Programming versus metaprogramming

Before we can get into what proxies are and why they are useful, we first need to understand
what metaprogramming is.

In programming, there are levels:

• At the base level (also called: application level), code processes user input.
• At the meta level, code processes base level code.

Base and meta level can be different languages. In the following meta program, the metapro-
gramming language is JavaScript and the base programming language is Java.



Metaprogramming with proxies 528

const str = 'Hello' + '!'.repeat(3);

console.log('System.out.println("'+str+'")');

Metaprogramming can take different forms. In the previous example, we have printed Java code
to the console. Let’s use JavaScript as both metaprogramming language and base programming
language. The classic example for this is the eval() function¹, which lets you evaluate/compile
JavaScript code on the fly. There are not that many actual use cases² for eval(). In the interaction
below, we use it to evaluate the expression 5 + 2.

> eval('5 + 2')

7

Other JavaScript operations may not look like metaprogramming, but actually are, if you look
closer:

// Base level

const obj = {

hello() {

console.log('Hello!');

}

};

// Meta level

for (const key of Object.keys(obj)) {

console.log(key);

}

The program is examining its own structure while running. This doesn’t look like metaprogram-
ming, because the separation between programming constructs and data structures is fuzzy in
JavaScript. All of the Object.* methods³ can be considered metaprogramming functionality.

28.2.1 Kinds of metaprogramming

Reflective metaprogrammingmeans that a program processes itself. Kiczales et al. [2] distinguish
three kinds of reflective metaprogramming:

• Introspection: you have read-only access to the structure of a program.
• Self-modification: you can change that structure.
• Intercession: you can redefine the semantics of some language operations.

¹http://speakingjs.com/es5/ch23.html#_dynamically_evaluating_javascript_code_via_eval_and_new_function
²http://speakingjs.com/es5/ch23.html#_legitimate_use_cases
³http://speakingjs.com/es5/ch17.html#oop_cheat_sheet

http://speakingjs.com/es5/ch23.html#_dynamically_evaluating_javascript_code_via_eval_and_new_function
http://speakingjs.com/es5/ch23.html#_legitimate_use_cases
http://speakingjs.com/es5/ch17.html#oop_cheat_sheet
http://speakingjs.com/es5/ch23.html#_dynamically_evaluating_javascript_code_via_eval_and_new_function
http://speakingjs.com/es5/ch23.html#_legitimate_use_cases
http://speakingjs.com/es5/ch17.html#oop_cheat_sheet


Metaprogramming with proxies 529

Let’s look at examples.

Example: introspection. Object.keys() performs introspection (see previous example).

Example: self-modification. The following function moveProperty moves a property from a
source to a target. It performs self-modification via the bracket operator for property access, the
assignment operator and the delete operator. (In production code, you’d probably use property
descriptors⁴ for this task.)

function moveProperty(source, propertyName, target) {

target[propertyName] = source[propertyName];

delete source[propertyName];

}

Using moveProperty():

> const obj1 = { prop: 'abc' };

> const obj2 = {};

> moveProperty(obj1, 'prop', obj2);

> obj1

{}

> obj2

{ prop: 'abc' }

ECMAScript 5 doesn’t support intercession; proxies were created to fill that gap.

28.3 Proxies explained

ECMAScript 6 proxies bring intercession to JavaScript. They work as follows. There are many
operations that you can perform on an object obj. For example:

• Getting the property prop of an object obj (obj.prop)
• Checking whether an object obj has a property prop ('prop' in obj)

Proxies are special objects that allow you customize some of these operations. A proxy is created
with two parameters:

• handler: For each operation, there is a corresponding handler method that – if present –
performs that operation. Such a method intercepts the operation (on its way to the target)
and is called a trap (a term borrowed from the domain of operating systems).

• target: If the handler doesn’t intercept an operation then it is performed on the target.
That is, it acts as a fallback for the handler. In a way, the proxy wraps the target.

In the following example, the handler intercepts the operations get and has.

⁴http://speakingjs.com/es5/ch17.html#property_attributes

http://speakingjs.com/es5/ch17.html#property_attributes
http://speakingjs.com/es5/ch17.html#property_attributes
http://speakingjs.com/es5/ch17.html#property_attributes


Metaprogramming with proxies 530

const target = {};

const handler = {

/** Intercepts: getting properties */

get(target, propKey, receiver) {

console.log(`GET ${propKey}`);

return 123;

},

/** Intercepts: checking whether properties exist */

has(target, propKey) {

console.log(`HAS ${propKey}`);

return true;

}

};

const proxy = new Proxy(target, handler);

When we get property foo, the handler intercepts that operation:

> proxy.foo

GET foo

123

Similarly, the in operator triggers has:

> 'hello' in proxy

HAS hello

true

The handler doesn’t implement the trap set (setting properties). Therefore, setting proxy.bar is
forwarded to target and leads to target.bar being set.

> proxy.bar = 'abc';

> target.bar

'abc'

28.3.1 Function-specific traps

If the target is a function, two additional operations can be intercepted:

• apply: Making a function call, triggered via
– proxy(···)

– proxy.call(···)

– proxy.apply(···)

• construct: Making a constructor call, triggered via
– new proxy(···)

The reason for only enabling these traps for function targets is simple: You wouldn’t be able to
forward the operations apply and construct, otherwise.



Metaprogramming with proxies 531

28.3.2 Intercepting method calls

If you want to intercept method calls via a proxy, there is one challenge: you can intercept
the operation get (getting property values) and you can intercept the operation apply (calling
a function), but there is no single operation for method calls that you could intercept. That’s
because method calls are viewed as two separate operations: First a get to retrieve a function,
then an apply to call that function.

Therefore, you must intercept get and return a function that intercepts the function call. The
following code demonstrates how that is done.

function traceMethodCalls(obj) {

const handler = {

get(target, propKey, receiver) {

const origMethod = target[propKey];

return function (...args) {

const result = origMethod.apply(this, args);

console.log(propKey + JSON.stringify(args)

+ ' -> ' + JSON.stringify(result));

return result;

};

}

};

return new Proxy(obj, handler);

}

I’m not using a Proxy for the latter task, I’m simplywrapping the originalmethodwith a function.

Let’s use the following object to try out traceMethodCalls():

const obj = {

multiply(x, y) {

return x * y;

},

squared(x) {

return this.multiply(x, x);

},

};

tracedObj is a traced version of obj. The first line after each method call is the output of
console.log(), the second line is the result of the method call.



Metaprogramming with proxies 532

> const tracedObj = traceMethodCalls(obj);

> tracedObj.multiply(2,7)

multiply[2,7] -> 14

14

> tracedObj.squared(9)

multiply[9,9] -> 81

squared[9] -> 81

81

The nice thing is that even the call this.multiply() that is made inside obj.squared() is traced.
That’s because this keeps referring to the proxy.

This is not the most efficient solution. One could, for example, cache methods. Furthermore,
Proxies themselves have an impact on performance.

28.3.3 Revocable proxies

ECMAScript 6 lets you create proxies that can be revoked (switched off):

const {proxy, revoke} = Proxy.revocable(target, handler);

On the left hand side of the assignment operator (=), we are using destructuring to access the
properties proxy and revoke of the object returned by Proxy.revocable().

After you call the function revoke for the first time, any operation you apply to proxy causes a
TypeError. Subsequent calls of revoke have no further effect.

const target = {}; // Start with an empty object

const handler = {}; // Don’t intercept anything

const {proxy, revoke} = Proxy.revocable(target, handler);

proxy.foo = 123;

console.log(proxy.foo); // 123

revoke();

console.log(proxy.foo); // TypeError: Revoked

28.3.4 Proxies as prototypes

A proxy proto can become the prototype of an object obj. Some operations that begin in obj

may continue in proto. One such operation is get.



Metaprogramming with proxies 533

const proto = new Proxy({}, {

get(target, propertyKey, receiver) {

console.log('GET '+propertyKey);

return target[propertyKey];

}

});

const obj = Object.create(proto);

obj.bla;

// Output:

// GET bla

The property bla can’t be found in obj, which is why the search continues in proto and the trap
get is triggered there. There are more operations that affect prototypes; they are listed at the end
of this chapter.

28.3.5 Forwarding intercepted operations

Operations whose traps the handler doesn’t implement are automatically forwarded to the target.
Sometimes there is some task you want to perform in addition to forwarding the operation. For
example, a handler that intercepts all operations and logs them, but doesn’t prevent them from
reaching the target:

const handler = {

deleteProperty(target, propKey) {

console.log('DELETE ' + propKey);

return delete target[propKey];

},

has(target, propKey) {

console.log('HAS ' + propKey);

return propKey in target;

},

// Other traps: similar

}

For each trap, we first log the name of the operation and then forward it by performing it
manually. ECMAScript 6 has the module-like object Reflect that helps with forwarding: for
each trap

handler.trap(target, arg_1, ···, arg_n)

Reflect has a method



Metaprogramming with proxies 534

Reflect.trap(target, arg_1, ···, arg_n)

If we use Reflect, the previous example looks as follows.

const handler = {

deleteProperty(target, propKey) {

console.log('DELETE ' + propKey);

return Reflect.deleteProperty(target, propKey);

},

has(target, propKey) {

console.log('HAS ' + propKey);

return Reflect.has(target, propKey);

},

// Other traps: similar

}

Now what each of the traps does is so similar that we can implement the handler via a proxy:

const handler = new Proxy({}, {

get(target, trapName, receiver) {

// Return the handler method named trapName

return function (...args) {

// Don’t log args[0]

console.log(trapName.toUpperCase()+' '+args.slice(1));

// Forward the operation

return Reflect[trapName](...args);

}

}

});

For each trap, the proxy asks for a handler method via the get operation and we give it one. That
is, all of the handler methods can be implemented via the single meta method get. It was one of
the goals for the proxy API to make this kind of virtualization simple.

Let’s use this proxy-based handler:

> const target = {};

> const proxy = new Proxy(target, handler);

> proxy.foo = 123;

SET foo,123,[object Object]

> proxy.foo

GET foo,[object Object]

123

The following interaction confirms that the set operation was correctly forwarded to the target:



Metaprogramming with proxies 535

> target.foo

123

28.3.6 Pitfall: not all objects can be wrapped transparently by
proxies

A proxy object can be seen as intercepting operations performed on its target object – the proxy
wraps the target. The proxy’s handler object is like an observer or listener for the proxy. It
specifies which operations should be intercepted by implementing corresponding methods (get
for reading a property, etc.). If the handler method for an operation is missing then that operation
is not intercepted. It is simply forwarded to the target.

Therefore, if the handler is the empty object, the proxy should transparently wrap the target.
Alas, that doesn’t always work.

28.3.6.1 Wrapping an object affects this

Before we dig deeper, let’s quickly review how wrapping a target affects this:

const target = {

foo() {

return {

thisIsTarget: this === target,

thisIsProxy: this === proxy,

};

}

};

const handler = {};

const proxy = new Proxy(target, handler);

If you call target.foo() directly, this points to target:

> target.foo()

{ thisIsTarget: true, thisIsProxy: false }

If you invoke that method via the proxy, this points to proxy:

> proxy.foo()

{ thisIsTarget: false, thisIsProxy: true }

That’s done so that the proxy continues to be in the loop if, e.g., the target invokes methods on
this.



Metaprogramming with proxies 536

28.3.6.2 Objects that can’t be wrapped transparently

Normally, proxies with an empty handler wrap targets transparently: you don’t notice that they
are there and they don’t change the behavior of the targets.

If, however, a target associates information with this via a mechanism that is not controlled by
proxies, you have a problem: things fail, because different information is associated depending
on whether the target is wrapped or not.

For example, the following class Person stores private information in the WeakMap _name (more
information on this technique is given in the chapter on classes):

const _name = new WeakMap();

class Person {

constructor(name) {

_name.set(this, name);

}

get name() {

return _name.get(this);

}

}

Instances of Person can’t be wrapped transparently:

> const jane = new Person('Jane');

> jane.name

'Jane'

> const proxy = new Proxy(jane, {});

> proxy.name

undefined

jane.name is different from the wrapped proxy.name. The following implementation does not
have this problem:

class Person2 {

constructor(name) {

this._name = name;

}

get name() {

return this._name;

}

}

const jane = new Person2('Jane');

console.log(jane.name); // Jane

const proxy = new Proxy(jane, {});

console.log(proxy.name); // Jane



Metaprogramming with proxies 537

28.3.6.3 Wrapping instances of built-in constructors

Instances of most built-in constructors also have a mechanism that is not intercepted by proxies.
They therefore can’t be wrapped transparently, either. I’ll demonstrate the problem for an
instance of Date:

const target = new Date();

const handler = {};

const proxy = new Proxy(target, handler);

proxy.getDate();

// TypeError: this is not a Date object.

The mechanism that is unaffected by proxies is called internal slots. These slots are property-like
storage associated with instances. The specification handles these slots as if they were properties
with names in square brackets. For example, the following method is internal and can be invoked
on all objects O:

O.[[GetPrototypeOf]]()

However, access to internal slots does not happen via normal “get” and “set” operations. If
getDate() is invoked via a proxy, it can’t find the internal slot it needs on this and complains
via a TypeError.

For Date methods, the language specification states⁵:

Unless explicitly stated otherwise, the methods of the Number prototype object
defined below are not generic and the this value passed to them must be either
a Number value or an object that has a [[NumberData]] internal slot that has been
initialized to a Number value.

28.3.6.4 Arrays can be wrapped transparently

In contrast to other built-ins, Arrays can be wrapped transparently:

> const p = new Proxy(new Array(), {});

> p.push('a');

> p.length

1

> p.length = 0;

> p.length

0

The reason for Arrays being wrappable is that, even though property access is customized to
make length work, Array methods don’t rely on internal slots – they are generic.

⁵http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-the-number-prototype-object

http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-the-number-prototype-object
http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-the-number-prototype-object


Metaprogramming with proxies 538

28.3.6.5 A work-around

As a work-around, you can change how the handler forwards method calls and selectively set
this to the target and not the proxy:

const handler = {

get(target, propKey, receiver) {

if (propKey === 'getDate') {

return target.getDate.bind(target);

}

return Reflect.get(target, propKey, receiver);

},

};

const proxy = new Proxy(new Date('2020-12-24'), handler);

proxy.getDate(); // 24

The drawback of this approach is that none of the operations that the method performs on this

go through the proxy.

Acknowlegement: Thanks to Allen Wirfs-Brock for pointing out the pitfall explained in this
section.

28.4 Use cases for proxies

This section demonstrates what proxies can be used for. That will give you the opportunity to
see the API in action.

28.4.1 Tracing property accesses (get, set)

Let’s assume we have a function tracePropAccess(obj, propKeys) that logs whenever a
property of obj, whose key is in the Array propKeys, is set or got. In the following code, we
apply that function to an instance of the class Point:

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

toString() {

return `Point(${this.x}, ${this.y})`;

}

}

// Trace accesses to properties `x` and `y`

const p = new Point(5, 7);

p = tracePropAccess(p, ['x', 'y']);

Getting and setting properties of the traced object p has the following effects:



Metaprogramming with proxies 539

> p.x

GET x

5

> p.x = 21

SET x=21

21

Intriguingly, tracing also works whenever Point accesses the properties, because this now refers
to the traced object, not to an instance of Point.

> p.toString()

GET x

GET y

'Point(21, 7)'

In ECMAScript 5, you’d implement tracePropAccess() as follows. We replace each property
with a getter and a setter that traces accesses. The setters and getters use an extra object,
propData, to store the data of the properties. Note that we are destructively changing the original
implementation, which means that we are metaprogramming.

function tracePropAccess(obj, propKeys) {

// Store the property data here

const propData = Object.create(null);

// Replace each property with a getter and a setter

propKeys.forEach(function (propKey) {

propData[propKey] = obj[propKey];

Object.defineProperty(obj, propKey, {

get: function () {

console.log('GET '+propKey);

return propData[propKey];

},

set: function (value) {

console.log('SET '+propKey+'='+value);

propData[propKey] = value;

},

});

});

return obj;

}

In ECMAScript 6, we can use a simpler, proxy-based solution. We intercept property getting and
setting and don’t have to change the implementation.



Metaprogramming with proxies 540

function tracePropAccess(obj, propKeys) {

const propKeySet = new Set(propKeys);

return new Proxy(obj, {

get(target, propKey, receiver) {

if (propKeySet.has(propKey)) {

console.log('GET '+propKey);

}

return Reflect.get(target, propKey, receiver);

},

set(target, propKey, value, receiver) {

if (propKeySet.has(propKey)) {

console.log('SET '+propKey+'='+value);

}

return Reflect.set(target, propKey, value, receiver);

},

});

}

28.4.2 Warning about unknown properties (get, set)

When it comes to accessing properties, JavaScript is very forgiving. For example, if you try to
read a property and misspell its name, you don’t get an exception, you get the result undefined.
You can use proxies to get an exception in such a case. This works as follows. We make the proxy
a prototype of an object.

If a property isn’t found in the object, the get trap of the proxy is triggered. If the property
doesn’t even exist in the prototype chain after the proxy, it really is missing and we throw an
exception. Otherwise, we return the value of the inherited property. We do so by forwarding the
get operation to the target (the prototype of the target is also the prototype of the proxy).

const PropertyChecker = new Proxy({}, {

get(target, propKey, receiver) {

if (!(propKey in target)) {

throw new ReferenceError('Unknown property: '+propKey);

}

return Reflect.get(target, propKey, receiver);

}

});

Let’s use PropertyChecker for an object that we create:



Metaprogramming with proxies 541

> const obj = { __proto__: PropertyChecker, foo: 123 };

> obj.foo // own

123

> obj.fo

ReferenceError: Unknown property: fo

> obj.toString() // inherited

'[object Object]'

If we turn PropertyChecker into a constructor, we can use it for ECMAScript 6 classes via
extends:

function PropertyChecker() { }

PropertyChecker.prototype = new Proxy(···);

class Point extends PropertyChecker {

constructor(x, y) {

this.x = x;

this.y = y;

}

}

const p = new Point(5, 7);

console.log(p.x); // 5

console.log(p.z); // ReferenceError

If you are worried about accidentally creating properties, you have two options: You can either
wrap a proxy around objects that traps set. Or you can make an object obj non-extensible via
Object.preventExtensions(obj)⁶, which means that JavaScript doesn’t let you add new (own)
properties to obj.

28.4.3 Negative Array indices (get)

Some Array methods let you refer to the last element via -1, to the second-to-last element via
-2, etc. For example:

> ['a', 'b', 'c'].slice(-1)

[ 'c' ]

Alas, that doesn’t work when accessing elements via the bracket operator ([]). We can, however,
use proxies to add that capability. The following function createArray() creates Arrays that
support negative indices. It does so by wrapping proxies around Array instances. The proxies
intercept the get operation that is triggered by the bracket operator.

⁶http://speakingjs.com/es5/ch17.html#_preventing_extensions

http://speakingjs.com/es5/ch17.html#_preventing_extensions
http://speakingjs.com/es5/ch17.html#_preventing_extensions


Metaprogramming with proxies 542

function createArray(...elements) {

const handler = {

get(target, propKey, receiver) {

// Sloppy way of checking for negative indices

const index = Number(propKey);

if (index < 0) {

propKey = String(target.length + index);

}

return Reflect.get(target, propKey, receiver);

}

};

// Wrap a proxy around an Array

const target = [];

target.push(...elements);

return new Proxy(target, handler);

}

const arr = createArray('a', 'b', 'c');

console.log(arr[-1]); // c

Acknowledgement: The idea for this example comes from a blog post⁷ by hemanth.hm.

28.4.4 Data binding (set)

Data binding is about syncing data between objects. One popular use case are widgets based
on the MVC (Model View Controler) pattern: With data binding, the view (the widget) stays
up-to-date if you change the model (the data visualized by the widget).

To implement data binding, you have to observe and react to changes made to an object. In the
following code snippet, I sketch how observing changes could work for an Array.

function createObservedArray(callback) {

const array = [];

return new Proxy(array, {

set(target, propertyKey, value, receiver) {

callback(propertyKey, value);

return Reflect.set(target, propertyKey, value, receiver);

}

});

}

const observedArray = createObservedArray(

(key, value) => console.log(`${key}=${value}`));

observedArray.push('a');

Output:

⁷http://h3manth.com/new/blog/2013/negative-array-index-in-javascript/

http://h3manth.com/new/blog/2013/negative-array-index-in-javascript/
http://h3manth.com/new/blog/2013/negative-array-index-in-javascript/


Metaprogramming with proxies 543

0=a

length=1

28.4.5 Accessing a restful web service (method calls)

A proxy can be used to create an object on which arbitrary methods can be invoked. In the
following example, the function createWebService creates one such object, service. Invoking
a method on service retrieves the contents of the web service resource with the same name.
Retrieval is handled via an ECMAScript 6 Promise.

const service = createWebService('http://example.com/data');

// Read JSON data in http://example.com/data/employees

service.employees().then(json => {

const employees = JSON.parse(json);

···

});

The following code is a quick and dirty implementation of createWebService in ECMAScript
5. Because we don’t have proxies, we need to know beforehand what methods will be invoked
on service. The parameter propKeys provides us with that information, it holds an Array with
method names.

function createWebService(baseUrl, propKeys) {

const service = {};

propKeys.forEach(function (propKey) {

service[propKey] = function () {

return httpGet(baseUrl+'/'+propKey);

};

});

return service;

}

The ECMAScript 6 implementation of createWebService can use proxies and is simpler:

function createWebService(baseUrl) {

return new Proxy({}, {

get(target, propKey, receiver) {

// Return the method to be called

return () => httpGet(baseUrl+'/'+propKey);

}

});

}

Both implementations use the following function to make HTTP GET requests (how it works is
explained in the chapter on Promises.



Metaprogramming with proxies 544

function httpGet(url) {

return new Promise(

(resolve, reject) => {

const request = new XMLHttpRequest();

Object.assign(request, {

onload() {

if (this.status === 200) {

// Success

resolve(this.response);

} else {

// Something went wrong (404 etc.)

reject(new Error(this.statusText));

}

},

onerror() {

reject(new Error(

'XMLHttpRequest Error: '+this.statusText));

}

});

request.open('GET', url);

request.send();

});

}

28.4.6 Revocable references

Revocable references work as follows: A client is not allowed to access an important resource
(an object) directly, only via a reference (an intermediate object, a wrapper around the resource).
Normally, every operation applied to the reference is forwarded to the resource. After the client
is done, the resource is protected by revoking the reference, by switching it off. Henceforth,
applying operations to the reference throws exceptions and nothing is forwarded, anymore.

In the following example, we create a revocable reference for a resource. We then read one of
the resource’s properties via the reference. That works, because the reference grants us access.
Next, we revoke the reference. Now the reference doesn’t let us read the property, anymore.

const resource = { x: 11, y: 8 };

const {reference, revoke} = createRevocableReference(resource);

// Access granted

console.log(reference.x); // 11

revoke();

// Access denied

console.log(reference.x); // TypeError: Revoked



Metaprogramming with proxies 545

Proxies are ideally suited for implementing revocable references, because they can intercept and
forward operations. This is a simple proxy-based implementation of createRevocableRefer-
ence:

function createRevocableReference(target) {

let enabled = true;

return {

reference: new Proxy(target, {

get(target, propKey, receiver) {

if (!enabled) {

throw new TypeError('Revoked');

}

return Reflect.get(target, propKey, receiver);

},

has(target, propKey) {

if (!enabled) {

throw new TypeError('Revoked');

}

return Reflect.has(target, propKey);

},

···

}),

revoke() {

enabled = false;

},

};

}

The code can be simplified via the proxy-as-handler technique from the previous section. This
time, the handler basically is the Reflect object. Thus, the get trap normally returns the
appropriate Reflect method. If the reference has been revoked, a TypeError is thrown, instead.

function createRevocableReference(target) {

let enabled = true;

const handler = new Proxy({}, {

get(dummyTarget, trapName, receiver) {

if (!enabled) {

throw new TypeError('Revoked');

}

return Reflect[trapName];

}

});

return {

reference: new Proxy(target, handler),

revoke() {



Metaprogramming with proxies 546

enabled = false;

},

};

}

However, you don’t have to implement revocable references yourself, because ECMAScript 6 lets
you create proxies that can be revoked. This time, the revoking happens in the proxy, not in the
handler. All the handler has to do is forward every operation to the target. As we have seen that
happens automatically if the handler doesn’t implement any traps.

function createRevocableReference(target) {

const handler = {}; // forward everything

const { proxy, revoke } = Proxy.revocable(target, handler);

return { reference: proxy, revoke };

}

28.4.6.1 Membranes

Membranes build on the idea of revocable references: Environments that are designed to run
untrusted code, wrap a membrane around that code to isolate it and keep the rest of the system
safe. Objects pass the membrane in two directions:

• The code may receive objects (“dry objects”) from the outside.
• Or it may hand objects (“wet objects”) to the outside.

In both cases, revocable references are wrapped around the objects. Objects returned by wrapped
functions or methods are also wrapped. Additionally, if a wrapped wet object is passed back into
a membrane, it is unwrapped.

Once the untrusted code is done, all of the revocable references are revoked. As a result, none of
its code on the outside can be executed anymore and outside objects that it has cease to work,
as well. The Caja Compiler⁸ is “a tool for making third party HTML, CSS and JavaScript safe to
embed in your website”. It uses membranes to achieve this task.

28.4.7 Implementing the DOM in JavaScript

The browser Document Object Model (DOM) is usually implemented as a mix of JavaScript and
C++. Implementing it in pure JavaScript is useful for:

• Emulating a browser environment, e.g. to manipulate HTML in Node.js. jsdom⁹ is one
library that does that.

• Speeding the DOM up (switching between JavaScript and C++ costs time).

⁸https://developers.google.com/caja/
⁹https://github.com/tmpvar/jsdom

https://developers.google.com/caja/
https://github.com/tmpvar/jsdom
https://developers.google.com/caja/
https://github.com/tmpvar/jsdom


Metaprogramming with proxies 547

Alas, the standard DOM can do things that are not easy to replicate in JavaScript. For example,
most DOM collections are live views on the current state of the DOM that change dynamically
whenever the DOM changes. As a result, pure JavaScript implementations of the DOM are not
very efficient. One of the reasons for adding proxies to JavaScript was to help write more efficient
DOM implementations.

28.4.8 Other use cases

There are more use cases for proxies. For example:

• Remoting: Local placeholder objects forward method invocations to remote objects. This
use case is similar to the web service example.

• Data access objects for databases: Reading and writing to the object reads and writes to
the database. This use case is similar to the web service example.

• Profiling: Intercept method invocations to track how much time is spent in each method.
This use case is similar to the tracing example.

• Type checking: Nicholas Zakas has used proxies to type-check objects¹⁰.

28.5 The design of the proxy API

In this section, we go deeper into how proxies work and why they work that way.

28.5.1 Stratification: keeping base level and meta level
separate

Firefox has allowed you to do some interceptive metaprogramming for a while: If you define a
method whose name is __noSuchMethod__, it is notified whenever a method is called that doesn’t
exist. The following is an example of using __noSuchMethod__.

const obj = {

__noSuchMethod__: function (name, args) {

console.log(name+': '+args);

}

};

// Neither of the following two methods exist,

// but we can make it look like they do

obj.foo(1); // Output: foo: 1

obj.bar(1, 2); // Output: bar: 1,2

Thus, __noSuchMethod__ works similarly to a proxy trap. In contrast to proxies, the trap is an
own or inherited method of the object whose operations we want to intercept. The problem with
that approach is that base level (normal methods) and meta level (__noSuchMethod__) are mixed.

¹⁰http://www.nczonline.net/blog/2014/04/29/creating-type-safe-properties-with-ecmascript-6-proxies/

http://www.nczonline.net/blog/2014/04/29/creating-type-safe-properties-with-ecmascript-6-proxies/
http://www.nczonline.net/blog/2014/04/29/creating-type-safe-properties-with-ecmascript-6-proxies/


Metaprogramming with proxies 548

Base-level code may accidentally invoke or see a meta level method and there is the possibility
of accidentally defining a meta level method.

Even in standard ECMAScript 5, base level and meta level are sometimes mixed. For example,
the following metaprogramming mechanisms can fail, because they exist at the base level:

• obj.hasOwnProperty(propKey): This call can fail if a property in the prototype chain
overrides the built-in implementation. For example, it fails if obj is:

{ hasOwnProperty: null }

A safe way to call this method is:

Object.prototype.hasOwnProperty.call(obj, propKey)

// Abbreviated version:

{}.hasOwnProperty.call(obj, propKey)

• func.call(···), func.apply(···): For each of these two methods, problem and solution
are the same as with hasOwnProperty.

• obj.__proto__: In most JavaScript engines, __proto__ is a special property that lets you
get and set the prototype of obj. Hence, when you use objects as dictionaries, you must
be careful to avoid __proto__ as a property key¹¹.

By now, it should be obvious that making (base level) property keys special is problematic.
Therefore, proxies are stratified – base level (the proxy object) andmeta level (the handler object)
are separate.

28.5.2 Virtual objects versus wrappers

Proxies are used in two roles:

• As wrappers, they wrap their targets, they control access to them. Examples of wrappers
are: revocable resources and tracing proxies.

• As virtual objects, they are simply objects with special behavior and their targets don’t
matter. An example is a proxy that forwards method calls to a remote object.

An earlier design of the proxy API conceived proxies as purely virtual objects. However, it turned
out that even in that role, a target was useful, to enforce invariants (which is explained later) and
as a fallback for traps that the handler doesn’t implement.

¹¹http://speakingjs.com/es5/ch17.html#_pitfall_3_the_special_property___proto

http://speakingjs.com/es5/ch17.html#_pitfall_3_the_special_property___proto
http://speakingjs.com/es5/ch17.html#_pitfall_3_the_special_property___proto


Metaprogramming with proxies 549

28.5.3 Transparent virtualization and handler encapsulation

Proxies are shielded in two ways:

• It is impossible to determine whether an object is a proxy or not (transparent virtualiza-
tion).

• You can’t access a handler via its proxy (handler encapsulation).

Both principles give proxies considerable power for impersonating other objects. One reason for
enforcing invariants (as explained later) is to keep that power in check.

If you do need a way to tell proxies apart from non-proxies, you have to implement it yourself.
The following code is a module lib.js that exports two functions: one of them creates proxies,
the other one determines whether an object is one of those proxies.

// lib.js

const proxies = new WeakSet();

export function createProxy(obj) {

const handler = {};

const proxy = new Proxy(obj, handler);

proxies.add(proxy);

return proxy;

}

export function isProxy(obj) {

return proxies.has(obj);

}

This module uses the ECMAScript 6 data structure WeakSet for keeping track of proxies. WeakSet
is ideally suited for this purpose, because it doesn’t prevent its elements from being garbage-
collected.

The next example shows how lib.js can be used.

// main.js

import { createProxy, isProxy } from './lib.js';

const p = createProxy({});

console.log(isProxy(p)); // true

console.log(isProxy({})); // false



Metaprogramming with proxies 550

28.5.4 The meta object protocol and proxy traps

This section examines how JavaScript is structured internally and how the set of proxy traps was
chosen.

In the context of programming languages and API design, a protocol is a set of interfaces plus
rules for using them. The ECMAScript specification describes how to execute JavaScript code. It
includes a protocol for handling objects¹². This protocol operates at a meta level and is sometimes
called themeta object protocol (MOP). The JavaScriptMOP consists of own internal methods that
all objects have. “Internal” means that they exist only in the specification (JavaScript enginesmay
or may not have them) and are not accessible from JavaScript. The names of internal methods
are written in double square brackets.

The internal method for getting properties is called [[Get]]¹³. If we pretend that property
names with square brackets are legal, this method would roughly be implemented as follows
in JavaScript.

// Method definition

[[Get]](propKey, receiver) {

const desc = this.[[GetOwnProperty]](propKey);

if (desc === undefined) {

const parent = this.[[GetPrototypeOf]]();

if (parent === null) return undefined;

return parent.[[Get]](propKey, receiver); // (A)

}

if ('value' in desc) {

return desc.value;

}

const getter = desc.get;

if (getter === undefined) return undefined;

return getter.[[Call]](receiver, []);

}

The MOP methods called in this code are:

• [[GetOwnProperty]] (trap getOwnPropertyDescriptor)
• [[GetPrototypeOf]] (trap getPrototypeOf)
• [[Get]] (trap get)
• [[Call]] (trap apply)

In line A you can see why proxies in a prototype chain find out about get if a property isn’t found
in an “earlier” object: If there is no own property whose key is propKey, the search continues in
the prototype parent of this.

Fundamental versus derived operations. You can see that [[Get]] calls other MOP operations.
Operations that do that are called derived. Operations that don’t depend on other operations are
called fundamental.

¹²http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-and-exotic-objects-behaviours
¹³http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots-get-p-receiver

http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-and-exotic-objects-behaviours
http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots-get-p-receiver
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-and-exotic-objects-behaviours
http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots-get-p-receiver


Metaprogramming with proxies 551

28.5.4.1 The MOP of proxies

The meta object protocol of proxies¹⁴ is different from that of normal objects. For normal objects,
derived operations call other operations. For proxies, each operation (regardless of whether it is
fundamental or derived) is either intercepted by a handler method or forwarded to the target.

What operations should be interceptable via proxies? One possibility is to only provide traps for
fundamental operations. The alternative is to include some derived operations. The advantage
of doing so is that it increases performance and is more convenient. For example, if there
weren’t a trap for get, you’d have to implement its functionality via getOwnPropertyDescriptor.
One problem with derived traps is that they can lead to proxies behaving inconsistently. For
example, get may return a value that is different from the value in the descriptor returned by
getOwnPropertyDescriptor.

28.5.4.2 Selective intercession: what operations should be interceptable?

Intercession by proxies is selective: you can’t intercept every language operation.Whywere some
operations excluded? Let’s look at two reasons.

First, stable operations are not well suited for intercession. An operation is stable if it always
produces the same results for the same arguments. If a proxy can trap a stable operation, it can
become unstable and thus unreliable. Strict equality¹⁵ (===) is one such stable operation. It can’t
be trapped and its result is computed by treating the proxy itself as just another object. Another
way of maintaining stability is by applying an operation to the target instead of the proxy. As
explained later, when we look at how invariants are enfored for proxies, this happens when
Object.getPrototypeOf() is applied to a proxy whose target is non-extensible.

A second reason for not making more operations interceptable is that intercession means exe-
cuting custom code in situations where that normally isn’t possible. The more this interleaving
of code happens, the harder it is to understand and debug a program. It also affects performance
negatively.

28.5.4.3 Traps: get versus invoke

If you want to create virtual methods via ECMAScript 6 proxies, you have to return functions
from a get trap. That raises the question: why not introduce an extra trap for method invocations
(e.g. invoke)? That would enable us to distinguish between:

• Getting properties via obj.prop (trap get)
• Invoking methods via obj.prop() (trap invoke)

There are two reasons for not doing so.

First, not all implementations distinguish between get and invoke. For example, Apple’s
JavaScriptCore doesn’t¹⁶.

¹⁴http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots
¹⁵http://speakingjs.com/es5/ch09.html#_strict_equality
¹⁶https://mail.mozilla.org/pipermail/es-discuss/2010-May/011062.html

http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots
http://speakingjs.com/es5/ch09.html#_strict_equality
https://mail.mozilla.org/pipermail/es-discuss/2010-May/011062.html
https://mail.mozilla.org/pipermail/es-discuss/2010-May/011062.html
http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots
http://speakingjs.com/es5/ch09.html#_strict_equality
https://mail.mozilla.org/pipermail/es-discuss/2010-May/011062.html


Metaprogramming with proxies 552

Second, extracting a method and invoking it later via call() or apply() should have the same
effect as invoking the method via dispatch. In other words, the following two variants should
work equivalently. If there was an extra trap invoke then that equivalence would be harder to
maintain.

// Variant 1: call via dynamic dispatch

const result = obj.m();

// Variant 2: extract and call directly

const m = obj.m;

const result = m.call(obj);

28.5.4.3.1 Use cases for invoke

Some things can only be done if you are able to distinguish between get and invoke. Those
things are therefore impossible with the current proxy API. Two examples are: auto-binding
and intercepting missing methods. Let’s examine how one would implement them if proxies
supported invoke.

Auto-binding. By making a proxy the prototype of an object obj, you can automatically bind
methods:

• Retrieving the value of a method m via obj.m returns a function whose this is bound to
obj.

• obj.m() performs a method call.

Auto-binding helps with using methods as callbacks. For example, variant 2 from the previous
example becomes simpler:

const boundMethod = obj.m;

const result = boundMethod();

Intercepting missing methods. invoke lets a proxy emulate the previously mentioned __no-

SuchMethod__mechanism that Firefox supports. The proxy would again become the prototype of
an object obj. It would react differently depending on how an unknown property foo is accessed:

• If you read that property via obj.foo, no intercession happens and undefined is returned.
• If you make the method call obj.foo() then the proxy intercepts and, e.g., notifies a
callback.

28.5.5 Enforcing invariants for proxies

Before we look at what invariants are and how they are enforced for proxies, let’s review how
objects can be protected via non-extensibility and non-configurability.



Metaprogramming with proxies 553

28.5.5.1 Protecting objects

There are two ways of protecting objects:

• Non-extensibility protects objects
• Non-configurability protects properties (or rather, their attributes)

Non-extensibility. If an object is non-extensible, you can’t add properties and you can’t change
its prototype:

'use strict'; // switch on strict mode to get TypeErrors

const obj = Object.preventExtensions({});

console.log(Object.isExtensible(obj)); // false

obj.foo = 123; // TypeError: object is not extensible

Object.setPrototypeOf(obj, null); // TypeError: object is not extensible

Non-configurability.All the data of a property is stored in attributes. A property is like a record
and attributes are like the fields of that record. Examples of attributes:

• The attribute value holds the value of a property.
• The boolean attribute writable controls whether a property’s value can be changed.
• The boolean attribute configurable controls whether a property’s attributes can be
changed.

Thus, if a property is both non-writable and non-configurable, it is read-only and remains that
way:

'use strict'; // switch on strict mode to get TypeErrors

const obj = {};

Object.defineProperty(obj, 'foo', {

value: 123,

writable: false,

configurable: false

});

console.log(obj.foo); // 123

obj.foo = 'a'; // TypeError: Cannot assign to read only property

Object.defineProperty(obj, 'foo', {

configurable: true

}); // TypeError: Cannot redefine property

For more details on these topics (including how Object.defineProperty() works) consult the
following sections in “Speaking JavaScript”:



Metaprogramming with proxies 554

• Property Attributes and Property Descriptors¹⁷
• Protecting Objects¹⁸

28.5.5.2 Enforcing invariants

Traditionally, non-extensibility and non-configurability are:

• Universal: they work for all objects.
• Monotonic: once switched on, they can’t be switched off again.

These and other characteristics that remain unchanged in the face of language operations are
called invariants. With proxies, it is easy to violate invariants, as they are not intrinsically bound
by non-extensibility etc.

The proxy API prevents proxies from violating invariants by checking the parameters and results
of handler methods. The following are four examples of invariants (for an arbitrary object obj)
and how they are enforced for proxies (an exhaustive list is given at the end of this chapter).

The first two invariants involve non-extensibility and non-configurability. These are enforced by
using the target object for bookkeeping: results returned by handler methods have to be mostly
in sync with the target object.

• Invariant: If Object.preventExtensions(obj) returns true then all future calls must
return false and obj must now be non-extensible.

– Enforced for proxies by throwing a TypeError if the handler returns true, but the
target object is not extensible.

• Invariant: Once an object has been made non-extensible, Object.isExtensible(obj)
must always return false.

– Enforced for proxies by throwing a TypeError if the result returned by the handler
is not the same (after coercion) as Object.isExtensible(target).

The remaining two invariants are enforced by checking return values:

• Invariant: Object.isExtensible(obj) must return a boolean.
– Enforced for proxies by coercing the value returned by the handler to a boolean.

• Invariant: Object.getOwnPropertyDescriptor(obj, ···)must return an object or unde-
fined.

– Enforced for proxies by throwing a TypeError if the handler doesn’t return an
appropriate value.

Enforcing invariants has the following benefits:

¹⁷http://speakingjs.com/es5/ch17.html#property_attributes
¹⁸http://speakingjs.com/es5/ch17.html#protecting_objects

http://speakingjs.com/es5/ch17.html#property_attributes
http://speakingjs.com/es5/ch17.html#protecting_objects
http://speakingjs.com/es5/ch17.html#property_attributes
http://speakingjs.com/es5/ch17.html#protecting_objects


Metaprogramming with proxies 555

• Proxies work like all other objects with regard to extensibility and configurability.
Therefore, universality is maintained. This is achieved without preventing proxies from
virtualizing (impersonating) protected objects.

• A protected object can’t be misrepresented by wrapping a proxy around it. Misrepresen-
tation can be caused by bugs or by malicious code.

The next two sections give examples of invariants being enforced.

28.5.5.3 Example: the prototype of a non-extensible target must be
represented faithfully

In response to the getPrototypeOf trap, the proxy must return the target’s prototype if the target
is non-extensible.

To demonstrate this invariant, let’s create a handler that returns a prototype that is different
from the target’s prototype:

const fakeProto = {};

const handler = {

getPrototypeOf(t) {

return fakeProto;

}

};

Faking the prototype works if the target is extensible:

const extensibleTarget = {};

const ext = new Proxy(extensibleTarget, handler);

console.log(Object.getPrototypeOf(ext) === fakeProto); // true

We do, however, get an error if we fake the prototype for a non-extensible object.

const nonExtensibleTarget = {};

Object.preventExtensions(nonExtensibleTarget);

const nonExt = new Proxy(nonExtensibleTarget, handler);

Object.getPrototypeOf(nonExt); // TypeError

28.5.5.4 Example: non-writable non-configurable target properties must be
represented faithfully

If the target has a non-writable non-configurable property then the handler must return that
property’s value in response to a get trap. To demonstrate this invariant, let’s create a handler
that always returns the same value for properties.



Metaprogramming with proxies 556

const handler = {

get(target, propKey) {

return 'abc';

}

};

const target = Object.defineProperties(

{}, {

foo: {

value: 123,

writable: true,

configurable: true

},

bar: {

value: 456,

writable: false,

configurable: false

},

});

const proxy = new Proxy(target, handler);

Property target.foo is not both non-writable and non-configurable, which means that the
handler is allowed to pretend that it has a different value:

> proxy.foo

'abc'

However, property target.bar is both non-writable and non-configurable. Therefore, we can’t
fake its value:

> proxy.bar

TypeError: Invariant check failed

28.6 FAQ: proxies

28.6.1 Where is the enumerate trap?

ES6 originally had a trap enumerate that was triggered by for-in loops. But it was recently
removed, to simplify proxies. Reflect.enumerate()was removed, as well. (Source: TC39 notes¹⁹)

28.7 Reference: the proxy API

This section serves as a quick reference for the proxy API: the global objects Proxy and Reflect.

¹⁹https://github.com/tc39/tc39-notes/blob/master/es7/2016-01/2016-01-28.md

https://github.com/tc39/tc39-notes/blob/master/es7/2016-01/2016-01-28.md
https://github.com/tc39/tc39-notes/blob/master/es7/2016-01/2016-01-28.md


Metaprogramming with proxies 557

28.7.1 Creating proxies

There are two ways to create proxies:

• const proxy = new Proxy(target, handler)

Creates a new proxy object with the given target and the given handler.
• const {proxy, revoke} = Proxy.revocable(target, handler)

Creates a proxy that can be revoked via the function revoke. revoke can be called multiple
times, but only the first call has an effect and switches proxy off. Afterwards, any operation
performed on proxy leads to a TypeError being thrown.

28.7.2 Handler methods

This subsection explains what traps can be implemented by handlers and what operations trigger
them. Several traps return boolean values. For the traps has and isExtensible, the boolean is the
result of the operation. For all other traps, the boolean indicates whether the operation succeeded
or not.

Traps for all objects:

• defineProperty(target, propKey, propDesc) : boolean

– Object.defineProperty(proxy, propKey, propDesc)

• deleteProperty(target, propKey) : boolean

– delete proxy[propKey]

– delete proxy.foo // propKey = 'foo'

• get(target, propKey, receiver) : any

– receiver[propKey]

– receiver.foo // propKey = 'foo'

• getOwnPropertyDescriptor(target, propKey) : PropDesc|Undefined

– Object.getOwnPropertyDescriptor(proxy, propKey)

• getPrototypeOf(target) : Object|Null

– Object.getPrototypeOf(proxy)

• has(target, propKey) : boolean

– propKey in proxy

• isExtensible(target) : boolean

– Object.isExtensible(proxy)

• ownKeys(target) : Array<PropertyKey>

– Object.getOwnPropertyPropertyNames(proxy) (only uses string keys)
– Object.getOwnPropertyPropertySymbols(proxy) (only uses symbol keys)
– Object.keys(proxy) (only uses enumerable string keys; enumerability is checked
via Object.getOwnPropertyDescriptor)

• preventExtensions(target) : boolean

– Object.preventExtensions(proxy)

• set(target, propKey, value, receiver) : boolean

– receiver[propKey] = value



Metaprogramming with proxies 558

– receiver.foo = value // propKey = 'foo'

• setPrototypeOf(target, proto) : boolean

– Object.setPrototypeOf(proxy, proto)

Traps for functions (available if target is a function):

• apply(target, thisArgument, argumentsList) : any

– proxy.apply(thisArgument, argumentsList)

– proxy.call(thisArgument, ...argumentsList)

– proxy(...argumentsList)

• construct(target, argumentsList, newTarget) : Object

– new proxy(..argumentsList)

28.7.2.1 Fundamental operations versus derived operations

The following operations are fundamental, they don’t use other operations to do their work:
apply, defineProperty, deleteProperty, getOwnPropertyDescriptor, getPrototypeOf, isEx-
tensible, ownKeys, preventExtensions, setPrototypeOf

All other operations are derived, they can be implemented via fundamental operations. For
example, for data properties, get can be implemented by iterating over the prototype chain via
getPrototypeOf and calling getOwnPropertyDescriptor for each chain member until either an
own property is found or the chain ends.

28.7.3 Invariants of handler methods

Invariants are safety constraints for handlers. This subsection documents what invariants are
enforced by the proxy API and how. Whenever you read “the handler must do X” below, it
means that a TypeError is thrown if it doesn’t. Some invariants restrict return values, others
restrict parameters. The correctness of a trap’s return value is ensured in two ways: Normally,
an illegal value means that a TypeError is thrown. But whenever a boolean is expected, coercion
is used to convert non-booleans to legal values.

This is the complete list of invariants that are enforced:

• apply(target, thisArgument, argumentsList)

– No invariants are enforced.
• construct(target, argumentsList, newTarget)

– The result returned by the handler must be an object (not null or a primitive value).
• defineProperty(target, propKey, propDesc)

– If the target is not extensible then you can’t add properties and propKeymust be one
of the own keys of the target.

– If propDesc sets the attribute configurable to false then the target must have a
non-configurable own property whose key is propKey.



Metaprogramming with proxies 559

– If propDesc were to be used to (re)define an own property for the target then that
must not cause an exception. An exception is thrown if a change is forbidden by the
attributes writable and configurable (non-extensibility is handled by the first rule).

• deleteProperty(target, propKey)

– Non-configurable own properties of the target can’t be deleted.
• get(target, propKey, receiver)

– If the target has an own, non-writable, non-configurable data property whose key is
propKey then the handler must return that property’s value.

– If the target has an own, non-configurable, getter-less accessor property then the
handler must return undefined.

• getOwnPropertyDescriptor(target, propKey)

– The handler must return either an object or undefined.
– Non-configurable own properties of the target can’t be reported as non-existent by
the handler.

– If the target is non-extensible then exactly the target’s own properties must be
reported by the handler as existing.

– If the handler reports a property as non-configurable then that property must be a
non-configurable own property of the target.

– If the result returned by the handler were used to (re)define an own property for the
target then that must not cause an exception. An exception is thrown if the change
is not allowed by the attributes writable and configurable (non-extensibility is
handled by the third rule). Therefore, the handler can’t report a non-configurable
property as configurable and it can’t report a different value for a non-configurable
non-writable property.

• getPrototypeOf(target)

– The result must be either an object or null.
– If the target object is not extensible then the handler must return the prototype of
the target object.

• has(target, propKey)

– A handler must not hide (report as non-existent) a non-configurable own property
of the target.

– If the target is non-extensible then no own property of the target may be hidden.
• isExtensible(target)

– The result returned by the handler is coerced to boolean.
– After coercion to boolean, the value returned by the handler must be the same as

target.isExtensible().
• ownKeys(target)

– The handler must return an object, which treated as Array-like and converted into
an Array.

– Each element of the result must be either a string or a symbol.
– The result must contain the keys of all non-configurable own properties of the target.
– If the target is not extensible then the result must contain exactly the keys of the own
properties of the target (and no other values).

• preventExtensions(target)

– The result returned by the handler is coerced to boolean.



Metaprogramming with proxies 560

– If the handler returns a truthy value (indicating a successful change) then tar-

get.isExtensible() must be false afterwards.
• set(target, propKey, value, receiver)

– If the target has an own, non-writable, non-configurable data property whose key is
propKey then valuemust be the same as the value of that property (i.e., the property
can’t be changed).

– If the target has an own, non-configurable, setter-less accessor property then a
TypeError is thrown (i.e., such a property can’t be set).

• setPrototypeOf(target, proto)

– The result returned by the handler is coerced to boolean.
– If the target is not extensible, the prototype can’t be changed. This is enforced
as follows: If the target is not extensible and the handler returns a truthy value
(indicating a successful change) then proto must be the same as the prototype of
the target. Otherwise, a TypeError is thrown.

In the spec, the invariants are listed in the section “Proxy Object Internal Methods and
Internal Slots²⁰”.

28.7.4 Operations that affect the prototype chain

The following operations of normal objects perform operations on objects in the prototype chain.
Therefore, if one of the objects in that chain is a proxy, its traps are triggered. The specification
implements the operations as internal own methods (that are not visible to JavaScript code). But
in this section, we pretend that they are normal methods that have the same names as the traps.
The parameter target becomes the receiver of the method call.

• target.get(propertyKey, receiver)

If target has no own property with the given key, get is invoked on the prototype of
target.

• target.has(propertyKey)

Similarly to get, has is invoked on the prototype of target if target has no own property
with the given key.

• target.set(propertyKey, value, receiver)

Similarly to get, set is invoked on the prototype of target if target has no own property
with the given key.

All other operations only affect own properties, they have no effect on the prototype chain.

In the spec, these (and other) operations are described in the section “Ordinary Object
Internal Methods and Internal Slots²¹”.

²⁰http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots
²¹http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots

http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots
http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots
http://www.ecma-international.org/ecma-262/6.0/#sec-proxy-object-internal-methods-and-internal-slots
http://www.ecma-international.org/ecma-262/6.0/#sec-ordinary-object-internal-methods-and-internal-slots


Metaprogramming with proxies 561

28.7.5 Reflect

The global object Reflect implements all interceptable operations of the JavaScript meta object
protocol as methods. The names of those methods are the same as those of the handler methods,
which, as we have seen, helps with forwarding operations from the handler to the target.

• Reflect.apply(target, thisArgument, argumentsList) : any

Same as Function.prototype.apply().
• Reflect.construct(target, argumentsList, newTarget=target) : Object

The new operator as a function. target is the constructor to invoke, the optional parameter
newTarget points to the constructor that started the current chain of constructor calls.More
information on how constructor calls are chained in ES6 is given in the chapter on classes.

• Reflect.defineProperty(target, propertyKey, propDesc) : boolean

Similar to Object.defineProperty().
• Reflect.deleteProperty(target, propertyKey) : boolean

The delete operator as a function. It works slightly differently, though: It returns true
if it successfully deleted the property or if the property never existed. It returns false if
the property could not be deleted and still exists. The only way to protect properties from
deletion is by making them non-configurable. In sloppy mode, the delete operator returns
the same results. But in strict mode, it throws a TypeError instead of returning false.

• Reflect.get(target, propertyKey, receiver=target) : any

A function that gets properties. The optional parameter receiver is needed when get

reaches a getter later in the prototype chain. Then it provides the value for this.
• Reflect.getOwnPropertyDescriptor(target, propertyKey) : PropDesc|Undefined

Same as Object.getOwnPropertyDescriptor().
• Reflect.getPrototypeOf(target) : Object|Null

Same as Object.getPrototypeOf().
• Reflect.has(target, propertyKey) : boolean

The in operator as a function.
• Reflect.isExtensible(target) : boolean

Same as Object.isExtensible().
• Reflect.ownKeys(target) : Array<PropertyKey>

Returns all own property keys (strings and symbols!) in an Array.
• Reflect.preventExtensions(target) : boolean

Similar to Object.preventExtensions().
• Reflect.set(target, propertyKey, value, receiver=target) : boolean

A function that sets properties.
• Reflect.setPrototypeOf(target, proto) : boolean

The new standard way of setting the prototype of an object. The current non-standard
way, that works in most engines, is to set the special property __proto__.

Several methods have boolean results. For has and isExtensible, they are the results of the
operation. For the remaining methods, they indicate whether the operation succeeded.



Metaprogramming with proxies 562

28.7.5.1 Use cases for Reflect besides forwarding

Apart from forwarding operations, why is Reflect useful [4]?

• Different return values: Reflect duplicates the following methods of Object, but its
methods return booleans indicating whether the operation succeeded (where the Object
methods return the object that was modified).

– Object.defineProperty(obj, propKey, propDesc) : Object

– Object.preventExtensions(obj) : Object

– Object.setPrototypeOf(obj, proto) : Object

• Operators as functions: The following Reflect methods implement functionality that is
otherwise only available via operators:

– Reflect.construct(target, argumentsList, newTarget=target) : Object

– Reflect.deleteProperty(target, propertyKey) : boolean

– Reflect.get(target, propertyKey, receiver=target) : any

– Reflect.has(target, propertyKey) : boolean

– Reflect.set(target, propertyKey, value, receiver=target) : boolean

• Shorter version of apply(): If you want to be completely safe about invoking the method
apply() on a function, you can’t do so via dynamic dispatch, because the function may
have an own property with the key 'apply':

func.apply(thisArg, argArray) // not safe

Function.prototype.apply.call(func, thisArg, argArray) // safe

Using Reflect.apply() is shorter:

Reflect.apply(func, thisArg, argArray)

• No exceptions when deleting properties: the delete operator throws in strict mode if you
try to delete a non-configurable own property. Reflect.deleteProperty() returns false
in that case.

28.7.5.2 Object.* versus Reflect.*

Going forward, Object will host operations that are of interest to normal applications, while
Reflect will host operations that are more low-level.

28.8 Conclusion

This concludes our in-depth look at the proxy API. For each application, you have to take
performance into consideration and – if necessary – measure. Proxies may not always be
fast enough. On the other hand, performance is often not crucial and it is nice to have the
metaprogramming power that proxies give us. As we have seen, there are numerous use cases
they can help with.



Metaprogramming with proxies 563

28.9 Further reading

[1] “On the design of the ECMAScript Reflection API²²” by Tom Van Cutsem and Mark Miller.
Technical report, 2012. [Important source of this chapter.]

[2] “The Art of the Metaobject Protocol²³” by Gregor Kiczales, Jim des Rivieres and Daniel G.
Bobrow. Book, 1991.

[3] “Putting Metaclasses to Work: A New Dimension in Object-Oriented Programming²⁴” by Ira
R. Forman and Scott H. Danforth. Book, 1999.

[4] “Harmony-reflect: Why should I use this library?²⁵” by Tom Van Cutsem. [Explains why
Reflect is useful.]

²²http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-03.pdf
²³http://mitpress.mit.edu/books/art-metaobject-protocol
²⁴http://www.pearsonhighered.com/educator/product/Putting-Metaclasses-to-Work-A-New-Dimension-in-ObjectOriented-

Programming/9780201433050.page
²⁵https://github.com/tvcutsem/harmony-reflect/wiki

http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-03.pdf
http://mitpress.mit.edu/books/art-metaobject-protocol
http://www.pearsonhighered.com/educator/product/Putting-Metaclasses-to-Work-A-New-Dimension-in-ObjectOriented-Programming/9780201433050.page
https://github.com/tvcutsem/harmony-reflect/wiki
http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-03.pdf
http://mitpress.mit.edu/books/art-metaobject-protocol
http://www.pearsonhighered.com/educator/product/Putting-Metaclasses-to-Work-A-New-Dimension-in-ObjectOriented-Programming/9780201433050.page
http://www.pearsonhighered.com/educator/product/Putting-Metaclasses-to-Work-A-New-Dimension-in-ObjectOriented-Programming/9780201433050.page
https://github.com/tvcutsem/harmony-reflect/wiki


29. Coding style tips for ECMAScript
6

This chapter lists a few ideas related to ES6 coding style:

• var versus let versus const (details are explained in the chapter on variables):
– Prefer const. You can use it for all variables whose values never change.
– Otherwise, use let – for variables whose values do change.
– Avoid var.

• An arrow function is the superior solution whenever a function fits into a single line:

readFilePromisified(filename)

.then(text => console.log(text))

For multi-line functions, traditional functions work well, too (with the caveat of this not
being lexical):

readFilePromisified(filename)

.then(function (text) {

const obj = JSON.parse(text);

console.log(JSON.stringify(obj, null, 4));

});

Single-line functions tend to be throw-away. If a function isn’t then a traditional function
has the advantage that you can name it, which is useful for documentation and debugging.

• Properties in object literals: As soon as an object literal spans multiple lines, I add a comma
after the last entry. Such a trailing comma has been legal since ES5. It makes adding,
removing and rearranging entries simpler. As a consequence, method definitions always
end with },:

const obj = {

foo() {

},

bar() {

},

};

• Modules: don’t mix default exports and named exports. Your module should either
specialize on a single thing or export multiple, named, things. Details are explained in
the chapter on modules.

• Format generators as follows:



Coding style tips for ECMAScript 6 565

// Generator function declaration

function* genFunc() { ··· }

// Generator function expression

const genFunc = function* () { ··· };

// Generator method definition in an object literal

const obj = {

* generatorMethod() {

···

}

};

// Generator method definition in a class definition

class MyClass {

* generatorMethod() {

···

}

}

Details are explained in the chapter on generators.
• The chapter on parameter handling has style tips for function signatures:

// Mark optional parameters via the parameter default value `undefined`

function foo(optional = undefined) { ··· }

// Mark required parameters via a function that throws an exception

function foo(required = throwException()) { ··· }

// Enforcing a maximum arity (variant 1 of 2)

function f(x, y, ...empty) { // max arity: 2

if (empty.length > 0) {

throw new Error();

}

}

// Enforcing a maximum arity (variant 2 of 2)

function f(x, y) { // max arity: 2

if (arguments.length > 2) {

throw new Error();

}

}

• In the chapter on callable entities (traditional functions, arrow functions, classes, etc.) there
is a section that gives recommendations (when to use which one etc.).

Additionally, the ES5 coding style tips¹ in “Speaking JavaScript” are still relevant for ES6.

¹http://speakingjs.com/es5/ch26.html

http://speakingjs.com/es5/ch26.html
http://speakingjs.com/es5/ch26.html


30. An overview of what’s new in ES6
This chapter collects the overview sections of all the chapters in this book.

30.1 Categories of ES6 features

The introduction of the ES6 specification lists all new features:

Some of [ECMAScript 6’s] major enhancements include modules, class declara-
tions, lexical block scoping, iterators and generators, promises for asynchronous
programming, destructuring patterns, and proper tail calls. The ECMAScript library
of built-ins has been expanded to support additional data abstractions including
maps, sets, and arrays of binary numeric values as well as additional support for
Unicode supplemental characters in strings and regular expressions. The built-ins
are now extensible via subclassing.

There are three major categories of features:

• Better syntax for features that already exist (e.g. via libraries). For example:
– Classes
– Modules

• New functionality in the standard library. For example:
– New methods for strings and Arrays
– Promises
– Maps, Sets

• Completely new features. For example:
– Generators
– Proxies
– WeakMaps

30.2 New number and Math features

30.2.1 New integer literals

You can now specify integers in binary and octal notation:



An overview of what’s new in ES6 567

> 0xFF // ES5: hexadecimal

255

> 0b11 // ES6: binary

3

> 0o10 // ES6: octal

8

30.2.2 New Number properties

The global object Number gained a few new properties:

• Number.EPSILON for comparing floating point numbers with a tolerance for rounding
errors.

• Number.isInteger(num) checks whether num is an integer (a number without a decimal
fraction):

> Number.isInteger(1.05)

false

> Number.isInteger(1)

true

> Number.isInteger(-3.1)

false

> Number.isInteger(-3)

true

• A method and constants for determining whether a JavaScript integer is safe (within the
signed 53 bit range in which there is no loss of precision):

– Number.isSafeInteger(number)

– Number.MIN_SAFE_INTEGER

– Number.MAX_SAFE_INTEGER

• Number.isNaN(num) checks whether num is the value NaN. In contrast to the global function
isNaN(), it doesn’t coerce its argument to a number and is therefore safer for non-numbers:

> isNaN('???')

true

> Number.isNaN('???')

false

• Three additional methods of Number are mostly equivalent to the global functions with the
same names: Number.isFinite, Number.parseFloat, Number.parseInt.

30.2.3 New Math methods

The global object Math has new methods for numerical, trigonometric and bitwise operations.
Let’s look at four examples.

Math.sign() returns the sign of a number:



An overview of what’s new in ES6 568

> Math.sign(-8)

-1

> Math.sign(0)

0

> Math.sign(3)

1

Math.trunc() removes the decimal fraction of a number:

> Math.trunc(3.1)

3

> Math.trunc(3.9)

3

> Math.trunc(-3.1)

-3

> Math.trunc(-3.9)

-3

Math.log10() computes the logarithm to base 10:

> Math.log10(100)

2

Math.hypot() Computes the square root of the sum of the squares of its arguments (Pythagoras’
theorem):

> Math.hypot(3, 4)

5

30.3 New string features

New string methods:

> 'hello'.startsWith('hell')

true

> 'hello'.endsWith('ello')

true

> 'hello'.includes('ell')

true

> 'doo '.repeat(3)

'doo doo doo '

ES6 has a new kind of string literal, the template literal:



An overview of what’s new in ES6 569

// String interpolation via template literals (in backticks)

const first = 'Jane';

const last = 'Doe';

console.log(`Hello ${first} ${last}!`);

// Hello Jane Doe!

// Template literals also let you create strings with multiple lines

const multiLine = `

This is

a string

with multiple

lines`;

30.4 Symbols

Symbols are a new primitive type in ECMAScript 6. They are created via a factory function:

const mySymbol = Symbol('mySymbol');

Every time you call the factory function, a new and unique symbol is created. The optional
parameter is a descriptive string that is shownwhen printing the symbol (it has no other purpose):

> mySymbol

Symbol(mySymbol)

30.4.1 Use case 1: unique property keys

Symbols are mainly used as unique property keys – a symbol never clashes with any other
property key (symbol or string). For example, you can make an object iterable (usable via the
for-of loop and other language mechanisms), by using the symbol stored in Symbol.iterator

as the key of a method (more information on iterables is given in the chapter on iteration):

const iterableObject = {

[Symbol.iterator]() { // (A)

···

}

}

for (const x of iterableObject) {

console.log(x);

}

// Output:

// hello

// world

In line A, a symbol is used as the key of the method. This unique marker makes the object iterable
and enables us to use the for-of loop.



An overview of what’s new in ES6 570

30.4.2 Use case 2: constants representing concepts

In ECMAScript 5, you may have used strings to represent concepts such as colors. In ES6, you
can use symbols and be sure that they are always unique:

const COLOR_RED = Symbol('Red');

const COLOR_ORANGE = Symbol('Orange');

const COLOR_YELLOW = Symbol('Yellow');

const COLOR_GREEN = Symbol('Green');

const COLOR_BLUE = Symbol('Blue');

const COLOR_VIOLET = Symbol('Violet');

function getComplement(color) {

switch (color) {

case COLOR_RED:

return COLOR_GREEN;

case COLOR_ORANGE:

return COLOR_BLUE;

case COLOR_YELLOW:

return COLOR_VIOLET;

case COLOR_GREEN:

return COLOR_RED;

case COLOR_BLUE:

return COLOR_ORANGE;

case COLOR_VIOLET:

return COLOR_YELLOW;

default:

throw new Exception('Unknown color: '+color);

}

}

Every time you call Symbol('Red'), a new symbol is created. Therefore, COLOR_RED can never be
mistaken for another value. That would be different if it were the string 'Red'.

30.4.3 Pitfall: you can’t coerce symbols to strings

Coercing (implicitly converting) symbols to strings throws exceptions:

const sym = Symbol('desc');

const str1 = '' + sym; // TypeError

const str2 = `${sym}`; // TypeError

The only solution is to convert explicitly:



An overview of what’s new in ES6 571

const str2 = String(sym); // 'Symbol(desc)'

const str3 = sym.toString(); // 'Symbol(desc)'

Forbidding coercion prevents some errors, but also makes working with symbols more compli-
cated.

30.4.4 Which operations related to property keys are aware of
symbols?

The following operations are aware of symbols as property keys:

• Reflect.ownKeys()

• Property access via []
• Object.assign()

The following operations ignore symbols as property keys:

• Object.keys()

• Object.getOwnPropertyNames()

• for-in loop

30.5 Template literals

ES6 has two new kinds of literals: template literals and tagged template literals. These two literals
have similar names and look similar, but they are quite different. It is therefore important to
distinguish:

• Template literals (code): multi-line string literals that support interpolation
• Tagged template literals (code): function calls
• Web templates (data): HTML with blanks to be filled in

Template literals are string literals that can stretch across multiple lines and include interpolated
expressions (inserted via ${···}):



An overview of what’s new in ES6 572

const firstName = 'Jane';

console.log(`Hello ${firstName}!

How are you

today?`);

// Output:

// Hello Jane!

// How are you

// today?

Tagged template literals (short: tagged templates) are created by mentioning a function before a
template literal:

> String.raw`A \tagged\ template`

'A \\tagged\\ template'

Tagged templates are function calls. In the previous example, the method String.raw is called
to produce the result of the tagged template.

30.6 Variables and scoping

ES6 provides two new ways of declaring variables: let and const, which mostly replace the ES5
way of declaring variables, var.

30.6.1 let

let works similarly to var, but the variable it declares is block-scoped, it only exists within the
current block. var is function-scoped.

In the following code, you can see that the let-declared variable tmp only exists inside the block
that starts in line A:

function order(x, y) {

if (x > y) { // (A)

let tmp = x;

x = y;

y = tmp;

}

console.log(tmp===x); // ReferenceError: tmp is not defined

return [x, y];

}

30.6.2 const

const works like let, but the variable you declare must be immediately initialized, with a value
that can’t be changed afterwards.



An overview of what’s new in ES6 573

const foo;

// SyntaxError: missing = in const declaration

const bar = 123;

bar = 456;

// TypeError: `bar` is read-only

Since for-of creates one binding (storage space for a variable) per loop iteration, it is OK to
const-declare the loop variable:

for (const x of ['a', 'b']) {

console.log(x);

}

// Output:

// a

// b

30.6.3 Ways of declaring variables

The following table gives an overview of six ways in which variables can be declared in ES6
(inspired by a table by kangax¹):

Hoisting Scope Creates global properties

var Declaration Function Yes
let Temporal dead zone Block No
const Temporal dead zone Block No
function Complete Block Yes
class No Block No
import Complete Module-global No

30.7 Destructuring

Destructuring is a convenient way of extracting values from data stored in (possibly nested)
objects and Arrays. It can be used in locations that receive data (such as the left-hand side of an
assignment). How to extract the values is specified via patterns (read on for examples).

30.7.1 Object destructuring

Destructuring objects:

¹https://twitter.com/kangax/status/567330097603284992

https://twitter.com/kangax/status/567330097603284992
https://twitter.com/kangax/status/567330097603284992


An overview of what’s new in ES6 574

const obj = { first: 'Jane', last: 'Doe' };

const {first: f, last: l} = obj;

// f = 'Jane'; l = 'Doe'

// {prop} is short for {prop: prop}

const {first, last} = obj;

// first = 'Jane'; last = 'Doe'

Destructuring helps with processing return values:

const obj = { foo: 123 };

const {writable, configurable} =

Object.getOwnPropertyDescriptor(obj, 'foo');

console.log(writable, configurable); // true true

30.7.2 Array destructuring

Array destructuring (works for all iterable values):

const iterable = ['a', 'b'];

const [x, y] = iterable;

// x = 'a'; y = 'b'

Destructuring helps with processing return values:

const [all, year, month, day] =

/^(\d\d\d\d)-(\d\d)-(\d\d)$/

.exec('2999-12-31');

30.7.3 Where can destructuring be used?

Destructuring can be used in the following locations:



An overview of what’s new in ES6 575

// Variable declarations:

const [x] = ['a'];

let [x] = ['a'];

var [x] = ['a'];

// Assignments:

[x] = ['a'];

// Parameter definitions:

function f([x]) { ··· }

f(['a']);

You can also destructure in a for-of loop:

const arr1 = ['a', 'b'];

for (const [index, element] of arr1.entries()) {

console.log(index, element);

}

// Output:

// 0 a

// 1 b

const arr2 = [

{name: 'Jane', age: 41},

{name: 'John', age: 40},

];

for (const {name, age} of arr2) {

console.log(name, age);

}

// Output:

// Jane 41

// John 40

30.8 Parameter handling

Parameter handling has been significantly upgraded in ECMAScript 6. It now supports parameter
default values, rest parameters (varargs) and destructuring.

Default parameter values:

function findClosestShape(x=0, y=0) {

// ...

}

Rest parameters:



An overview of what’s new in ES6 576

function format(pattern, ...params) {

return params;

}

console.log(format('a', 'b', 'c')); // ['b', 'c']

Named parameters via destructuring:

function selectEntries({ start=0, end=-1, step=1 } = {}) {

// The object pattern is an abbreviation of:

// { start: start=0, end: end=-1, step: step=1 }

// Use the variables `start`, `end` and `step` here

···

}

selectEntries({ start: 10, end: 30, step: 2 });

selectEntries({ step: 3 });

selectEntries({});

selectEntries();

30.8.1 Spread operator (...)

In function and constructor calls, the spread operator turns iterable values into arguments:

> Math.max(-1, 5, 11, 3)

11

> Math.max(...[-1, 5, 11, 3])

11

> Math.max(-1, ...[-1, 5, 11], 3)

11

In Array literals, the spread operator turns iterable values into Array elements:

> [1, ...[2,3], 4]

[1, 2, 3, 4]

30.9 Callable entities in ECMAScript 6

In ES5, a single construct, the (traditional) function, played three roles:

• Real (non-method) function
• Method
• Constructor



An overview of what’s new in ES6 577

In ES6, there ismore specialization. The three duties are nowhandled as follows (a class definition
is either one of the two constructs for creating classes – a class declaration or a class expression):

• Real (non-method) function:
– Arrow functions (only have an expression form)
– Traditional functions (created via function expressions and function declarations)
– Generator functions (created via generator function expressions and generator
function declarations)

• Method:
– Methods (created by method definitions in object literals and class definitions)
– Generator methods (created by generator method definitions in object literals and
class definitions)

• Constructor:
– Classes (created via class definitions)

This list is a simplification. There are quite a few libraries that use this as an implicit parameter
for callbacks. Then you have to use traditional functions.

Note that I distinguish:

• The entity: e.g. traditional function
• The syntax that creates the entity: e.g. function expression and function declaration

Even though their behaviors differ (as explained later), all of these entities are functions. For
example:

> typeof (() => {}) // arrow function

'function'

> typeof function* () {} // generator function

'function'

> typeof class {} // class

'function'

30.10 Arrow functions

There are two benefits to arrow functions.

First, they are less verbose than traditional function expressions:



An overview of what’s new in ES6 578

const arr = [1, 2, 3];

const squares = arr.map(x => x * x);

// Traditional function expression:

const squares = arr.map(function (x) { return x * x });

Second, their this is picked up from surroundings (lexical). Therefore, you don’t need bind()

or that = this, anymore.

function UiComponent() {

const button = document.getElementById('myButton');

button.addEventListener('click', () => {

console.log('CLICK');

this.handleClick(); // lexical `this`

});

}

The following variables are all lexical inside arrow functions:

• arguments

• super

• this

• new.target

30.11 New OOP features besides classes

30.11.1 New object literal features

Method definitions:

const obj = {

myMethod(x, y) {

···

}

};

Property value shorthands:



An overview of what’s new in ES6 579

const first = 'Jane';

const last = 'Doe';

const obj = { first, last };

// Same as:

const obj = { first: first, last: last };

Computed property keys:

const propKey = 'foo';

const obj = {

[propKey]: true,

['b'+'ar']: 123

};

This new syntax can also be used for method definitions:

const obj = {

['h'+'ello']() {

return 'hi';

}

};

console.log(obj.hello()); // hi

The main use case for computed property keys is to make it easy to use symbols as property keys.

30.11.2 New methods in Object

The most important new method of Object is assign(). Traditionally, this functionality was
called extend() in the JavaScript world. In contrast to how this classic operation works,
Object.assign() only considers own (non-inherited) properties.

const obj = { foo: 123 };

Object.assign(obj, { bar: true });

console.log(JSON.stringify(obj));

// {"foo":123,"bar":true}

30.12 Classes

A class and a subclass:



An overview of what’s new in ES6 580

class Point {

constructor(x, y) {

this.x = x;

this.y = y;

}

toString() {

return `(${this.x}, ${this.y})`;

}

}

class ColorPoint extends Point {

constructor(x, y, color) {

super(x, y);

this.color = color;

}

toString() {

return super.toString() + ' in ' + this.color;

}

}

Using the classes:

> const cp = new ColorPoint(25, 8, 'green');

> cp.toString();

'(25, 8) in green'

> cp instanceof ColorPoint

true

> cp instanceof Point

true

Under the hood, ES6 classes are not something that is radically new: They mainly provide more
convenient syntax to create old-school constructor functions. You can see that if you use typeof:

> typeof Point

'function'

30.13 Modules

JavaScript has had modules for a long time. However, they were implemented via libraries, not
built into the language. ES6 is the first time that JavaScript has built-in modules.

ES6 modules are stored in files. There is exactly one module per file and one file per module.
You have two ways of exporting things from a module. These two ways can be mixed, but it is
usually better to use them separately.



An overview of what’s new in ES6 581

30.13.1 Multiple named exports

There can be multiple named exports:

//------ lib.js ------

export const sqrt = Math.sqrt;

export function square(x) {

return x * x;

}

export function diag(x, y) {

return sqrt(square(x) + square(y));

}

//------ main.js ------

import { square, diag } from 'lib';

console.log(square(11)); // 121

console.log(diag(4, 3)); // 5

You can also import the complete module:

//------ main.js ------

import * as lib from 'lib';

console.log(lib.square(11)); // 121

console.log(lib.diag(4, 3)); // 5

30.13.2 Single default export

There can be a single default export. For example, a function:

//------ myFunc.js ------

export default function () { ··· } // no semicolon!

//------ main1.js ------

import myFunc from 'myFunc';

myFunc();

Or a class:



An overview of what’s new in ES6 582

//------ MyClass.js ------

export default class { ··· } // no semicolon!

//------ main2.js ------

import MyClass from 'MyClass';

const inst = new MyClass();

Note that there is no semicolon at the end if you default-export a function or a class (which are
anonymous declarations).

30.13.3 Browsers: scripts versus modules

Scripts Modules

HTML element <script> <script type="module">

Default mode non-strict strict
Top-level variables are global local to module
Value of this at top level window undefined

Executed synchronously asynchronously
Declarative imports (import statement) no yes
Programmatic imports (Promise-based API) yes yes
File extension .js .js

30.14 The for-of loop

for-of is a new loop in ES6 that replaces both for-in and forEach() and supports the new
iteration protocol.

Use it to loop over iterable objects (Arrays, strings, Maps, Sets, etc.; see Chap. “Iterables and
iterators”):

const iterable = ['a', 'b'];

for (const x of iterable) {

console.log(x);

}

// Output:

// a

// b

break and continue work inside for-of loops:



An overview of what’s new in ES6 583

for (const x of ['a', '', 'b']) {

if (x.length === 0) break;

console.log(x);

}

// Output:

// a

Access both elements and their indices while looping over an Array (the square brackets before
of mean that we are using destructuring):

const arr = ['a', 'b'];

for (const [index, element] of arr.entries()) {

console.log(`${index}. ${element}`);

}

// Output:

// 0. a

// 1. b

Looping over the [key, value] entries in a Map (the square brackets before of mean that we are
using destructuring):

const map = new Map([

[false, 'no'],

[true, 'yes'],

]);

for (const [key, value] of map) {

console.log(`${key} => ${value}`);

}

// Output:

// false => no

// true => yes

30.15 New Array features

New static Array methods:

• Array.from(arrayLike, mapFunc?, thisArg?)

• Array.of(...items)

New Array.prototype methods:



An overview of what’s new in ES6 584

• Iterating:
– Array.prototype.entries()

– Array.prototype.keys()

– Array.prototype.values()

• Searching for elements:
– Array.prototype.find(predicate, thisArg?)

– Array.prototype.findIndex(predicate, thisArg?)

• Array.prototype.copyWithin(target, start, end=this.length)

• Array.prototype.fill(value, start=0, end=this.length)

30.16 Maps and Sets

Among others, the following four data structures are new in ECMAScript 6: Map, WeakMap, Set
and WeakSet.

30.16.1 Maps

The keys of a Map can be arbitrary values:

> const map = new Map(); // create an empty Map

> const KEY = {};

> map.set(KEY, 123);

> map.get(KEY)

123

> map.has(KEY)

true

> map.delete(KEY);

true

> map.has(KEY)

false

You can use an Array (or any iterable) with [key, value] pairs to set up the initial data in the
Map:

const map = new Map([

[ 1, 'one' ],

[ 2, 'two' ],

[ 3, 'three' ], // trailing comma is ignored

]);

30.16.2 Sets

A Set is a collection of unique elements:



An overview of what’s new in ES6 585

const arr = [5, 1, 5, 7, 7, 5];

const unique = [...new Set(arr)]; // [ 5, 1, 7 ]

As you can see, you can initialize a Set with elements if you hand the constructor an iterable
(arr in the example) over those elements.

30.16.3 WeakMaps

AWeakMap is aMap that doesn’t prevent its keys from being garbage-collected. That means that
you can associate data with objects without having to worry about memory leaks. For example:

//----- Manage listeners

const _objToListeners = new WeakMap();

function addListener(obj, listener) {

if (! _objToListeners.has(obj)) {

_objToListeners.set(obj, new Set());

}

_objToListeners.get(obj).add(listener);

}

function triggerListeners(obj) {

const listeners = _objToListeners.get(obj);

if (listeners) {

for (const listener of listeners) {

listener();

}

}

}

//----- Example: attach listeners to an object

const obj = {};

addListener(obj, () => console.log('hello'));

addListener(obj, () => console.log('world'));

//----- Example: trigger listeners

triggerListeners(obj);

// Output:

// hello

// world



An overview of what’s new in ES6 586

30.17 Typed Arrays

Typed Arrays are an ECMAScript 6 API for handling binary data.

Code example:

const typedArray = new Uint8Array([0,1,2]);

console.log(typedArray.length); // 3

typedArray[0] = 5;

const normalArray = [...typedArray]; // [5,1,2]

// The elements are stored in typedArray.buffer.

// Get a different view on the same data:

const dataView = new DataView(typedArray.buffer);

console.log(dataView.getUint8(0)); // 5

Instances of ArrayBuffer store the binary data to be processed. Two kinds of views are used to
access the data:

• Typed Arrays (Uint8Array, Int16Array, Float32Array, etc.) interpret the ArrayBuffer as
an indexed sequence of elements of a single type.

• Instances of DataView let you access data as elements of several types (Uint8, Int16,
Float32, etc.), at any byte offset inside an ArrayBuffer.

The following browser APIs support Typed Arrays (details are mentioned in a dedicated section):

• File API
• XMLHttpRequest
• Fetch API
• Canvas
• WebSockets
• And more

30.18 Iterables and iterators

ES6 introduces a new mechanism for traversing data: iteration. Two concepts are central to
iteration:

• An iterable is a data structure that wants to make its elements accessible to the public.
It does so by implementing a method whose key is Symbol.iterator. That method is a
factory for iterators.

• An iterator is a pointer for traversing the elements of a data structure (think cursors in
databases).

Expressed as interfaces in TypeScript notation, these roles look like this:



An overview of what’s new in ES6 587

interface Iterable {

[Symbol.iterator]() : Iterator;

}

interface Iterator {

next() : IteratorResult;

}

interface IteratorResult {

value: any;

done: boolean;

}

30.18.1 Iterable values

The following values are iterable:

• Arrays
• Strings
• Maps
• Sets
• DOM data structures (work in progress)

Plain objects are not iterable (why is explained in a dedicated section).

30.18.2 Constructs supporting iteration

Language constructs that access data via iteration:

• Destructuring via an Array pattern:

const [a,b] = new Set(['a', 'b', 'c']);

• for-of loop:

for (const x of ['a', 'b', 'c']) {

console.log(x);

}

• Array.from():

const arr = Array.from(new Set(['a', 'b', 'c']));

• Spread operator (...):

const arr = [...new Set(['a', 'b', 'c'])];

• Constructors of Maps and Sets:



An overview of what’s new in ES6 588

const map = new Map([[false, 'no'], [true, 'yes']]);

const set = new Set(['a', 'b', 'c']);

• Promise.all(), Promise.race():

Promise.all(iterableOverPromises).then(···);

Promise.race(iterableOverPromises).then(···);

• yield*:

yield* anIterable;

30.19 Generators

30.19.1 What are generators?

You can think of generators as processes (pieces of code) that you can pause and resume:

function* genFunc() {

// (A)

console.log('First');

yield;

console.log('Second');

}

Note the new syntax: function* is a new “keyword” for generator functions (there are also
generator methods). yield is an operator with which a generator can pause itself. Additionally,
generators can also receive input and send output via yield.

When you call a generator function genFunc(), you get a generator object genObj that you can
use to control the process:

const genObj = genFunc();

The process is initially paused in line A. genObj.next() resumes execution, a yield inside
genFunc() pauses execution:

genObj.next();

// Output: First

genObj.next();

// output: Second

30.19.2 Kinds of generators

There are four kinds of generators:

1. Generator function declarations:



An overview of what’s new in ES6 589

function* genFunc() { ··· }

const genObj = genFunc();

2. Generator function expressions:

const genFunc = function* () { ··· };

const genObj = genFunc();

3. Generator method definitions in object literals:

const obj = {

* generatorMethod() {

···

}

};

const genObj = obj.generatorMethod();

4. Generator method definitions in class definitions (class declarations or class expressions):

class MyClass {

* generatorMethod() {

···

}

}

const myInst = new MyClass();

const genObj = myInst.generatorMethod();

30.19.3 Use case: implementing iterables

The objects returned by generators are iterable; each yield contributes to the sequence of iterated
values. Therefore, you can use generators to implement iterables, which can be consumed by
various ES6 language mechanisms: for-of loop, spread operator (...), etc.

The following function returns an iterable over the properties of an object, one [key, value] pair
per property:

function* objectEntries(obj) {

const propKeys = Reflect.ownKeys(obj);

for (const propKey of propKeys) {

// `yield` returns a value and then pauses

// the generator. Later, execution continues

// where it was previously paused.

yield [propKey, obj[propKey]];

}

}

objectEntries() is used like this:



An overview of what’s new in ES6 590

const jane = { first: 'Jane', last: 'Doe' };

for (const [key,value] of objectEntries(jane)) {

console.log(`${key}: ${value}`);

}

// Output:

// first: Jane

// last: Doe

How exactly objectEntries()works is explained in a dedicated section. Implementing the same
functionality without generators is much more work.

30.19.4 Use case: simpler asynchronous code

You can use generators to tremendously simplify working with Promises. Let’s look at a Promise-
based function fetchJson() and how it can be improved via generators.

function fetchJson(url) {

return fetch(url)

.then(request => request.text())

.then(text => {

return JSON.parse(text);

})

.catch(error => {

console.log(`ERROR: ${error.stack}`);

});

}

With the library co² and a generator, this asynchronous code looks synchronous:

const fetchJson = co.wrap(function* (url) {

try {

let request = yield fetch(url);

let text = yield request.text();

return JSON.parse(text);

}

catch (error) {

console.log(`ERROR: ${error.stack}`);

}

});

ECMAScript 2017 will have async functions which are internally based on generators. With
them, the code looks like this:

²https://github.com/tj/co

https://github.com/tj/co
https://github.com/tj/co


An overview of what’s new in ES6 591

async function fetchJson(url) {

try {

let request = await fetch(url);

let text = await request.text();

return JSON.parse(text);

}

catch (error) {

console.log(`ERROR: ${error.stack}`);

}

}

All versions can be invoked like this:

fetchJson('http://example.com/some_file.json')

.then(obj => console.log(obj));

30.19.5 Use case: receiving asynchronous data

Generators can receive input from next() via yield. That means that you can wake up a
generator whenever new data arrives asynchronously and to the generator it feels like it receives
the data synchronously.

30.20 New regular expression features

The following regular expression features are new in ECMAScript 6:

• The new flag /y (sticky) anchors each match of a regular expression to the end of the
previous match.

• The new flag /u (unicode) handles surrogate pairs (such as \uD83D\uDE80) as code points
and lets you use Unicode code point escapes (such as \u{1F680}) in regular expressions.

• The new data property flags gives you access to the flags of a regular expression, just like
source already gives you access to the pattern in ES5:

> /abc/ig.source // ES5

'abc'

> /abc/ig.flags // ES6

'gi'

• You can use the constructor RegExp() to make a copy of a regular expression:



An overview of what’s new in ES6 592

> new RegExp(/abc/ig).flags

'gi'

> new RegExp(/abc/ig, 'i').flags // change flags

'i'

30.21 Promises for asynchronous programming

Promises are an alternative to callbacks for delivering the results of an asynchronous computa-
tion. They require more effort from implementors of asynchronous functions, but provide several
benefits for users of those functions.

The following function returns a result asynchronously, via a Promise:

function asyncFunc() {

return new Promise(

function (resolve, reject) {

···

resolve(result);

···

reject(error);

});

}

You call asyncFunc() as follows:

asyncFunc()

.then(result => { ··· })

.catch(error => { ··· });

30.21.1 Chaining then() calls

then() always returns a Promise, which enables you to chain method calls:

asyncFunc1()

.then(result1 => {

// Use result1

return asyncFunction2(); // (A)

})

.then(result2 => { // (B)

// Use result2

})

.catch(error => {

// Handle errors of asyncFunc1() and asyncFunc2()

});



An overview of what’s new in ES6 593

How the Promise P returned by then() is settled depends on what its callback does:

• If it returns a Promise (as in line A), the settlement of that Promise is forwarded to P. That’s
why the callback from line B can pick up the settlement of asyncFunction2’s Promise.

• If it returns a different value, that value is used to settle P.
• If throws an exception then P is rejected with that exception.

Furthermore, note how catch() handles the errors of two asynchronous function calls (asyncFunction1()
and asyncFunction2()). That is, uncaught errors are passed on until there is an error handler.

30.21.2 Executing asynchronous functions in parallel

If you chain asynchronous function calls via then(), they are executed sequentially, one at a
time:

asyncFunc1()

.then(() => asyncFunc2());

If you don’t do that and call all of them immediately, they are basically executed in parallel (a
fork in Unix process terminology):

asyncFunc1();

asyncFunc2();

Promise.all() enables you to be notified once all results are in (a join in Unix process
terminology). Its input is an Array of Promises, its output a single Promise that is fulfilled with
an Array of the results.

Promise.all([

asyncFunc1(),

asyncFunc2(),

])

.then(([result1, result2]) => {

···

})

.catch(err => {

// Receives first rejection among the Promises

···

});



An overview of what’s new in ES6 594

30.21.3 Glossary: Promises

The Promise API is about delivering results asynchronously. A Promise object (short: Promise)
is a stand-in for the result, which is delivered via that object.

States:

• A Promise is always in one of three mutually exclusive states:
– Before the result is ready, the Promise is pending.
– If a result is available, the Promise is fulfilled.
– If an error happened, the Promise is rejected.

• A Promise is settled if “things are done” (if it is either fulfilled or rejected).
• A Promise is settled exactly once and then remains unchanged.

Reacting to state changes:

• Promise reactions are callbacks that you register with the Promise method then(), to be
notified of a fulfillment or a rejection.

• A thenable is an object that has a Promise-style then() method. Whenever the API
is only interested in being notified of settlements, it only demands thenables (e.g. the
values returned from then() and catch(); or the values handed to Promise.all() and
Promise.race()).

Changing states: There are two operations for changing the state of a Promise. After you have
invoked either one of them once, further invocations have no effect.

• Rejecting a Promise means that the Promise becomes rejected.
• Resolving a Promise has different effects, depending on what value you are resolving with:

– Resolving with a normal (non-thenable) value fulfills the Promise.
– Resolving a Promise P with a thenable T means that P can’t be resolved anymore and
will now follow T’s state, including its fulfillment or rejection value. The appropriate
P reactions will get called once T settles (or are called immediately if T is already
settled).

30.22 Metaprogramming with proxies

Proxies enable you to intercept and customize operations performed on objects (such as getting
properties). They are a metaprogramming feature.

In the following example, proxy is the object whose operations we are intercepting and handler is
the object that handles the interceptions. In this case, we are only intercepting a single operation,
get (getting properties).



An overview of what’s new in ES6 595

const target = {};

const handler = {

get(target, propKey, receiver) {

console.log('get ' + propKey);

return 123;

}

};

const proxy = new Proxy(target, handler);

When we get the property proxy.foo, the handler intercepts that operation:

> proxy.foo

get foo

123

Consult the reference for the complete API for a list of operations that can be intercepted.


	Table of Contents
	Short TOC
	What you need to know about this book
	Audience: JavaScript programmers
	Why should I read this book?
	How to read this book
	Sources of this book
	Glossary
	Strict mode versus sloppy mode
	Protocol
	Receiver (of a method call)
	Signature of a function (or a method)
	Internal slots
	Bindings and environments
	Destructive operations

	Conventions
	Documenting classes
	Capitalization

	Demo code on GitHub
	Sidebars
	Footnotes

	Foreword
	Preface
	Acknowledgements
	About the author
	I Background
	About ECMAScript 6 (ES6)
	TC39 (Ecma Technical Committee 39)
	How ECMAScript 6 was designed
	The design process after ES6

	JavaScript versus ECMAScript
	Upgrading to ES6
	Goals for ES6
	Goal: Be a better language
	Goal: Improve interoperation
	Goal: Versioning

	Categories of ES6 features
	A brief history of ECMAScript
	The early years: ECMAScript 1–3
	ECMAScript 4 (abandoned in July 2008)
	ECMAScript Harmony


	FAQ: ECMAScript 6
	How can I use ES6 today?
	Isn’t ECMAScript 6 now called ECMAScript 2015?
	How do I migrate my ECMAScript 5 code to ECMAScript 6?
	Does it still make sense to learn ECMAScript 5?
	Is ES6 bloated?
	Isn’t the ES6 specification very big?
	Does ES6 have array comprehensions?
	Is ES6 statically typed?

	One JavaScript: avoiding versioning in ECMAScript 6
	Versioning
	Evolution without versioning

	Strict mode and ECMAScript 6
	Supporting sloppy (non-strict) mode
	let declarations in sloppy mode
	Block-level function declarations in sloppy mode
	Other keywords
	Implicit strict mode
	Things that can’t be fixed

	Breaking changes in ES6
	Conclusion
	Further reading

	Core ES6 features
	From var to let/const
	From IIFEs to blocks
	From concatenating strings to template literals
	String interpolation
	Multi-line strings

	From function expressions to arrow functions
	Handling multiple return values
	Multiple return values via arrays
	Multiple return values via objects

	From for to forEach() to for-of
	Handling parameter default values
	Handling named parameters
	Making the parameter optional

	From arguments to rest parameters
	From apply() to the spread operator (...)
	Math.max()
	Array.prototype.push()

	From concat() to the spread operator (...)
	From function expressions in object literals to method definitions
	From constructors to classes
	Base classes
	Derived classes

	From custom error constructors to subclasses of Error
	From objects to Maps
	New string methods
	New Array methods
	From Array.prototype.indexOf to Array.prototype.findIndex
	From Array.prototype.slice() to Array.from() or the spread operator
	From apply() to Array.prototype.fill()

	From CommonJS modules to ES6 modules
	Multiple exports
	Single exports

	What to do next


	II Data
	New number and Math features
	Overview
	New integer literals
	New Number properties
	New Math methods

	New integer literals
	Use case for octal literals: Unix-style file permissions
	Number.parseInt() and the new integer literals

	New static Number properties
	Previously global functions
	Number.EPSILON
	Number.isInteger(number)
	Safe integers

	Math
	Various numerical functionality
	Using 0 instead of 1 with exponentiation and logarithm
	Logarithms to base 2 and 10
	Support for compiling to JavaScript
	Bitwise operations
	Trigonometric methods

	FAQ: numbers
	How can I use integers beyond JavaScript’s 53 bit range?


	New string features
	Overview
	Unicode code point escapes
	String interpolation, multi-line string literals and raw string literals
	Iterating over strings
	Iteration honors Unicode code points
	Counting code points
	Reversing strings with non-BMP code points

	Numeric values of code points
	Checking for inclusion
	Repeating strings
	String methods that delegate regular expression work to their parameters
	Reference: the new string methods

	Symbols
	Overview
	Use case 1: unique property keys
	Use case 2: constants representing concepts
	Pitfall: you can’t coerce symbols to strings
	Which operations related to property keys are aware of symbols?

	A new primitive type
	Symbols as property keys
	Enumerating own property keys

	Using symbols to represent concepts
	Symbols as keys of properties
	Symbols as keys of non-public properties
	Symbols as keys of meta-level properties
	Examples of name clashes in JavaScript’s standard library

	Converting symbols to other primitive types
	Pitfall: coercion to string
	Making sense of the coercion rules
	Explicit and implicit conversion in the spec

	Wrapper objects for symbols
	Accessing properties via [ ] and wrapped keys

	Crossing realms with symbols
	FAQ: symbols
	Can I use symbols to define private properties?
	Are symbols primitives or objects?
	Do we really need symbols? Aren’t strings enough?
	Are JavaScript’s symbols like Ruby’s symbols?

	The spelling of well-known symbols: why Symbol.iterator and not Symbol.ITERATOR (etc.)?
	The symbol API
	The function Symbol
	Methods of symbols
	Converting symbols to other values
	Well-known symbols
	Global symbol registry


	Template literals
	Overview
	Introduction
	Template literals
	Escaping in template literals
	Line terminators in template literals are always LF (\n)
	Tagged template literals

	Examples of using tagged template literals
	Raw strings
	Shell commands
	Byte strings
	HTTP requests
	More powerful regular expressions
	Query languages
	React JSX via tagged templates
	Facebook GraphQL
	Text localization (L10N)
	Text templating via untagged template literals
	A tag function for HTML templating

	Implementing tag functions
	Number of template strings versus number of substitutions
	Escaping in tagged template literals: cooked versus raw
	Example: String.raw
	Example: implementing a tag function for HTML templating
	Example: assembling regular expressions

	FAQ: template literals and tagged template literals
	Where do template literals and tagged template literals come from?
	What is the difference between macros and tagged template literals?
	Can I load a template literal from an external source?
	Why are backticks the delimiters for template literals?
	Weren’t template literals once called template strings?


	Variables and scoping
	Overview
	let
	const
	Ways of declaring variables

	Block scoping via let and const
	const creates immutable variables
	Pitfall: const does not make the value immutable
	const in loop bodies

	The temporal dead zone
	The life cycle of var-declared variables
	The life cycle of let-declared variables
	Examples
	typeof throws a ReferenceError for a variable in the TDZ
	Why is there a temporal dead zone?
	Further reading

	let and const in loop heads
	for loop
	for-of loop and for-in loop
	Why are per-iteration bindings useful?

	Parameters
	Parameters versus local variables
	Parameter default values and the temporal dead zone
	Parameter default values don’t see the scope of the body

	The global object
	Function declarations and class declarations
	Coding style: const versus let versus var
	An alternative approach


	Destructuring
	Overview
	Object destructuring
	Array destructuring
	Where can destructuring be used?

	Background: Constructing data versus extracting data
	Patterns
	Pick what you need

	How do patterns access the innards of values?
	Object patterns coerce values to objects
	Array patterns work with iterables

	Default values
	undefined triggers default values
	Default values are computed on demand
	Default values can refer to other variables in the pattern
	Default values for patterns
	More complex default values

	More object destructuring features
	Property value shorthands
	Computed property keys

	More Array destructuring features
	Elision
	Rest operator (...)

	You can assign to more than just variables
	Pitfalls of destructuring
	Don’t start a statement with a curly brace

	Examples of destructuring
	Destructuring returned Arrays
	Destructuring returned objects
	Array-destructuring iterable values
	Multiple return values

	The destructuring algorithm
	The algorithm
	Applying the algorithm


	Parameter handling
	Overview
	Default parameter values
	Rest parameters
	Named parameters via destructuring
	Spread operator (...)

	Parameter handling as destructuring
	Parameter default values
	Why does undefined trigger default values?
	Referring to other parameters in default values
	Referring to “inner” variables in default values

	Rest parameters
	No more arguments!

	Simulating named parameters
	Named Parameters as Descriptions
	Optional Named Parameters
	Simulating Named Parameters in JavaScript

	Examples of destructuring in parameter handling
	forEach() and destructuring
	Transforming Maps
	Handling an Array returned via a Promise

	Coding style tips
	Optional parameters
	Required parameters
	Enforcing a maximum arity

	The spread operator (...)
	Spreading into function and method calls
	Spreading into constructors
	Spreading into Arrays



	III Modularity
	Callable entities in ECMAScript 6
	Overview
	Ways of calling in ES6
	Calls that can be made anywhere
	Calls via super are restricted to specific locations
	Non-method functions versus methods

	Recommendations for using callable entities
	Prefer arrow functions as callbacks
	Prefer function declarations as stand-alone functions
	Prefer method definitions for methods
	Methods versus callbacks
	Avoid IIFEs in ES6
	Use classes as constructors

	ES6 callable entities in detail
	Cheat sheet: callable entities
	Traditional functions
	Generator functions
	Method definitions
	Generator method definitions
	Arrow functions
	Classes

	Dispatched and direct method calls in ES5 and ES6
	Background: prototype chains
	Dispatched method calls
	Direct method calls
	Use cases for direct method calls
	Abbreviations for Object.prototype and Array.prototype

	The name property of functions
	Constructs that provide names for functions
	Caveats
	Changing the names of functions
	The function property name in the spec

	FAQ: callable entities
	Why are there “fat” arrow functions (=>) in ES6, but no “thin” arrow functions (->)?
	How do I determine whether a function was invoked via new?


	Arrow functions
	Overview
	Traditional functions are bad non-method functions, due to this
	Solution 1: that = this
	Solution 2: specifying a value for this
	Solution 3: bind(this)
	ECMAScript 6 solution: arrow functions

	Arrow function syntax
	Omitting parentheses around single parameters

	Lexical variables
	Sources of variable values: static versus dynamic
	Variables that are lexical in arrow functions

	Syntax pitfalls
	Arrow functions bind very loosely
	No line break after arrow function parameters
	You can’t use statements as expression bodies
	Returning object literals

	Immediately-invoked arrow functions
	Arrow functions versus bind()
	Extracting methods
	this via parameters
	Partial evaluation

	Arrow functions versus normal functions

	New OOP features besides classes
	Overview
	New object literal features
	New methods in Object

	New features of object literals
	Method definitions
	Property value shorthands
	Computed property keys

	New methods of Object
	Object.assign(target, source_1, source_2, ···)
	Object.getOwnPropertySymbols(obj)
	Object.is(value1, value2)
	Object.setPrototypeOf(obj, proto)

	Traversing properties in ES6
	Five operations that traverse properties
	Traversal order of properties

	Assigning versus defining properties
	Overriding inherited read-only properties

	__proto__ in ECMAScript 6
	__proto__ prior to ECMAScript 6
	The two kinds of __proto__ in ECMAScript 6
	Avoiding the magic of __proto__
	Detecting support for ES6-style __proto__
	__proto__ is pronounced “dunder proto”
	Recommendations for __proto__

	Enumerability in ECMAScript 6
	Property attributes
	Constructs affected by enumerability
	Use cases for enumerability
	Naming inconsistencies
	Looking ahead

	Customizing basic language operations via well-known symbols
	Property key Symbol.hasInstance (method)
	Property key Symbol.toPrimitive (method)
	Property key Symbol.toStringTag (string)
	Property key Symbol.unscopables (Object)

	FAQ: object literals
	Can I use super in object literals?


	Classes
	Overview
	The essentials
	Base classes
	Inside the body of a class definition
	Subclassing

	Private data for classes
	Private data via constructor environments
	Private data via a naming convention
	Private data via WeakMaps
	Private data via symbols
	Further reading

	Simple mixins
	The details of classes
	Various checks
	Attributes of properties
	Classes have inner names

	The details of subclassing
	Prototype chains
	Allocating and initializing instances
	Why can’t you subclass built-in constructors in ES5?
	Referring to superproperties in methods

	The species pattern
	Helper methods for examples
	The standard species pattern
	The species pattern for Arrays
	The species pattern in static methods
	Overriding the default species in subclasses

	The pros and cons of classes
	Complaint: ES6 classes obscure the true nature of JavaScript inheritance
	Complaint: Classes provide only single inheritance
	Complaint: Classes lock you in, due to mandatory new

	FAQ: classes
	Why can’t classes be function-called?
	How do I instantiate a class, given an Array of arguments?

	What is next for classes?
	Further reading

	Modules
	Overview
	Multiple named exports
	Single default export
	Browsers: scripts versus modules

	Modules in JavaScript
	ECMAScript 5 module systems
	ECMAScript 6 modules

	The basics of ES6 modules
	Named exports (several per module)
	Default exports (one per module)
	Imports and exports must be at the top level
	Imports are hoisted
	Imports are read-only views on exports
	Support for cyclic dependencies

	Importing and exporting in detail
	Importing styles
	Named exporting styles: inline versus clause
	Re-exporting
	All exporting styles
	Having both named exports and a default export in a module

	The ECMAScript 6 module loader API
	Loaders
	Loader method: importing modules
	More loader methods
	Configuring module loading

	Using ES6 modules in browsers
	Browsers: asynchronous modules versus synchronous scripts

	Details: imports as views on exports
	In CommonJS, imports are copies of exported values
	In ES6, imports are live read-only views on exported values
	Implementing views
	Imports as views in the spec

	Design goals for ES6 modules
	Default exports are favored
	Static module structure
	Support for both synchronous and asynchronous loading
	Support for cyclic dependencies between modules

	FAQ: modules
	Can I use a variable to specify from which module I want to import?
	Can I import a module conditionally or on demand?
	Can I use variables in an import statement?
	Can I use destructuring in an import statement?
	Are named exports necessary? Why not default-export objects?
	Can I eval() the code of module?

	Advantages of ECMAScript 6 modules
	Further reading


	IV Collections
	The for-of loop
	Overview
	Introducing the for-of loop
	Pitfall: for-of only works with iterable values
	Iteration variables: const declarations versus var declarations
	Iterating with existing variables, object properties and Array elements
	Iterating with a destructuring pattern

	New Array features
	Overview
	New static Array methods
	Array.from(arrayLike, mapFunc?, thisArg?)
	Array.of(...items)

	New Array.prototype methods
	Iterating over Arrays
	Searching for Array elements
	Array.prototype.copyWithin()
	Array.prototype.fill()

	ES6 and holes in Arrays
	ECMAScript 6 treats holes like undefined elements
	Array operations and holes
	Creating Arrays filled with values
	Removing holes from Arrays

	Configuring which objects are spread by concat() (Symbol.isConcatSpreadable)
	Default for Arrays: spreading
	Default for non-Arrays: no spreading
	Detecting Arrays
	Symbol.isConcatSpreadable in the standard library

	The numeric range of Array indices

	Maps and Sets
	Overview
	Maps
	Sets
	WeakMaps

	Map
	Basic operations
	Setting up a Map
	Keys
	Iterating over Maps
	Looping over Map entries
	Mapping and filtering Maps
	Combining Maps
	Arbitrary Maps as JSON via Arrays of pairs
	String Maps as JSON via objects
	Map API

	WeakMap
	WeakMap keys are objects
	WeakMap keys are weakly held
	You can’t get an overview of a WeakMap or clear it
	Use cases for WeakMaps
	WeakMap API

	Set
	Basic operations
	Setting up a Set
	Comparing Set elements
	Iterating
	Mapping and filtering
	Union, intersection, difference
	Set API

	WeakSet
	Use cases for WeakSets
	WeakSet API

	FAQ: Maps and Sets
	Why do Maps and Sets have the property size and not length?
	Why can’t I configure how Maps and Sets compare keys and values?
	Is there a way to specify a default value when getting something out of a Map?
	When should I use a Map, when an object?
	When would I use an object as a key in a Map?


	Typed Arrays
	Overview
	Introduction
	Element types
	Handling overflow and underflow
	Endianness
	Negative indices

	ArrayBuffers
	ArrayBuffer constructor
	Static ArrayBuffer methods
	ArrayBuffer.prototype properties

	Typed Arrays
	Typed Arrays versus normal Arrays
	Typed Arrays are iterable
	Converting Typed Arrays to and from normal Arrays
	The Species pattern for Typed Arrays
	The inheritance hierarchy of Typed Arrays
	Static TypedArray methods
	TypedArray.prototype properties
	«ElementType»Array constructor
	Static «ElementType»Array properties
	«ElementType»Array.prototype properties
	Concatenating Typed Arrays

	DataViews
	DataView constructor
	DataView.prototype properties

	Browser APIs that support Typed Arrays
	File API
	XMLHttpRequest
	Fetch API
	Canvas
	WebSockets
	Other APIs

	Extended example: JPEG SOF0 decoder
	The JPEG file format
	The JavaScript code

	Availability

	Iterables and iterators
	Overview
	Iterable values
	Constructs supporting iteration

	Iterability
	Iterable data sources
	Arrays
	Strings
	Maps
	Sets
	arguments
	DOM data structures
	Iterable computed data
	Plain objects are not iterable

	Iterating language constructs
	Destructuring via an Array pattern
	The for-of loop
	Array.from()
	The spread operator (...)
	Maps and Sets
	Promises
	yield*

	Implementing iterables
	Iterators that are iterable
	Optional iterator methods: return() and throw()

	More examples of iterables
	Tool functions that return iterables
	Combinators for iterables
	Infinite iterables

	FAQ: iterables and iterators
	Isn’t the iteration protocol slow?
	Can I reuse the same object several times?
	Why doesn’t ECMAScript 6 have iterable combinators?
	Aren’t iterables difficult to implement?

	The ECMAScript 6 iteration protocol in depth
	Iteration
	Closing iterators
	Checklist


	Generators
	Overview
	What are generators?
	Kinds of generators
	Use case: implementing iterables
	Use case: simpler asynchronous code
	Use case: receiving asynchronous data

	What are generators?
	Roles played by generators

	Generators as iterators (data production)
	Ways of iterating over a generator
	Returning from a generator
	Throwing an exception from a generator
	Example: iterating over properties
	You can only yield in generators
	Recursion via yield*

	Generators as observers (data consumption)
	Sending values via next()
	yield binds loosely
	return() and throw()
	return() terminates the generator
	throw() signals an error
	Example: processing asynchronously pushed data
	yield*: the full story

	Generators as coroutines (cooperative multitasking)
	The full generator interface
	Cooperative multitasking
	The limitations of cooperative multitasking via generators

	Examples of generators
	Implementing iterables via generators
	Generators for lazy evaluation
	Cooperative multi-tasking via generators

	Inheritance within the iteration API (including generators)
	IteratorPrototype
	The value of this in generators

	Style consideration: whitespace before and after the asterisk
	Generator function declarations and expressions
	Generator method definitions
	Formatting recursive yield
	Documenting generator functions and methods

	FAQ: generators
	Why use the keyword function* for generators and not generator?
	Is yield a keyword?

	Conclusion
	Further reading


	V Standard library
	New regular expression features
	Overview
	New flag /y (sticky)
	RegExp.prototype.exec(str)
	RegExp.prototype.test(str)
	String.prototype.search(regex)
	String.prototype.match(regex)
	String.prototype.split(separator, limit)
	String.prototype.replace(search, replacement)
	Example: using sticky matching for tokenizing
	Example: manually implementing sticky matching

	New flag /u (unicode)
	Consequence: lone surrogates in the regular expression only match lone surrogates
	Consequence: you can put code points in character classes
	Consequence: the dot operator (.) matches code points, not code units
	Consequence: quantifiers apply to code points, not code units

	New data property flags
	RegExp() can be used as a copy constructor
	Example: an iterable version of exec()

	String methods that delegate to regular expression methods

	Asynchronous programming (background)
	The JavaScript call stack
	The browser event loop
	Timers
	Displaying DOM changes
	Run-to-completion semantics
	Blocking the event loop
	Avoiding blocking

	Receiving results asynchronously
	Asynchronous results via events
	Asynchronous results via callbacks
	Continuation-passing style
	Composing code in CPS
	Pros and cons of callbacks

	Looking ahead
	Further reading

	Promises for asynchronous programming
	Overview
	Chaining then() calls
	Executing asynchronous functions in parallel
	Glossary: Promises

	Introduction: Promises
	A first example
	Three ways of understanding Promises
	Conceptually: calling a Promise-based function is blocking
	A Promise is a container for an asynchronously delivered value
	A Promise is an event emitter

	Creating and using Promises
	Producing a Promise
	The states of Promises
	Consuming a Promise
	Promises are always asynchronous

	Examples
	Example: promisifying fs.readFile()
	Example: promisifying XMLHttpRequest
	Example: delaying an activity
	Example: timing out a Promise

	Other ways of creating Promises
	Promise.resolve()
	Promise.reject()

	Chaining Promises
	Resolving Q with a normal value
	Resolving Q with a thenable
	Resolving Q from onRejected
	Rejecting Q by throwing an exception
	Chaining and errors

	Common Promise chaining mistakes
	Mistake: losing the tail of a Promise chain
	Mistake: nesting Promises
	Mistake: creating Promises instead of chaining
	Mistake: using then() for error handling

	Tips for error handling
	Operational errors versus programmer errors
	Handling exceptions in Promise-based functions
	Further reading

	Composing Promises
	Manually forking and joining computations
	Forking and joining computations via Promise.all()
	map() via Promise.all()
	Timing out via Promise.race()

	Two useful additional Promise methods
	done()
	finally()

	Node.js: using callback-based sync functions with Promises
	ES6-compatible Promise libraries
	Promises and generators
	Next step: using Promises via generators
	Promises in depth: a simple implementation
	A stand-alone Promise
	Chaining
	Flattening
	Promise states in more detail
	Exceptions
	Revealing constructor pattern

	Advantages and limitations of Promises
	Advantages of Promises
	Promises are not always the best choice

	Reference: the ECMAScript 6 Promise API
	Promise constructor
	Static Promise methods
	Promise.prototype methods

	Further reading


	VI Miscellaneous
	Unicode in ES6
	Unicode is better supported in ES6
	Escape sequences in ES6
	Where can escape sequences be used?
	Escape sequences in the ES6 spec


	Tail call optimization
	What is tail call optimization?
	Normal execution
	Tail call optimization

	Checking whether a function call is in a tail position
	Tail calls in expressions
	Tail calls in statements
	Tail call optimization can only be made in strict mode
	Pitfall: solo function calls are never in tail position

	Tail-recursive functions
	Tail-recursive loops


	Metaprogramming with proxies
	Overview
	Programming versus metaprogramming
	Kinds of metaprogramming

	Proxies explained
	Function-specific traps
	Intercepting method calls
	Revocable proxies
	Proxies as prototypes
	Forwarding intercepted operations
	Pitfall: not all objects can be wrapped transparently by proxies

	Use cases for proxies
	Tracing property accesses (get, set)
	Warning about unknown properties (get, set)
	Negative Array indices (get)
	Data binding (set)
	Accessing a restful web service (method calls)
	Revocable references
	Implementing the DOM in JavaScript
	Other use cases

	The design of the proxy API
	Stratification: keeping base level and meta level separate
	Virtual objects versus wrappers
	Transparent virtualization and handler encapsulation
	The meta object protocol and proxy traps
	Enforcing invariants for proxies

	FAQ: proxies
	Where is the enumerate trap?

	Reference: the proxy API
	Creating proxies
	Handler methods
	Invariants of handler methods
	Operations that affect the prototype chain
	Reflect

	Conclusion
	Further reading

	Coding style tips for ECMAScript 6
	An overview of what’s new in ES6
	Categories of ES6 features
	New number and Math features
	New integer literals
	New Number properties
	New Math methods

	New string features
	Symbols
	Use case 1: unique property keys
	Use case 2: constants representing concepts
	Pitfall: you can’t coerce symbols to strings
	Which operations related to property keys are aware of symbols?

	Template literals
	Variables and scoping
	let
	const
	Ways of declaring variables

	Destructuring
	Object destructuring
	Array destructuring
	Where can destructuring be used?

	Parameter handling
	Spread operator (...)

	Callable entities in ECMAScript 6
	Arrow functions
	New OOP features besides classes
	New object literal features
	New methods in Object

	Classes
	Modules
	Multiple named exports
	Single default export
	Browsers: scripts versus modules

	The for-of loop
	New Array features
	Maps and Sets
	Maps
	Sets
	WeakMaps

	Typed Arrays
	Iterables and iterators
	Iterable values
	Constructs supporting iteration

	Generators
	What are generators?
	Kinds of generators
	Use case: implementing iterables
	Use case: simpler asynchronous code
	Use case: receiving asynchronous data

	New regular expression features
	Promises for asynchronous programming
	Chaining then() calls
	Executing asynchronous functions in parallel
	Glossary: Promises

	Metaprogramming with proxies



