Exercises

1) Create a lambda function that filters prime numbers from a list.
2) Create a lambda function that filters palindrome strings from a list.
3) Create a lambda function that maps a list of numbers to their squares.
4) Create a lambda function that maps a list of numbers to their cubes.
5) Create a lambda function that maps a list of strings to their lengths.
6) Create a lambda function that reduces a list of numbers to their sum.
7) Create a lambda function that reduces a list of numbers to their product.
8) Create a lambda function that finds the factorial of a number.
9) Create a lambda function that finds the nth term of the Fibonacci sequence.
10) Create a lambda function that finds the nth prime number.

Exercises and solution

1) Filter prime numbers from a list:
is_prime = lambda $\mathrm{n}: \mathrm{n}>1$ and all($\mathrm{n} \% \mathrm{i}$! $=0$ for i in range(2, $\left.\operatorname{int}\left(n^{* *} 0.5\right)+1\right)$)
filter_prime = lambda Ist: list(filter(is_prime, Ist))
2) Filter palindrome strings from a list:
is_palindrome = lambda $s: s==s[::-1]$
filter_palindrome = lambda Ist: list(filter(is_palindrome, Ist))
3) Map a list of numbers to their squares:
square_map = lambda Ist: list(map(lambda $\left.\left.x: x^{* *} 2, I s t\right)\right)$
4) Map a list of numbers to their cubes:
cube_map = lambda Ist: list(map(lambda $\left.\left.x: x^{* *} 3, \mid s t\right)\right)$
5) Map a list of strings to their lengths:
length_map = lambda Ist: list(map(lambda s: len(s), Ist))
6) Reduce a list of numbers to their sum:
sum_reduce = lambda Ist: functools.reduce(lambda x, y :
$x+y$, Ist)
7) Reduce a list of numbers to their product:
product_reduce $=$ lambda Ist: functools.reduce(lambda x, y :
$x^{*} y$, Ist)
8) Find the factorial of a number:
factorial = lambda $n: 1$ if $n==0$ else $n *$ factorial($n-1$)
9) Find the nth term of the Fibonacci sequence:
fibonacci = lambda n : n if $\mathrm{n}<=1$ else fibonacci($\mathrm{n}-1)+$ fibonacci(n-2)
10) Find the nth prime number:
nth_prime $=$ lambda n : next(x for x in itertools.count(2) if is_prime(x) and not ($\mathrm{n}:=\mathrm{n}-1$))
