
Exercises

1. Write a Python function that takes a list of integers as input and returns a new list containing

only the even numbers.

2. Write a Python function that takes two dictionaries as input and returns a new dictionary

that contains only the key-value pairs that are present in both input dictionaries.

3. Write a Python function that takes a string as input and returns the most common letter in

the string.

4. Write a Python function that takes a list of tuples as input, where each tuple contains a

name and an age, and returns a list of names of people who are over a certain age.

5. Write a Python function that takes a list of numbers as input and returns the two numbers in

the list that add up to a specific target.

6. Write a Python function that takes a list of strings as input and returns a new list that

contains only the strings that have at least one uppercase letter.

7. Write a Python function that takes a list of integers as input and returns a new list that

contains the differences between adjacent elements in the input list.

8. Write a Python class Circle that represents a circle with a given radius. The class should have

methods to calculate the circle's area and circumference.

9. Write a Python function that takes a list of dictionaries as input, where each dictionary

represents a person and has keys 'name' and 'age', and returns a new list of names sorted by

age in ascending order.

10. Write a Python function that takes a list of integers as input and returns a new list that

contains only the elements that appear more than once in the input list.

Exercises and Solution

1. Write a Python function that takes a list of integers as input and returns a new list containing

only the even numbers.

def even_numbers(lst):

 return [num for num in lst if num % 2 == 0]

example usage:

nums = [1, 2, 3, 4, 5, 6, 7, 8]

even_nums = even_numbers(nums)

print(even_nums) # Output: [2, 4, 6, 8]

2. Write a Python function that takes two dictionaries as input and returns a new dictionary

that contains only the key-value pairs that are present in both input dictionaries.

def intersect_dicts(dict1, dict2):

 return {key: value for key, value in dict1.items() if key in dict2 and dict2[key] == value}

example usage:

dict1 = {'a': 1, 'b': 2, 'c': 3}

dict2 = {'a': 1, 'b': 3, 'd': 4}

intersected = intersect_dicts(dict1, dict2)

print(intersected) # Output: {'a': 1}

3. Write a Python function that takes a string as input and returns the most common letter in

the string.

def most_common_letter(string):

 letter_counts = {}

 for letter in string:

 if letter not in letter_counts:

 letter_counts[letter] = 1

 else:

 letter_counts[letter] += 1

 most_common = max(letter_counts, key=letter_counts.get)

 return most_common

example usage:

text = "The quick brown fox jumps over the lazy dog"

common_letter = most_common_letter(text)

print(common_letter) # Output: 'o'

4. Write a Python function that takes a list of tuples as input, where each tuple contains a

name and an age, and returns a list of names of people who are over a certain age.

def over_age(name_age_list, age):

 return [name for name, age_ in name_age_list if age_ > age]

example usage:

people = [('Alice', 25), ('Bob', 35), ('Charlie', 20), ('David', 40)]

over_30 = over_age(people, 30)

print(over_30) # Output: ['Bob', 'David']

5. Write a Python function that takes a list of numbers as input and returns the two numbers in

the list that add up to a specific target.

def two_sum(nums, target):

 num_dict = {}

 for i, num in enumerate(nums):

 complement = target - num

 if complement in num_dict:

 return [num_dict[complement], i]

 num_dict[num] = i

example usage:

nums = [2, 7, 11, 15]

target = 9

result = two_sum(nums, target)

print(result) # Output: [0, 1]

6. Write a Python function that takes a list of strings as input and returns a new list that contains

only the strings that have at least one uppercase letter.

def uppercase_strings(lst):

 return [string for string in lst if any(letter.isupper() for letter in string)]

example usage:

strings = ['hello', 'WORLD', 'Python', 'is', 'FUN']

uppercase_strings = uppercase_strings(strings)

print(uppercase_strings) # Output: ['WORLD', 'Python', 'FUN']

7. Write a Python function that takes a list of integers as input and returns a new list that

contains the differences between adjacent elements in the input list.

def adjacent_differences(lst):

 return [lst[i+1] - lst[i] for i in range(len(lst)-1)]

example usage:

nums = [3, 6, 9, 12, 15]

differences = adjacent_differences(nums)

print(differences) # Output: [3, 3, 3, 3]

8. Write a Python class Circle that represents a circle with a given radius. The class should have

methods to calculate the circle's area and circumference.

class Circle:

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return 3.14159 * self.radius ** 2

 def circumference(self):

 return 2 * 3.14159 * self.radius

example usage:

my_circle = Circle(5)

print(my_circle.area()) # Output: 78.53975

print(my_circle.circumference()) # Output: 31.4159

9. Write a Python function that takes a list of dictionaries as input, where each dictionary

represents a person and has keys 'name' and 'age', and returns a new list of names sorted by

age in ascending order.

def sort_names_by_age(people):

 return [person['name'] for person in sorted(people, key=lambda x: x['age'])]

example usage:

people = [{'name': 'Alice', 'age': 25}, {'name': 'Bob', 'age': 35}, {'name': 'Charlie', 'age': 20}]

sorted_names = sort_names_by_age(people)

print(sorted_names) # Output: ['Charlie', 'Alice', 'Bob']

10. Write a Python function that takes a list of integers as input and returns a new list that

contains only the elements that appear more than once in the input list.

def repeated_elements(lst):

 return list(set([num for num in lst if lst.count(num) > 1]))

example usage:

nums = [1, 2, 3, 2, 4, 3, 5, 6, 5]

repeated = repeated_elements(nums)

print(repeated) # Output: [2, 3, 5]

