Exercises

1) Write a function to find the factorial of a number.
2) Write a function to check if a number is a perfect square.
3) Write a function to find the square root of a number.
4) Write a function to find the cube root of a number.
5) Write a function to check if a number is a palindrome.
6) Write a function to convert a string to title case.
7) Write a function to find the length of the hypotenuse of a right-angled triangle.
8) Write a function to calculate the distance between two points.
9) Write a function to calculate the slope of a line.
10) Write a function to find the midpoint of a line.

Exercises and solution

1) Write a function to find the factorial of a number.
```
def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n-1)
```

2) Write a function to check if a number is a perfect square.
```
def is_perfect_square(n):
    root = int(n** 0.5)
    return root ** 2 == n
```

3) Write a function to find the square root of a number.
```
def square_root(n):
    return n ** 0.5
```

4) Write a function to find the cube root of a number.
```
def cube_root(n):
    return n ** (1/3)
```

5) Write a function to check if a number is a palindrome.
```
def is_palindrome(n):
    return str(n) == str(n)[::-1]
```

6) Write a function to convert a string to title case.
```
def title_case(s):
    return s.title()
```

7) Write a function to find the length of the hypotenuse of a rightangled triangle.
```
def hypotenuse(a, b):
    return (a ** 2+b ** 2) ** 0.5
```

8) Write a function to calculate the distance between two points.
```
def distance(x1, y1, x2, y2):
    return ((x2-x1)** 2 + (y2-y1) ** 2) ** 0.5
```

9) Write a function to calculate the slope of a line.
```
def slope(x1, y1, x2, y2):
    return (y2-y1) / (x2 - x1)
```

10) Write a function to find the midpoint of a line.
def midpoint($x 1, y 1, x 2, y 2$):
```
    return ((x1 + x2) / 2, (y1 + y2) / 2)
```

